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Counterion penetration and effective electrostatic interactions in solutions of polyelectrolyte stars
and microgels
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Counterion distributions and effective electrostatic interactions between spherical macroions in polyelectro-
lyte solutions are calculated via second-order perturbdlioear responsetheory. By modeling the macroions
as continuous charge distributions that are permeable to counterions, analytical expressions are obtained for
counterion profiles and effective pair interactions in solutions of star-branched and microgel macroions. The
counterions are found to penetrate stars more easily than microgels, with important implications for screening
of bare macroion interactions. The effective pair interactions are Yukawa in form for separated macroions, but
are softly repulsive and bounded for overlapping macroions. A one-body volume energy, which depends on the
average macroion concentration, emerges naturally in the theory and contributes to the total free energy.
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[. INTRODUCTION have been widely studid®,9]. In poor solvents, sufficiently
highly charged chains may form necklaces of compact glob-
Polyelectrolytes(PES are ionizable polymers that dis- ules joined by narrow threads, as predicted by thddg
solve in a polar solvent, such as water, by dissociating intgnd confirmed by simulatiofiL1]. _ _
polyvalent macroions and small oppositely charged counte- Although many common PEs are linear, other topologies
rions[1]. Electrostatic interactions between macroions, mean be readily synthesized. Examples are stars, microgels,

diated by surrounding microiorisounterions and salt iojs micelles, and brushes. Star polym¢i] consist of chains
d by 9 . . chemically grafted or adsorbed to a common microscopic
contribute to the unique macroscopic properties of PE solu

’ ’ ' ) ; _— >YMcore. Microgels are mesoscopic polymer networks, synthe-
tions, which are the basis of many industrial applicationsgjzed by polymerization in microemulsi¢a3]. Micelles are

involving polymer-water systen{2]. Common synthetic ex- formed by association of charged dibloGmphiphilid co-
amples of PEs are polyacrylic acid, used in gels and rheologgolymers[14]. Brushes are formed by grafting PE chains
modifiers, and polystyrene sulfonate, a component of reversento a mesoscopic solid coféd5]. Solutions of spherical
osmosis membranes. Naturally occurring examples arstars, microgels, micelles, and brushes can be regarded as
biopolymers, such as DNA, proteins, and starches. Colloida¢olloidal suspensions of soft macroions that are permeable to
in size, PEs are also routinely added as flocculants and stgcroions. ) _ _
bilizers to colloidal suspensions, such as foods and water- Electrostatic interactions in charged colloids have re-
based paint§3,4]. Depending on PE concentration, adsorp-C€1Ved much attention in recent yeais], motivated largely
tion or grafting of PE chains onto surfaces of colloidal b_y anom_alou_s phase behavior that is unexplained by the clas-
. ; . . S . sic Derjaguin-Landau-Verwey-OverbeekDLVO) theory
particles can either induce flocculation, by bridging partlcles[lﬂ_ Most studies have been restricted, however, to hard,

or impart electrosteric stabilization. impermeable macroions. The objectives of this paper are
Conformations of PE macroions and electrostatic interaCfirst, to exp|0re imp”cations of microion penetration for
tions between macroions are strongly influenced by the disscreening of effective electrostatic interactions between
tribution of microions. If dispersed in solution, microions act spherical macroions, and second, to lay a foundation for fu-
to screen the bare Coulomb interactions between ionizetire studies of thermodynamic phase behavior of PE solu-
monomers. If condensed on the macroion chains, microionions. Our approach is based on a recently proposed theory of
may reduce the macroion char@d. Linear PE chains whose effective interactions in charged colloid48], which we
monomers are sufficiently weakly interacting—either be-adapt here from hard to penetrable macroions and apply to
cause weakly charged or because of strong microion screefiPherical star-branched and microgel macroions.
ing or condensation—may form random-walk coils with ~ The remainder of the paper is organized as follows. Sec-
roughly spherical conformation. With increasing charge andion Il .descrlbes the as_sumed model of PE solutions. Section
screening length, linear chains stretch into nonspherical corl! reviews th(_a theoretical approach, base_d on second-order
formations because of electrostatic repulsion between iorperturbaﬂon(lmear respons)et'heory. Sections IV and v
ized monomerg6,7]. The extent of elongation depends on present analytlpal gnd nur_nenc_al results fOF counterion pro-
the chain charge density, salt concentration, and solvent quafl'—k_es and effectlye Interactions in bulk SOM'OUS Of star and
ity. Highly charged chains in good solvents.g., DNA in microgel macroions. Finally, Sec. VI closes with a summary
waten often form stiff rodlike macroions, whose effective and conclusions.
interactions and complex phase behavguch as bundling Il. MODEL
Adapting the primitive model of ionic liquid§19], the
*Electronic address: alan.denton@ndsu.nodak.edu model system comprisé$,, spherical macroions of radius
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(diametero=2a) and charge-Ze, andN. point counteri-  sentation, we initially ignore salt ions. The Hamiltonian then
ons of chargeze dispersed in an electrolyte solvent in a decomposes into three terms

volumeV at temperaturd. Assuming, for simplicity, a sym-

metric electrolyte and equal salt and counterion valences, the H=H({RH+H:{r})+Hu({RHT}), D
electrolyte containdl point salt ions of chargee andN; of
charge —ze. The microions, thus, numbeN, =N.+ Ng
positive and N_=Ns negative, for a total ofN,=N
+2Ng. Global charge neutrality in a bulk solution constrains N

average macroion and counterion number densitigs, Hn=Kn+ 5. Z vmm(|[Ri—Ry]), 2
=N,,/V andn,=N./V, viaZn,=zn.. The polar solvent is =1

treated as a continuum, characterized by dielectric constant.

) - . "is the bare Hamiltonian for macroions with kinetic energy
that acts only to reduce Coulomb interactions between I0NS “that interact via the bare pair otentig), (r) at center-
The local number density profiles of counteriops(r), m pairp m

and of macroion monomers,.(r), are modeled as spheri- center separation The form ofv ,,(r) depends on the mac-
) ) Pmorl ), ar : P roion conformation and is specified in the Appendix. The
cally symmetric, continuous distributions. Spherical symme- .
) D Nl ..~ second term in Eq(l),
try is a reasonable approximation, considering that equilib-
rium averaging over macroion orientations tends to smear N¢
out any anisotropy. Furthermore, discreteness of the charge Ho=K.+= >, veellri—=riD), 3
distributions can be ignored if we restrict consideration to 2451
length scales exceeding the scale of discreteness. is the Hamiltonian for counterions with kinetic ener
In general, the counterions are distributed over three ret-h te' " to . t?] COC el Ob . : ct;e 8y
gions: (1) the immediate vicinity of the PE chains making up at interact via the Coulomb pair potentialc(r)

—52/2 H H
the macroions(2) the region inside of the macroions but =2z°¢’/er. The third term in Eq(),

where{R} and{r} denote collective coordinates of macroion
centers and counterions, respectively. The first term,

away from the chains, an@) the region outside of the mac- Ny Ng
roions. Counterions in the first two regions are trapped by the Hone= > 2 vmd|Ri— rl, (4)
macroions, while those in the third region are free. Within i=1j=1

the first region, the counterions may be either condensed on _ L . .
a chain or free to move along a tube surrounding a chain' the macroion-counterion interaction. For spherical macro-
These chain-localized counterions, whether condensed &?"S:

mobile, tend to distribute uniformly along the chains to favor —77&

local charge neutrality. In our model, counterions in region , r>a

(1) simply renormalize the effective macroion valerite Umdl)= er 5
The detailed form of the monomer density profile depends v(r), r=a,

on the macroion conformation. For star-branched macroions,

Coulomb repulsion between charged monomers tends tohere the interaction inside a macroion (r) depends on
stiffen and radially stretch the chains into a porcupine conthe macroion conformation and is specified in Sec. IV. For
formation[20]. We assume the ideal case of fully stretchedlater reference, we note that H¢) also may be expressed in
chains and model the monomer density profile @y,(r  the form

<a)=2Z/(4war?), wherer is the radial distance from the

star.s cgnter. For mlgrogel macroions, the dense net_wo.rk of Hmc:J dRpm(R)J dr po(Nomd |R=T1), (6)
chains is well approximated by a uniform monomer distribu-

tion, and is modelled here yo(r <a) =3Z/(47a®). This N N

distribution may also approximate a weakly charged linea®Vherepm(R)=2;T, 6(R—R;) andp (r)==; %, 5(r—r;) are

PE chain with a spherical random-coil conformation, al-the macroion and counterion number density operators, re-
though a Gaussian distribution may then be more accuratépectively.

For both the star and microgel models, the monomer density The mixture of macroions and counterions is formally re-

profile is cut off sharply at the macroion surfage;.(r  duced to an equivalent one-component system by tracing
>a)=0. over counterion coordinates. Denoting counterion and mac-

roion (classica) traces by ). and( ),, respectively, the ca-

nonical partition function can be expressed as
Ill. THEORY

For the model PE solutions described above, the theoret- Z=((exp(— BH))o)m=(exp( = BHef) ). @)
|an challenge_ls to predict the _dlstrlbutlons of microions in- whereH q=H .+ F, is the effective one-component Hamil-
side and outside of the macroions and the effective interac-, .. _
. . . onian, 3=1/kgT, and
tions between macroions. Following the same genera
strategy as applied previously to charged coll¢iti,21], we Fo=—kgTIn(exd — B(He+Hmo 1)e (8)
reduce the multicomponent mixture to an equivalent one-
component system governed by effective interactions, whicls the free energy of a nonuniform gas of counterions in the
are approximated via perturbation theory. For clarity of prepresence of the macroions.
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At this stage, approximations are necessary for the courithe final term in Eq.(12) is the volume energy, formally
terion free energy. It is first convenient to convert the coun-given by
terion Hamiltonian to the Hamiltonian of a classical one-
component plasmg&dOCP of counterions by adding tél ., N
and subtracting front ., the energy of a uniform compen- Eo=Focrt 2
sating negative background22], E,=—N.n.0.(0)/2,
wheref;cc(O) is thek—0 limit of the Fourier transform of - E -
vee(r). Now regarding the macroions as an “external” po- tNeomd K+ o ncvcc(k)}, (14
tential for the OCP, we invoke perturbation thepty, 19,21
and write which is a natural by-product of the one-component reduc-
tion. Although independent of the macroion coordinates, the
1 , volume energy depends on the average macroion density,
Fe=Focrt fo dA(Hmox » © and thus, can influence thermodynamics.

The linear response function is proportional to the corre-
where Focp= — kg T In{exd — B(H.+Ep)])e is the OCP free spond_ing static structure facts(k), vyhich may be 'obtained
energy, the\ integral charges the macroionsl, .=H,, T0m liquid-state theory19]. In practice, the OCP is weakly
—E,, represents the perturbing potential of the m::xcroionéx’”e'atzed’_W'th coupling parametét=»\p/a < 11,/3\(vhere
acting on the counterions, af#l/,.), is the mean value of Ag=pe‘/ € is the Bjerrum length and.= (3/47n)~"is the
this potential in a solution of macroions charged to a fractioncoUnterion sphere radius. For example, for macroions of di-
\ of their full charge. Further progress is facilitated by ex-2metera=100 nm, valenceZ =100, and volume fraction

— 3_ H
ressingH ¢ [Eq. (6)] in terms of Fourier components, n=(m/6)npo~=0.01, in water at room temperature.g
P GHime [EQ. (6)] P =0.714 nm), we findI'=0.014. As for charged colloids

1 R R R [18,21], we adopt the random phase approximati&®iPA),
(Hooh=g 2 0mdK)pm(—K)(pe(K))y which is accurate for weakly coupled plasmas. The RPA
V o At : ; ;

equates the two-particle direct correlation function of the
1 . A . OCP to its exact asymptotic limit®(r)=— Bv.(r). Us-
+ImlomdK)pm(—K){pc(k))il, (100 ing the Ornstein-Zernike relatior§(k) =1[1—n.c®(k)],
k=0 the linear response function then takes the analytical form

1 .
"ml)ind(r) + lelm [ - Enmvind(k)
r—0 k—0

whereo (k) is the Fourier transform of Eq5) and where Bn

~ ~ Cc
pm(K) == " exp(k-R;) and po(k)=3 exp(k-r;) are x(k)=—pBnS(k)=— T ana (15
Fourier components of the macroion and counterion densi- (1+ &K%

ties. where k=\4mn.z°\g is the inverse Debye screening

ength. Note that since permeable macroions do not exclude

In first-order perturbation theory, the response of theé
counterions from their interiors, the excluded-volume correc-

counterion plasma to the macroions is ignored. Here, we a

ply ‘second-order perturbatiofiinear responsetheory, in téons required for hard colloidal macroioh$8] are not rel-

which the counterions are assumed to respond linearly to th ) o : .
macroion external potential P y evant here. Withy(k) specified, the counterion density can

be explicitly determined from Eq$5) and (11) for a given
macroion distribution(see Sec. IY. Finally, salt is easily
introduced via additional microion response functions. In the
where x(k) is the linear response function of the OCP. NoteProcess, the pair |nteract|o'n'§1nd volume energy are un-
that thek—0 limit here, and in Eq(10), must be treated changed, except for a redefinition of the screening constant
. ' N - as k= 4m(n.+2ny)z°\g, Whereng is the average number
separately, since the average counterion densityp.(0) (cj]ensity of salt ion pairs
does not respond to the macroion charge, but rather is fixe It is worth noting the formal equivalence of the present

by the constraint of global charge neutrality. : : :
_ ) . theory to linearized Poisson-BoltzmaniDLVO) theory.
Upon combining Eqs(9)—(11), the effective Hamiltonian Both are mean-field theories in the sense that they ignore

can be recast in the form of the Hamiltonian of a pairwise~y,ations in microion distributions. An advantage of linear
interacting system

response theory, however, is that it encompasses the volume

pe(K)=x(K)vmdK) pm(k),  k#0, (11)

1 Mo energy, which can be important for describing phase behav-
Hor=Knt Kt = ve([Ri—R|)+Eo, (12 ior .[18,21,23—2Hi Moreover, response theory can be
2if=1 straightforwardly generalized to incorporate nonlinear re-

_ . . sponse, which entails both many-body effective interactions
where ve(r) =vmm(r) +ving(r) is an effective macroion and corrections to the pair potential and volume engagy.
pair interaction that combines the bare macroion interactionn contrast, nonlinear Poisson-Boltzmann theory is practical

with a microion-induced interaction only for the simple boundary conditions afforded by cell
R R models. For simplicity, higher-order nonlinear effects are
Vind(K) = x(K)[vmd k) 1% (13)  here ignored.
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Equations(11)—(14) constitute the main formal expres- 7Z7¢&
sions from linear response theory. Explicit calculations re- T e r-a
quire specifying the counterion-macroion interaction(r) Vmell) = (17)
in Eq. (5) for specific macroion models. Below, we apply the B Z2¢ 1 r r<a
theory to obtain analytical and numerical results for counter- €a : al|” 7
ion profiles and effective interactions in bulk solutions of
spherical star-branched and microgel macroions. whose Fourier transform is

IV. ANALYTICAL RESULTS R AnZ 276
U k)=— sing ka), (18

A. Star macroions ek3a

For our idealized model of a star-branched macroion with .
1/r2 monomer density profile, Gauss's law gives the electric¥ith sinc(x) = [gdu sin(u)/u. We can now calculate the coun-

field as terion number density around a single macroion in the dilute
limit, where p,,(k)=1. From Eqgs.(11), (15), and(18), the
Zze r~a Fourier component of the counterion density profile is given
2 by
r
En={ ° (16)
S 1Ee =2 — " sindka) (19
ear’ = - ————sindka),
P 7 ka(k?+ 1?)
Integration overr yields the electrostatic potential energy
between a star and a counterion, whose real-space form is
|
Z «k [2 sinhdka)e *, r>a
pC(r):_— H —Kr KI (20)
z 8mar | [Ed ka,kr)+2 sinhdxka)] e “"—Ed —«a,—«r)e, r=a,
|
where Note the clear predictions thét) the counterion distribution
is determined entirely bya, or the dimensionless ratio of
) x sinhu) x2n+l the macroion radius and the Debye screening length(2nd
smho{x)zfodu U :nZO 2nt1)(2n+ 1)! the fraction of counterions inside increases monotonically
21) with xa. Thus, for fixed macroion radiu$;, increases with
increasing macroion valence and concentration. This result is
and physically sensible: the shorter the screening length, the
shorter the range of the counterion response, and, thus, the
u ® N_ N tighter the localization of counterions around the macroion
X2 € X X5—X]
Eo(xl,xz)zf du—=In| — +2 — (22 centers.
xg U X1/ =1 NN From Egs.(13) and (18), the induced electrostatic pair

. - i interaction is given by
which can be efficiently computed from the first few terms of

the rapidly converging series expansions. Approaching the

macroion center, the counterion density profile varies more . 47r7%€? K2 _

gradually than the t# macroion monomer density profile, Vind(K) = — 5 5 —5sinc(ka). (29
. - . . . € k*a“(k“+ k)

diverging logarithmically, according to

K2

limp.r)=-——
r—>0pC( ) 4ma

1—In r Fourier transforming, we obtain

all (23

Integrating Eq(20) over the spherical volume of the macro- v 4(r)=—
ion yields the fraction of counterions inside a star

167%Z%e*k%a foc sin(xr/a)

X
er 0o x3(x%+ k%a?)

z a 1
fin=24 drr2pg(r =1—(1+—)e"asinh a).
nz Wfo p(1) Ka qxa) For nonoverlapping stars, E426) can be reduced to the
(24 analytical form
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722 72e2[sinhd ka)]2e™ <" model neglects chain flexibility, which is reasonable at least
q«a) g y.
Vind(r)=— + , I>2a. for nonoverlapping stars, the linear response theory refines
€r € Ka
27) somewhat the modelling of the counterion distribution.
Since nonoverlapping macroions interact via a bare Coulomb B. Microgel macroions
potentialv ,(r) =Z%e?/ er, the effective pair interaction for . .
this case is For our model of microgel macroions, we apply exactly
the same procedure as in Sec. IV A. The electric field of a
Z2e?[sinhg ka)|2e « uniformly charged sphere is
Ver(r) = , r>2a. (28
€ Ka Ze
] . —-—, r>a
Thus, at the level of linear response, nonoverlapping star er?
macroions interact via an effective Yukaw@creened- E(r)= (32
Coulomb pair potential. The screening constaatin the _Z_er r<a
potential depends on the total density of microions—inside ead’

and outside of the macroions—since all microions respond to
the macroion charge. Note that the potential has the samewhich integrates to give the macroion-counterion interaction,
dependence as the DLVO potential for hard colloidal macro-

ions[4,17], _ Zz¢& r>a
er ’
Z%e?[exp(ka)|?e Undr) = (33)
— mc! 2
vpvo(r) c | 1-xa _— r>2a, (29 - 776 o .
2ea a2 ’
differing only in the macroion-size-dependent amplitude. For
overlapping stars, the bare macroion interaction is somewhdtquation(33) Fourier transforms to
more complex and is relegated to the Appendix. 2
Finally, from Egs.(14), (18), (25), and(26), the volume ~ 1277z sin(ka)
energy is obtained as Um(K) =~ ka2 cogka)—— ——|, (34
E_F N 8m°Z%e?K%a (= « sincx which, when substituted into Eq11), yields the Fourier
o ock m € 0 X2(x%+ k%% transform of the counterion density profile around a single
(300  Macroion,
For weakly coupled microion plasmas, the OCP free energy - 4 3k? sin(ka)
may be approximated by its ideal-gas limit, pe(k)=—— m cogka)— — ——|. (39

_ 3 3
Focr=N[In(n A% =11+ N_[In(n-A%~1], (3 The Fourier transform of E435) gives the real-space coun-
whereA is the thermal wavelength. Note thatdfis allowed ~ terion density profile,
to vary (with counterion condensatipnthen the volume en-
ergy per macroion must be augmented by the @édirtree
energy of a macroiont,=Z%e?/ea. The first term in Eq. Z 3
(30), long recognized as important for phase behayidr pel(r)= z Amacr | r
represents the entropy of free counterions; the second term P

sinh( ka)

e " r>a
Ka

coshika)—

a 1+% e “dsinh(kr), r=a,

accounts for the cohesive electrostatic energy of microion- (36)
macroion interactions. The volume energy, analogous to its
counterpart for charged colloid48,24,29, depends on the which approaches a constantras 0,
average macroion concentration and thus has the potential to
influence phase behavior and other thermodynamic proper- Z
ties. Equationg20), (24), (28), and (30) are the main ana- pc(r=0)=— p
lytical results for star macroions.

It is important to emphasize that the present approach, |ntegration of Eq.(36) yields an analytical result for the
while including the entropy of the counterions, neglects thgnternal fraction of counterions
configurational entropy of the macroions by assuming rigid
(fully stretched PE chains. Recently, Jusui al. [28] mod- 1 sinh(ka)
eled pair interactions between PE stars by both molecular fin=1-—1+— Y a |

7TaS[l—(lJrKa)e‘K""]. (37

e “@ coshka)—
. . . L. . Ka Ka Ka
dynamics simulation and a variational free energy that incor- (39)
porates chain flexibility. An important conclusion of their
study is that pair interactions are dominated by counteriorAgain the theory predicts a counterion distribution depend-
entropy. Our approach is complementary: while the macroioring only on the ratio of macroion radius to screening length
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and an internal counterion fraction that increases monotoni- 1.0
cally with this ratio. This prediction may be compared with star (a)
that of Oosawa’s “two-phase” approximatidd], whichas- 1\ _____ micro
. o : ; . gel
sumes uniformbut differing counterion concentrations in- |\ _______ hard sphere
side and outside of the macroions. According to the latter s
approach, for spherical macroions with volume fractipn = 05 e
the condition for equilibrium between free and bound coun- o | T N
terions, in the absence of salt ions, is .
fin ( Y Ag i
In( =In +Z—(1—fi) (1= 73, (39 |
11, 1-p “a 't 7 0 1 2
which must be solved numerically féf,. The predictions of rla
Egs.(38) and(39) are compared below in Sec. V. 8 :
Next, substituting Eq(34) into Eq.(13), the induced pair \\ counterions (b)
interaction is SN star macroion
r— 4 \\\
S 36mwz2%e? K2 dka) sin(ka)]? s SN
v; =— cogka)— (- .
i € Kal(k2+k?) ka =
(40) = o |
|
For nonoverlapping macroions, the Fourier transform of Eq. !
(40) is straightforward to evaluate and yields an effective -4 t i
pair interaction _a ) 0 >
In(r/a
z2%e? sinh(ka)|?e *" (v/a)

Veri(r) = € hat costixa) — Ka r FIG. 1. (a) Counterion number density profilésom Egs.(20)
and (36)] inside and outside of polyelectrolyte star and microgel
macroions of diametes=100 nm, valenc& =100, and effective

r>2a. (41) volume fraction »=0.01, in water at room temperature\g

=0.714 nm). The result for a hard-sphere macroion is shown for
hcomparis.on.(b) Comparison of counterion and monomer density

As for star macroions, a Yukawa form is predicted, but wit : ;
é)roflles for a star macroion on a log-log scale.

a different amplitude. The case of overlapping macroions i
left to the Appendix.
Finally, from Eqs.(14), (34), and(40), the volume energy number density profilefEqgs. (20) and (36)] inside and out-
is obtained as side of a macroion. Inside a star macroion the counterion
density diverges logarithmically towards the center, while

372e? (1 1 3 1 inside a microgel macroiop.(r) remains finite. Evidently,
Eo=Focr~ Nm e a3l 55 counterions penetrate stars more easily than they do micro-
@ 5 2«%° 4xa K-a gels. This property is also reflected in the internal counterion
5 1 KT k222 fractions[Egs. (24) and (38)], functions ofka only, which
41+ =5 )ezka J —(N,=N_)—— = are shown in Fig. @). In Fig. 2b), we compare predictions
Ka k23?2 2 of linear response theoffeg. (38)] with those of Oosawa’s

two-phase approximatiofEq. (39)] for uniformly charged
spherical(microge) macroiong 1]. Both approaches qualita-
tively predict an increase in the fraction of bound counteri-
ons with increasing macroion concentration. However, linear
response theory predicts a considerably more gradual accu-
mulation of bound counterions than does the two-phase ap-
proximation.

The theory developed above can be applied to solutions of Counterion penetration strongly influences screening of
arbitrary ionic strength, under the assumption that the madsare macroion interactions. The effective pair potentials
roion PE chains remain stretched. In order to highlight thev 4(r) and corresponding forceB(r)= —dvx(r)/dr are
role of the counterions, we present numerical results for saltshown in Figs. 3 and 4, respectively. Beyond overlap the
free solutions. Within the model considered, the effect of saleffective interaction has Yukawa form, with the amplitude
is merely to increase the Debye screening constant. Furthedepending on the type of macroion. Figure 5 compares the
more, we consider the case of monovalent counterians (variation of the macroion-size-dependent amplitudey af
=1) in aqueous solutions at room temperaturkg ( >2a) with the Debye screening constant for the two perme-
=0.714 nm). Figure 1 illustrates the form of the counterionable macroions and for hard macroions. Evidently, the

(42

Equations(36), (38), (41), and(42) are the main analytical
results for microgel macroions.

V. NUMERICAL RESULTS
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1.0 ; 300 ; :
= —— star (a) \ ()
= - microgel \ —— effective interaction
2 v 7 — 200 \ —--—- bare interaction
o -

g e xm
WL 05 e ~
c -
g g4 = 100t
0] gl >
S
: 0
0 5 10
Screening Constant (ko) 200

1.0 . . . . (b)
c | two—phase approx. — \o---- bare interaction
= | T m
s L X 100
Lt o5t T —

p - =
Q / >
s
C
3 ‘
S 0 1 y 2 3
: - - r'c
0.0 0.1 0.2 0.3 0.4
Volume Fraction (n) FIG. 3. Electrostatic interactiorifrom Egs.(28) and (41)] be-

tween pairs of polyelectrolyte stafa) and microgeldb). Dashed

FIG. 2. (a) Fractions of counterionfrom Egs.(24) and (38)] curves: bare interaction. Solid curves: effectilmare + induced
inside polyelectrolyte star and microgel macroions vs Debyenteraction. Parameters are the same as in Fig. 1. Beyond overlap
screening constamt. (b) Fraction of counterions inside a uniformly (r/o>1), the interaction is Yukawa in form. For overlapping mac-
charged spherical macroion vs effective macroion volume fractiorfoions (/o<1), the soft repulsion remains finite at complete over-
as predicted by linear response thegsplid curve$ and by the lap (r=0).
two-phase approximation of OosaWh (dashed curvesFor each
case, the bottom curve correspond¥ig; /a=8 and the top curve more easily than they do microgel®) Inside a star macro-
to Z\g/a=16. ion, the density profile of mobile counterions varies more

gradually than the macroion monomer density profile, di-
greater the permeability of the macroions to counterions, thgerging logarithmically toward the centéB) The fraction of
weaker the amplitude of long-range repulsion. For overlap€ounterions trapped inside a macroion depends only on the
ping macroions, the bare charge distribution combined withratio of macroion radius to Debye screening length and in-
counterion penetration leads to softly repulsive interactionscreases monotonically with this rati@l) Counterion screen-
Note that the interactions are bounded: they do not diverge asg significantly weakens the bare electrostatic pair interac-
the macroions approach complete overlap. It must be emphdions, which remain bounded up to complete overlap of
sized that the effective interactions presented in Figs. 3 and ehacroions.(5) The effective pair interactions are softly re-
arise physically from electrostatic repulsion and counteriorpulsive for overlapping macroions and Yukawa in form for
screening, but do not include steric interactions due to comseparated macroions, with amplitudes depending on the type
pression of overlapping chaif2s]. of macroion.

It is important to point out some limitations of the theory.
First, the linear response approximation limits applicability
of the theory to dilute solutions of weakly charged macro-

To summarize, we have applied second-order perturbatioions. The quantitative range of validity depends on the rela-
(linear responsetheory to model solutions of spherical poly- tive magnitudes of nonlinear corrections, including three-
electrolyte star-branched and microgel macroions. Théody and high-order interactions, in the perturbation
theory predicts the counterion density profiles inside and outexpansion. The same techniques that have been used to ana-
side of the macroions, effective interactions between pairs dfyze nonlinear response in charged colloj@3] can be ap-
macroions, and a one-body, density-dependent, volume emplied to polyelectrolytes. Second, the mean-field approach
ergy that contributes to the total free energy of the systemtaken here ignores fluctuations in the counterion distribution,
The main conclusions ardl) Counterions penetrate stars which may be especially relevant for short-range interactions

VI. CONCLUSIONS
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probed experimentally, e.g., by neutron scattering, using iso-
topic labelling to contrast the PE chains and counterions. The
macroion-macroion interactions may be less accessible to ex-
periment. Conceivably, the solvent quality might be tuned to
minimize the second virial coefficient between neutral mono-
mers of overlapping macroions, effectively highlighting elec-
trostatic interactions by masking any steric interactions.
Comparisons of predicted and observed macroscopic proper-
ties will provide the most practical, if indirect, tests of the
theory. Future applications will examine thermodynamic
phase behavior, especially possible implications of the vol-
ume energy for the stability and structure of deionized solu-
tions[13].
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0 1 2 APPENDIX: INTERACTIONS BETWEEN OVERLAPPING
r/'c MACROIONS

FIG. 4. Effective electrostatic forces between pairs of polyelec- The bare Coulomb interaction between a pair of macro-
trolyte stars(a) and microgelgb), corresponding to the interaction i0Ns at center-center separatiofs given in general by
potentials in Fig. 3. Parameters are the same as in Fig. 1.

ibility restricts the theory to nonoverlapping macroions. This W (A1)
restriction may be reasonable for dilute solutions of sparsely
separated macroions. However, for a sufficient concentration
of macroions in a good solvent, chain elasticity and entropyo nonoverlapping macroions, spherical symmetry reduces
must play a role. A unification of linear response theory andne interaction to
the variational theory of Ref28] may then prove fruitful.

In principle, the predicted counterion profiles could be

and multivalent counterions. Third, the neglect of chain flex- e? , L Pmor ") Pmor( 1)
Umm(l) = - dr’ | dr

2,2

Ze
; vmm(r)=?, r>2a. (A2)
8 9ol — stars
2 - microgels . . o .
a | hard sph For overlapping macroions, the six-dimensional integral in
E ard spheres Eqg. (A1) may be reduced, by exploiting cylindrical symme-
<é try and Gauss’s law, to two-dimensional integrals, which in
o 5t ] turn may be evaluated analytically. For star macroions, the
IS result may be expressed piece-wise as follows:
= e
R 226297r13a1rr|
. . = 0 —— —_ — — — —_— —_— +— —
0 > 4 Omnl") 2ea |2 4a 2 r al"ala
Screening Constant (xc) a—r ro(ar-1  In(1+x)
XIn| —|—=— f dX——
FIG. 5. Macroion-size-dependent amplitude of Yukawa effective a 2a)-1 X
electrostatic interactior€gs.(28), (29), and(41)] between pairs of rofar In(x—1
nonoverlapping stars, microgels, and hard spheres vs Debye screen- 4+ — . 0<r=a (A3)
ing constant, normalized to unity alz=0. 2a);
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Z%e*(9 7r 1 a r 72262(9 71 1 a ,
VN =%5—={5—"7-"5 = 1= =]+=In| = V(1) = ——1{ == ——— = bl [
2ea |2 4a 2 r a/ a \a mm 2ea |2 4a 2 r a
| - N r fa/r d In x =2 rI r | r-a
nl—-1» + — X—1t, a<r<2a. +—Inl= -
a 2a)1-ar 1—X a n a : a
(A4) r (a/r)"—(1—a/r)"
. L " %a > ,  a<r<2a.
For computational purposes, the remaining integrals may be an=1 n

expressed as convergent series

(AT)
- For microgel macroions, the bare interaction may be ex-
Do (1) = Ze |9 7r 1 a,_r pressed more compactly as
mm 2ea |2 4a 2 r a - ) 3 5
_Zcet|6 1r N 3(r 1 r
GO facel v (1l (V2 vmnlf)= 27|57 2\a) T16la) “160la) |
+=In| =] |Inf — |+ 5=| 5|In| =
a a 2al2| la r<2a. (A8)
22 (rla)"—[rl(a—r)]" Finally, the effective pair interaction between microgels,
3 In ar + 5 vei(r), is the sum of Eq(A8) and the induced interaction,
n=1 n obtained by Fourier transforming EGI0)
o [rl@-npPt-2 972¢? 1 1
+2 , O<r=al2 . = —e KT g Pr24 A4
nzl (2n—1)2 Vind(T) ertalr l-e '+ S5 KT o kT )
(AS) 2
x| 1- + —e “si
1 ) Kae sinh( «r)
( Z%?|9 T 1[ a)( T L
r —_—— — — — — — —_—— —_——
Umm 2ea |2 4a 2 r a +| e~ ?*qsinh kr) + 2kar+ §K4(4a3r+ar3)
A IS T 1I(r”2 8
—In{=||{In| — |+ == 5|In| = 2.2 4.4
x| 1+ -—| 1+ +—
a \a a | 2al2| \a It ] " a | th2Katt e
= (rla)"+(1—alr)"—2 r3 4 1 w4
+2 > , - —| K%a%+ skt | - 5o <18,
n=1 n 3a3 3 720a2
al2<r=a (AB6) r<2a (A9)
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