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Counterion penetration and effective electrostatic interactions in solutions of polyelectrolyte stars
and microgels

A. R. Denton*
Department of Physics, North Dakota State University, Fargo, North Dakota 58105-5566

~Received 2 August 2002; published 28 January 2003!

Counterion distributions and effective electrostatic interactions between spherical macroions in polyelectro-
lyte solutions are calculated via second-order perturbation~linear response! theory. By modeling the macroions
as continuous charge distributions that are permeable to counterions, analytical expressions are obtained for
counterion profiles and effective pair interactions in solutions of star-branched and microgel macroions. The
counterions are found to penetrate stars more easily than microgels, with important implications for screening
of bare macroion interactions. The effective pair interactions are Yukawa in form for separated macroions, but
are softly repulsive and bounded for overlapping macroions. A one-body volume energy, which depends on the
average macroion concentration, emerges naturally in the theory and contributes to the total free energy.
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I. INTRODUCTION

Polyelectrolytes~PEs! are ionizable polymers that dis
solve in a polar solvent, such as water, by dissociating
polyvalent macroions and small oppositely charged cou
rions @1#. Electrostatic interactions between macroions, m
diated by surrounding microions~counterions and salt ions!,
contribute to the unique macroscopic properties of PE s
tions, which are the basis of many industrial applicatio
involving polymer-water systems@2#. Common synthetic ex-
amples of PEs are polyacrylic acid, used in gels and rheol
modifiers, and polystyrene sulfonate, a component of rev
osmosis membranes. Naturally occurring examples
biopolymers, such as DNA, proteins, and starches. Collo
in size, PEs are also routinely added as flocculants and
bilizers to colloidal suspensions, such as foods and wa
based paints@3,4#. Depending on PE concentration, adso
tion or grafting of PE chains onto surfaces of colloid
particles can either induce flocculation, by bridging particl
or impart electrosteric stabilization.

Conformations of PE macroions and electrostatic inter
tions between macroions are strongly influenced by the
tribution of microions. If dispersed in solution, microions a
to screen the bare Coulomb interactions between ion
monomers. If condensed on the macroion chains, micro
may reduce the macroion charge@5#. Linear PE chains whose
monomers are sufficiently weakly interacting—either b
cause weakly charged or because of strong microion scr
ing or condensation—may form random-walk coils wi
roughly spherical conformation. With increasing charge a
screening length, linear chains stretch into nonspherical c
formations because of electrostatic repulsion between
ized monomers@6,7#. The extent of elongation depends o
the chain charge density, salt concentration, and solvent q
ity. Highly charged chains in good solvents~e.g., DNA in
water! often form stiff rodlike macroions, whose effectiv
interactions and complex phase behavior~such as bundling!
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have been widely studied@8,9#. In poor solvents, sufficiently
highly charged chains may form necklaces of compact gl
ules joined by narrow threads, as predicted by theory@10#
and confirmed by simulation@11#.

Although many common PEs are linear, other topolog
can be readily synthesized. Examples are stars, microg
micelles, and brushes. Star polymers@12# consist of chains
chemically grafted or adsorbed to a common microsco
core. Microgels are mesoscopic polymer networks, synt
sized by polymerization in microemulsion@13#. Micelles are
formed by association of charged diblock~amphiphilic! co-
polymers @14#. Brushes are formed by grafting PE chai
onto a mesoscopic solid core@15#. Solutions of spherical
stars, microgels, micelles, and brushes can be regarde
colloidal suspensions of soft macroions that are permeab
microions.

Electrostatic interactions in charged colloids have
ceived much attention in recent years@16#, motivated largely
by anomalous phase behavior that is unexplained by the c
sic Derjaguin-Landau-Verwey-Overbeek~DLVO! theory
@17#. Most studies have been restricted, however, to ha
impermeable macroions. The objectives of this paper
first, to explore implications of microion penetration fo
screening of effective electrostatic interactions betwe
spherical macroions, and second, to lay a foundation for
ture studies of thermodynamic phase behavior of PE s
tions. Our approach is based on a recently proposed theo
effective interactions in charged colloids@18#, which we
adapt here from hard to penetrable macroions and appl
spherical star-branched and microgel macroions.

The remainder of the paper is organized as follows. S
tion II describes the assumed model of PE solutions. Sec
III reviews the theoretical approach, based on second-o
perturbation ~linear response! theory. Sections IV and V
present analytical and numerical results for counterion p
files and effective interactions in bulk solutions of star a
microgel macroions. Finally, Sec. VI closes with a summa
and conclusions.

II. MODEL

Adapting the primitive model of ionic liquids@19#, the
model system comprisesNm spherical macroions of radiusa
©2003 The American Physical Society04-1
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~diameters52a) and charge2Ze, andNc point counteri-
ons of chargeze dispersed in an electrolyte solvent in
volumeV at temperatureT. Assuming, for simplicity, a sym-
metric electrolyte and equal salt and counterion valences
electrolyte containsNs point salt ions of chargezeandNs of
charge 2ze. The microions, thus, numberN15Nc1Ns
positive and N25Ns negative, for a total ofNm5Nc
12Ns . Global charge neutrality in a bulk solution constrai
average macroion and counterion number densities,nm
5Nm /V andnc5Nc /V, via Znm5znc . The polar solvent is
treated as a continuum, characterized by dielectric constae
that acts only to reduce Coulomb interactions between io

The local number density profiles of counterions,rc(r ),
and of macroion monomers,rmon(r ), are modeled as spher
cally symmetric, continuous distributions. Spherical symm
try is a reasonable approximation, considering that equi
rium averaging over macroion orientations tends to sm
out any anisotropy. Furthermore, discreteness of the ch
distributions can be ignored if we restrict consideration
length scales exceeding the scale of discreteness.

In general, the counterions are distributed over three
gions:~1! the immediate vicinity of the PE chains making u
the macroions,~2! the region inside of the macroions b
away from the chains, and~3! the region outside of the mac
roions. Counterions in the first two regions are trapped by
macroions, while those in the third region are free. With
the first region, the counterions may be either condensed
a chain or free to move along a tube surrounding a ch
These chain-localized counterions, whether condensed
mobile, tend to distribute uniformly along the chains to fav
local charge neutrality. In our model, counterions in reg
~1! simply renormalize the effective macroion valenceZ.

The detailed form of the monomer density profile depen
on the macroion conformation. For star-branched macroio
Coulomb repulsion between charged monomers tends
stiffen and radially stretch the chains into a porcupine c
formation @20#. We assume the ideal case of fully stretch
chains and model the monomer density profile byrmon(r
<a)5Z/(4par2), where r is the radial distance from th
star’s center. For microgel macroions, the dense networ
chains is well approximated by a uniform monomer distrib
tion, and is modelled here byrmon(r<a)53Z/(4pa3). This
distribution may also approximate a weakly charged lin
PE chain with a spherical random-coil conformation,
though a Gaussian distribution may then be more accur
For both the star and microgel models, the monomer den
profile is cut off sharply at the macroion surface:rmon(r
.a)50.

III. THEORY

For the model PE solutions described above, the theo
ical challenge is to predict the distributions of microions
side and outside of the macroions and the effective inte
tions between macroions. Following the same gene
strategy as applied previously to charged colloids@18,21#, we
reduce the multicomponent mixture to an equivalent o
component system governed by effective interactions, wh
are approximated via perturbation theory. For clarity of p
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sentation, we initially ignore salt ions. The Hamiltonian th
decomposes into three terms

H5Hm~$R%!1Hc~$r%!1Hmc~$R%,$r%!, ~1!

where$R% and$r% denote collective coordinates of macroio
centers and counterions, respectively. The first term,

Hm5Km1
1

2 (
iÞ j 51

Nm

vmm~ uRi2Rj u!, ~2!

is the bare Hamiltonian for macroions with kinetic ener
Km that interact via the bare pair potentialvmm(r ) at center-
center separationr. The form ofvmm(r ) depends on the mac
roion conformation and is specified in the Appendix. T
second term in Eq.~1!,

Hc5Kc1
1

2 (
iÞ j 51

Nc

vcc~ ur i2r j u!, ~3!

is the Hamiltonian for counterions with kinetic energyKc
that interact via the Coulomb pair potentialvcc(r )
5z2e2/er . The third term in Eq.~1!,

Hmc5(
i 51

Nm

(
j 51

Nc

vmc~ uRi2r j u!, ~4!

is the macroion-counterion interaction. For spherical mac
ions,

vmc~r !5H 2Zze2

er
, r .a

v,~r !, r<a,

~5!

where the interaction inside a macroionv,(r ) depends on
the macroion conformation and is specified in Sec. IV. F
later reference, we note that Eq.~4! also may be expressed i
the form

Hmc5E dR rm~R!E dr rc~r !vmc~ uR2r u!, ~6!

whererm(R)5( j 51
Nm d(R2Rj ) andrc(r )5( j 51

Nc d(r2r j ) are
the macroion and counterion number density operators,
spectively.

The mixture of macroions and counterions is formally r
duced to an equivalent one-component system by trac
over counterion coordinates. Denoting counterion and m
roion ~classical! traces bŷ &c and^ &m , respectively, the ca-
nonical partition function can be expressed as

Z5^^exp~2bH !&c&m5^exp~2bHeff!&m , ~7!

whereHeff5Hm1Fc is the effective one-component Hami
tonian,b51/kBT, and

Fc52kBT ln^exp@2b~Hc1Hmc!#&c ~8!

is the free energy of a nonuniform gas of counterions in
presence of the macroions.
4-2
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At this stage, approximations are necessary for the co
terion free energy. It is first convenient to convert the cou
terion Hamiltonian to the Hamiltonian of a classical on
component plasma~OCP! of counterions by adding toHc ,
and subtracting fromHmc , the energy of a uniform compen
sating negative background@22#, Eb52Ncncv̂cc(0)/2,
where v̂cc(0) is thek→0 limit of the Fourier transform of
vcc(r ). Now regarding the macroions as an ‘‘external’’ p
tential for the OCP, we invoke perturbation theory@18,19,21#
and write

Fc5FOCP1E
0

1

dl^Hmc8 &l , ~9!

where FOCP52kBT ln^exp@2b(Hc1Eb)#&c is the OCP free
energy, thel integral charges the macroions,Hmc8 5Hmc

2Eb represents the perturbing potential of the macroio
acting on the counterions, and^Hmc8 &l is the mean value o
this potential in a solution of macroions charged to a fract
l of their full charge. Further progress is facilitated by e
pressingHmc @Eq. ~6!# in terms of Fourier components,

^Hmc&l5
1

V (
kÞ0

v̂mc~k!r̂m~2k!^r̂c~k!&l

1
1

V
lim
k→0

@ v̂mc~k!r̂m~2k!^r̂c~k!&l#, ~10!

wherev̂mc(k) is the Fourier transform of Eq.~5! and where
r̂m(k)5( j 51

Nm exp(ik•Rj ) and r̂c(k)5( j 51
Nc exp(ik•r j ) are

Fourier components of the macroion and counterion de
ties.

In first-order perturbation theory, the response of
counterion plasma to the macroions is ignored. Here, we
ply second-order perturbation~linear response! theory, in
which the counterions are assumed to respond linearly to
macroion external potential

r̂c~k!5x~k!v̂mc~k!r̂m~k!, kÞ0, ~11!

wherex(k) is the linear response function of the OCP. No
that thek→0 limit here, and in Eq.~10!, must be treated
separately, since the average counterion densitync5 r̂c(0)
does not respond to the macroion charge, but rather is fi
by the constraint of global charge neutrality.

Upon combining Eqs.~9!–~11!, the effective Hamiltonian
can be recast in the form of the Hamiltonian of a pairwis
interacting system

Heff5Km1Kc1
1

2 (
iÞ j 51

Nm

veff~ uRi2Rj u!1E0 , ~12!

where veff(r )5vmm(r )1v ind(r ) is an effective macroion
pair interaction that combines the bare macroion interac
with a microion-induced interaction

v̂ ind~k!5x~k!@ v̂mc~k!#2. ~13!
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The final term in Eq.~12! is the volume energy, formally
given by

E05FOCP1
Nm

2
lim
r→0

v ind~r !1Nm lim
k→0

F2
1

2
nmv̂ ind~k!

1ncv̂mc~k!1
Z

2z
ncv̂cc~k!G , ~14!

which is a natural by-product of the one-component red
tion. Although independent of the macroion coordinates,
volume energy depends on the average macroion den
and thus, can influence thermodynamics.

The linear response function is proportional to the cor
sponding static structure factorS(k), which may be obtained
from liquid-state theory@19#. In practice, the OCP is weakly
correlated, with coupling parameterG5lB /ac!1, where
lB5be2/e is the Bjerrum length andac5(3/4pnc)

1/3 is the
counterion sphere radius. For example, for macroions of
ameters5100 nm, valenceZ5100, and volume fraction
h5(p/6)nms350.01, in water at room temperature (lB
50.714 nm), we findG.0.014. As for charged colloids
@18,21#, we adopt the random phase approximation~RPA!,
which is accurate for weakly coupled plasmas. The R
equates the two-particle direct correlation function of t
OCP to its exact asymptotic limit:c(2)(r )52bvcc(r ). Us-
ing the Ornstein-Zernike relation,S(k)51/@12ncĉ

(2)(k)#,
the linear response function then takes the analytical for

x~k!52bncS~k!52
bnc

~11k2/k2!
, ~15!

where k5A4pncz
2lB is the inverse Debye screenin

length. Note that since permeable macroions do not excl
counterions from their interiors, the excluded-volume corr
tions required for hard colloidal macroions@18# are not rel-
evant here. Withx(k) specified, the counterion density ca
be explicitly determined from Eqs.~5! and ~11! for a given
macroion distribution~see Sec. IV!. Finally, salt is easily
introduced via additional microion response functions. In
process, the pair interaction and volume energy are
changed, except for a redefinition of the screening cons
ask5A4p(nc12ns)z

2lB, wherens is the average numbe
density of salt ion pairs.

It is worth noting the formal equivalence of the prese
theory to linearized Poisson-Boltzmann~DLVO! theory.
Both are mean-field theories in the sense that they ign
fluctuations in microion distributions. An advantage of line
response theory, however, is that it encompasses the vo
energy, which can be important for describing phase beh
ior @18,21,23–26#. Moreover, response theory can b
straightforwardly generalized to incorporate nonlinear
sponse, which entails both many-body effective interactio
and corrections to the pair potential and volume energy@27#.
In contrast, nonlinear Poisson-Boltzmann theory is pract
only for the simple boundary conditions afforded by c
models. For simplicity, higher-order nonlinear effects a
here ignored.
4-3
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Equations~11!–~14! constitute the main formal expres
sions from linear response theory. Explicit calculations
quire specifying the counterion-macroion interactionv,(r )
in Eq. ~5! for specific macroion models. Below, we apply th
theory to obtain analytical and numerical results for coun
ion profiles and effective interactions in bulk solutions
spherical star-branched and microgel macroions.

IV. ANALYTICAL RESULTS

A. Star macroions

For our idealized model of a star-branched macroion w
1/r 2 monomer density profile, Gauss’s law gives the elec
field as

E~r !55 2
Zze

er 2
, r .a

2
Zze

ear
, r<a.

~16!

Integration overr yields the electrostatic potential energ
between a star and a counterion,
o
th
or
,

o-

01180
-

r-

h
c

vmc~r !5H 2
Zze2

er
, r .a

2
Zze2

ea F12 lnS r

aD G , r<a,

~17!

whose Fourier transform is

v̂mc~k!52
4pZze2

ek3a
sinc~ka!, ~18!

with sinc(x)[*0
xdu sin(u)/u. We can now calculate the coun

terion number density around a single macroion in the dil
limit, where r̂m(k)51. From Eqs.~11!, ~15!, and ~18!, the
Fourier component of the counterion density profile is giv
by

r̂c~k!5
Z

z

k2

ka~k21k2!
sinc~ka!, ~19!

whose real-space form is
rc~r !5
Z

z

k

8par H 2 sinhc~ka!e2kr , r .a

@Ec~ka,kr !12 sinhc~ka!# e2kr2Ec~2ka,2kr !ekr , r<a,
~20!
f

lly

lt is
the
, the
ion

ir
where

sinhc~x![E
0

x

du
sinh~u!

u
5 (

n50

`
x2n11

~2n11!~2n11!!
~21!

and

Ec~x1 ,x2![E
x1

x2
du

eu

u
5 lnS x2

x1
D1 (

n51

` x2
n2x1

n

nn!
, ~22!

which can be efficiently computed from the first few terms
the rapidly converging series expansions. Approaching
macroion center, the counterion density profile varies m
gradually than the 1/r 2 macroion monomer density profile
diverging logarithmically, according to

lim
r→0

rc~r !5
Zk2

4pa F12 lnS r

aD G . ~23!

Integrating Eq.~20! over the spherical volume of the macr
ion yields the fraction of counterions inside a star

f in5
z

Z
4pE

0

a

dr r 2rc~r !512S 11
1

kaDe2kasinhc~ka!.

~24!
f
e
e

Note the clear predictions that~1! the counterion distribution
is determined entirely byka, or the dimensionless ratio o
the macroion radius and the Debye screening length, and~2!
the fraction of counterions inside increases monotonica
with ka. Thus, for fixed macroion radius,f in increases with
increasing macroion valence and concentration. This resu
physically sensible: the shorter the screening length,
shorter the range of the counterion response, and, thus
tighter the localization of counterions around the macro
centers.

From Eqs.~13! and ~18!, the induced electrostatic pa
interaction is given by

v̂ ind~k!52
4pZ2e2

e

k2

k4a2~k21k2!
sinc2~ka!. ~25!

Fourier transforming, we obtain

v ind~r !52
16p2Z2e2k2a2

er E
0

`

dx
sin~xr/a!

x3~x21k2a2!
sinc2x.

~26!

For nonoverlapping stars, Eq.~26! can be reduced to the
analytical form
4-4
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v ind~r !52
Z2e2

er
1

Z2e2

e Fsinhc~ka!

ka G2 e2kr

r
, r .2a.

~27!

Since nonoverlapping macroions interact via a bare Coulo
potentialvmm(r )5Z2e2/er , the effective pair interaction fo
this case is

veff~r !5
Z2e2

e Fsinhc~ka!

ka G2 e2kr

r
, r .2a. ~28!

Thus, at the level of linear response, nonoverlapping
macroions interact via an effective Yukawa~screened-
Coulomb! pair potential. The screening constantk in the
potential depends on the total density of microions—ins
and outside of the macroions—since all microions respon
the macroion charge. Note that the potential has the samr
dependence as the DLVO potential for hard colloidal mac
ions @4,17#,

vDLVO~r !5
Z2e2

e Fexp~ka!

11ka G2 e2kr

r
, r .2a, ~29!

differing only in the macroion-size-dependent amplitude. F
overlapping stars, the bare macroion interaction is somew
more complex and is relegated to the Appendix.

Finally, from Eqs.~14!, ~18!, ~25!, and ~26!, the volume
energy is obtained as

E05FOCP2Nm

8p2Z2e2k2a

e E
0

`

dx
sinc2x

x2~x21k2a2!
.

~30!

For weakly coupled microion plasmas, the OCP free ene
may be approximated by its ideal-gas limit,

FOCP5N1@ ln~n1L3!21#1N2@ ln~n2L3!21#, ~31!

whereL is the thermal wavelength. Note that ifZ is allowed
to vary ~with counterion condensation!, then the volume en-
ergy per macroion must be augmented by the self~Hartree!
energy of a macroion:UH5Z2e2/ea. The first term in Eq.
~30!, long recognized as important for phase behavior@1#,
represents the entropy of free counterions; the second
accounts for the cohesive electrostatic energy of microi
macroion interactions. The volume energy, analogous to
counterpart for charged colloids@18,24,25#, depends on the
average macroion concentration and thus has the potent
influence phase behavior and other thermodynamic pro
ties. Equations~20!, ~24!, ~28!, and ~30! are the main ana
lytical results for star macroions.

It is important to emphasize that the present approa
while including the entropy of the counterions, neglects
configurational entropy of the macroions by assuming ri
~fully stretched! PE chains. Recently, Jusufiet al. @28# mod-
eled pair interactions between PE stars by both molec
dynamics simulation and a variational free energy that inc
porates chain flexibility. An important conclusion of the
study is that pair interactions are dominated by counter
entropy. Our approach is complementary: while the macro
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model neglects chain flexibility, which is reasonable at le
for nonoverlapping stars, the linear response theory refi
somewhat the modelling of the counterion distribution.

B. Microgel macroions

For our model of microgel macroions, we apply exac
the same procedure as in Sec. IV A. The electric field o
uniformly charged sphere is

E~r !55 2
Ze

er 2
, r .a

2
Zer

ea3
, r<a,

~32!

which integrates to give the macroion-counterion interacti

vmc~r !55 2
Zze2

er
, r .a

2
Zze2

2ea S 32
r 2

a2D , r<a.

~33!

Equation~33! Fourier transforms to

v̂mc~k!52
12pZze2

ek4a2 Fcos~ka!2
sin~ka!

ka G , ~34!

which, when substituted into Eq.~11!, yields the Fourier
transform of the counterion density profile around a sin
macroion,

r̂c~k!52
Z

z

3k2

k2a2~k21k2!
Fcos~ka!2

sin~ka!

ka G . ~35!

The Fourier transform of Eq.~35! gives the real-space coun
terion density profile,

rc~r !5
Z

z

3

4pa2r H Fcosh~ka!2
sinh~ka!

ka Ge2kr , r .a

r

a
2S 11

1

kaDe2kasinh~kr !, r<a,

~36!

which approaches a constant asr→0,

rc~r 50!5
Z

z

3

4pa3
@12~11ka!e2ka#. ~37!

Integration of Eq.~36! yields an analytical result for the
internal fraction of counterions

f in512
3

ka S 11
1

kaDe2kaFcosh~ka!2
sinh~ka!

ka G .
~38!

Again the theory predicts a counterion distribution depe
ing only on the ratio of macroion radius to screening leng
4-5
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A. R. DENTON PHYSICAL REVIEW E67, 011804 ~2003!
and an internal counterion fraction that increases monot
cally with this ratio. This prediction may be compared wi
that of Oosawa’s ‘‘two-phase’’ approximation@1#, which as-
sumes uniform~but differing! counterion concentrations in
side and outside of the macroions. According to the la
approach, for spherical macroions with volume fractionh,
the condition for equilibrium between free and bound cou
terions, in the absence of salt ions, is

lnS f in

12 f in
D5 lnS h

12h D1Z
lB

a
~12 f in!~12h1/3!, ~39!

which must be solved numerically forf in . The predictions of
Eqs.~38! and ~39! are compared below in Sec. V.

Next, substituting Eq.~34! into Eq. ~13!, the induced pair
interaction is

v̂ ind~k!52
36pZ2e2

e

k2

k6a4~k21k2!
Fcos~ka!2

sin~ka!

ka G2

.

~40!

For nonoverlapping macroions, the Fourier transform of
~40! is straightforward to evaluate and yields an effect
pair interaction

veff~r !5
Z2e2

e

9

k4a4 Fcosh~ka!2
sinh~ka!

ka G2 e2kr

r
,

r .2a. ~41!

As for star macroions, a Yukawa form is predicted, but w
a different amplitude. The case of overlapping macroion
left to the Appendix.

Finally, from Eqs.~14!, ~34!, and~40!, the volume energy
is obtained as

E05FOCP2Nm

3Z2e2

ea H 1

5
2

1

2k2a2
1

3

4k3a3 F12
1

k2a2

1S 11
2

ka
1

1

k2a2D e22kaG J 2~N12N2!
kBTk2a2

2
.

~42!

Equations~36!, ~38!, ~41!, and ~42! are the main analytica
results for microgel macroions.

V. NUMERICAL RESULTS

The theory developed above can be applied to solution
arbitrary ionic strength, under the assumption that the m
roion PE chains remain stretched. In order to highlight
role of the counterions, we present numerical results for s
free solutions. Within the model considered, the effect of s
is merely to increase the Debye screening constant. Fur
more, we consider the case of monovalent counterionsz
51) in aqueous solutions at room temperature (lB
50.714 nm). Figure 1 illustrates the form of the counteri
01180
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number density profiles@Eqs.~20! and ~36!# inside and out-
side of a macroion. Inside a star macroion the counter
density diverges logarithmically towards the center, wh
inside a microgel macroionrc(r ) remains finite. Evidently,
counterions penetrate stars more easily than they do mi
gels. This property is also reflected in the internal counter
fractions @Eqs. ~24! and ~38!#, functions ofka only, which
are shown in Fig. 2~a!. In Fig. 2~b!, we compare predictions
of linear response theory@Eq. ~38!# with those of Oosawa’s
two-phase approximation@Eq. ~39!# for uniformly charged
spherical~microgel! macroions@1#. Both approaches qualita
tively predict an increase in the fraction of bound counte
ons with increasing macroion concentration. However, lin
response theory predicts a considerably more gradual a
mulation of bound counterions than does the two-phase
proximation.

Counterion penetration strongly influences screening
bare macroion interactions. The effective pair potenti
veff(r ) and corresponding forcesF(r )52dveff(r )/dr are
shown in Figs. 3 and 4, respectively. Beyond overlap
effective interaction has Yukawa form, with the amplitud
depending on the type of macroion. Figure 5 compares
variation of the macroion-size-dependent amplitude ofv(r
.2a) with the Debye screening constant for the two perm
able macroions and for hard macroions. Evidently,

FIG. 1. ~a! Counterion number density profiles@from Eqs.~20!
and ~36!# inside and outside of polyelectrolyte star and microg
macroions of diameters5100 nm, valenceZ5100, and effective
volume fraction h50.01, in water at room temperature (lB

50.714 nm). The result for a hard-sphere macroion is shown
comparison.~b! Comparison of counterion and monomer dens
profiles for a star macroion on a log-log scale.
4-6
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COUNTERION PENETRATION AND EFFECTIVE . . . PHYSICAL REVIEW E 67, 011804 ~2003!
greater the permeability of the macroions to counterions,
weaker the amplitude of long-range repulsion. For overl
ping macroions, the bare charge distribution combined w
counterion penetration leads to softly repulsive interactio
Note that the interactions are bounded: they do not diverg
the macroions approach complete overlap. It must be em
sized that the effective interactions presented in Figs. 3 a
arise physically from electrostatic repulsion and counter
screening, but do not include steric interactions due to co
pression of overlapping chains@28#.

VI. CONCLUSIONS

To summarize, we have applied second-order perturba
~linear response! theory to model solutions of spherical poly
electrolyte star-branched and microgel macroions. T
theory predicts the counterion density profiles inside and o
side of the macroions, effective interactions between pair
macroions, and a one-body, density-dependent, volume
ergy that contributes to the total free energy of the syst
The main conclusions are:~1! Counterions penetrate sta

FIG. 2. ~a! Fractions of counterions@from Eqs.~24! and ~38!#
inside polyelectrolyte star and microgel macroions vs Deb
screening constantk. ~b! Fraction of counterions inside a uniforml
charged spherical macroion vs effective macroion volume frac
as predicted by linear response theory~solid curves! and by the
two-phase approximation of Oosawa@1# ~dashed curves!. For each
case, the bottom curve corresponds toZlB /a58 and the top curve
to ZlB /a516.
01180
e
-
h
s.
as
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4

n
-

n

e
t-
of
n-
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more easily than they do microgels.~2! Inside a star macro-
ion, the density profile of mobile counterions varies mo
gradually than the macroion monomer density profile,
verging logarithmically toward the center.~3! The fraction of
counterions trapped inside a macroion depends only on
ratio of macroion radius to Debye screening length and
creases monotonically with this ratio.~4! Counterion screen-
ing significantly weakens the bare electrostatic pair inter
tions, which remain bounded up to complete overlap
macroions.~5! The effective pair interactions are softly re
pulsive for overlapping macroions and Yukawa in form f
separated macroions, with amplitudes depending on the
of macroion.

It is important to point out some limitations of the theor
First, the linear response approximation limits applicabil
of the theory to dilute solutions of weakly charged mac
ions. The quantitative range of validity depends on the re
tive magnitudes of nonlinear corrections, including thre
body and high-order interactions, in the perturbati
expansion. The same techniques that have been used to
lyze nonlinear response in charged colloids@27# can be ap-
plied to polyelectrolytes. Second, the mean-field appro
taken here ignores fluctuations in the counterion distributi
which may be especially relevant for short-range interacti

e

n

FIG. 3. Electrostatic interactions@from Eqs.~28! and ~41!# be-
tween pairs of polyelectrolyte stars~a! and microgels~b!. Dashed
curves: bare interaction. Solid curves: effective~bare 1 induced!
interaction. Parameters are the same as in Fig. 1. Beyond ove
(r /s.1), the interaction is Yukawa in form. For overlapping ma
roions (r /s,1), the soft repulsion remains finite at complete ov
lap (r 50).
4-7
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A. R. DENTON PHYSICAL REVIEW E67, 011804 ~2003!
and multivalent counterions. Third, the neglect of chain fle
ibility restricts the theory to nonoverlapping macroions. Th
restriction may be reasonable for dilute solutions of spars
separated macroions. However, for a sufficient concentra
of macroions in a good solvent, chain elasticity and entro
must play a role. A unification of linear response theory a
the variational theory of Ref.@28# may then prove fruitful.

In principle, the predicted counterion profiles could

FIG. 4. Effective electrostatic forces between pairs of polyel
trolyte stars~a! and microgels~b!, corresponding to the interactio
potentials in Fig. 3. Parameters are the same as in Fig. 1.

FIG. 5. Macroion-size-dependent amplitude of Yukawa effect
electrostatic interactions@Eqs.~28!, ~29!, and~41!# between pairs of
nonoverlapping stars, microgels, and hard spheres vs Debye sc
ing constant, normalized to unity atks50.
01180
-

ly
n
y
d

probed experimentally, e.g., by neutron scattering, using
topic labelling to contrast the PE chains and counterions.
macroion-macroion interactions may be less accessible to
periment. Conceivably, the solvent quality might be tuned
minimize the second virial coefficient between neutral mon
mers of overlapping macroions, effectively highlighting ele
trostatic interactions by masking any steric interactio
Comparisons of predicted and observed macroscopic pro
ties will provide the most practical, if indirect, tests of th
theory. Future applications will examine thermodynam
phase behavior, especially possible implications of the v
ume energy for the stability and structure of deionized so
tions @13#.
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APPENDIX: INTERACTIONS BETWEEN OVERLAPPING
MACROIONS

The bare Coulomb interaction between a pair of mac
ions at center-center separationr is given in general by

vmm~r !5
e2

e E dr 8E dr 9
rmon~r 8!rmon~r 9!

ur 82r 92r u
. ~A1!

For nonoverlapping macroions, spherical symmetry redu
the interaction to

vmm~r !5
Z2e2

er
, r .2a. ~A2!

For overlapping macroions, the six-dimensional integral
Eq. ~A1! may be reduced, by exploiting cylindrical symm
try and Gauss’s law, to two-dimensional integrals, which
turn may be evaluated analytically. For star macroions,
result may be expressed piece-wise as follows:

vmm~r !5
Z2e2

2ea H 9

2
2

7

4

r

a
2

1

2 F S 32
a

r D S 12
r

aD1
r

a
lnS r

aD G
3 lnS a2r

a D2
r

2aE21

a/r 21

dx
ln~11x!

x

1
r

2aE1

a/r

dx
ln~x21!

x J , 0,r<a ~A3!

-

e

en-
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vmm~r !5
Z2e2

2ea H 9

2
2

7

4

r

a
2

1

2 F S 32
a

r D S 12
r

aD1
r

a
lnS r

aD G
3 lnS r 2a

a D1
r

2aE12a/r

a/r

dx
ln x

12xJ , a,r<2a.

~A4!

For computational purposes, the remaining integrals may
expressed as convergent series

vmm~r !5
Z2e2

2ea H 9

2
2

7

4

r

a
2

1

2 F S 32
a

r D S 12
r

aD
1

r

a
lnS r

aD G lnS a2r

a D1
r

2a S 1

2 F lnS r

aD G2

2
1

2 F lnS r

a2r D G
2

1 (
n51

`
~r /a!n2@r /~a2r !#n

n2

12(
n51

`
@r /~a2r !#2n2122

~2n21!2 D J , 0,r<a/2

~A5!

vmm~r !5
Z2e2

2ea H 9

2
2

7

4

r

a
2

1

2 F S 32
a

r D S 12
r

aD
1

r

a
lnS r

aD G lnS a2r

a D1
r

2a S 1

2 F lnS r

aD G2

1 (
n51

`
~r /a!n1~12a/r !n22

n2 D J ,

a/2,r<a ~A6!
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vmm~r !5
Z2e2

2ea H 9

2
2

7

4

r

a
2

1

2 F S 32
a

r D S 12
r

aD
1

r

a
lnS r

aD G lnS r 2a

a D
2

r

2a (
n51

`
~a/r !n2~12a/r !n

n2 J , a,r<2a.

~A7!

For microgel macroions, the bare interaction may be
pressed more compactly as

vmm~r !5
Z2e2

ea F6

5
2

1

2 S r

aD 2

1
3

16S r

aD 3

2
1

160S r

aD 5G ,
r<2a. ~A8!

Finally, the effective pair interaction between microge
veff(r ), is the sum of Eq.~A8! and the induced interaction
obtained by Fourier transforming Eq.~40!

v ind~r !52
9Z2e2

2ek4a4r
H S 12e2kr1

1

2
k2r 21

1

24
k4r 4D

3S 12
1

k2a2D 1
2

ka
e22kasinh~kr !

1Fe22kasinh~kr !12k2ar1
1

3
k4~4a3r 1ar3!G

3S 11
1

k2a2D 2
2r

a S 112k2a21
8

15
k4a4D

2
r 3

3a3 S k2a21
4

3
k4a4D2

1

720

k4

a2
r 6J ,

r<2a. ~A9!
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