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Stiff polymer in monomer ensemble
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We employ an ordered monomer ensemble formalism in order to develop techniques to investigate a stiff
polymer chain which is confined to a certain region. In particular, we calculate the segment density for a given
location and segment orientation distribution within the confining geometry. With this method the role of the
stiffness can be examined by means of differential equations, integral equations, or recursive relations for both
continuum and lattice models. A suitable choice of lattice model permits an exact analytical solution for the
segment location and orientation density for a chain between two parallel plates. For the stiff polymer in a
spherical cavity we develop an integral equation formalism which is treated numerically, and in the same
spherical geometry, a different model of the polymer displays a solution of a differential equation.
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I. INTRODUCTION with stiffness. These models all involve specific formulations
of the stiffness and nature of the chains in the monomer
In this paper we develop and illustrate methods by whichensemble. In one case analytic expressions for a polymer on
the segment orientation and density of polymer chains witr cubic lattice can be obtained. For chains in a continuum we
stiffness and which are localized in a specified region ofshow that torsional and flexural rigidities can be incorporated
space may be computed. In two previous pafdrg] a  haturally by the monomer ensemble. In a spherical confining
grand canonical partition function for noninteracting, flexible region it is possible to solve the associated integral equations
polymer chains was introduced in order to compute the chaitumerically.
segment density in the context of an ordered monomer en- While we specifically show here how to compute segment
semble. Here we introduce an angu|ar dependence betwegﬁnSitieS of stiffand Confined:hains, it is worthwhile to note
polymer segments in this formalism. In particular, we illus- the underlying difficulties of some other mathematical treat-
trate computations relating to the stiffness of such a chain ifnents of the physics of wormlike polymers. For example, the
constraining geometries. The effects of stiffness of polymergvell-known Kratky-Porod formulation for the wormlike
or their localization within pores or tubes frequently havechain introduces a bending energy tewith an associated
been a topic of interest in polymer physics extending fromconstantr) in a measure for the patt{s) of the chain, pa-
biopolymers to liquid crystalline behavior as well as syn-rametrized by the arc-lengt)
thetic stiff and short polyamideg3—9|. Related work has
been done by Ternovsky and co-workgt§] who developed
a model of a stiff polymer near a wall in order to investigate (R .
adsorption of the chain to the surface. Steparidd, forg ZKP:] [dr(s)]exp( N ;J'o dsrz(s)) I_S[ 8(r*(s)=1)
example, has investigated a similar problem using the
Kratky-Porod model for a semiflexible chain to write a dif- x e~ V/keT, (1.2
ferential equation for the end-to-end distance distribution. Ha
and Thirumalai[13,12 have investigated stiff polymer
chains under tension but without confining them to specificV is an interaction term dependent on the nature of the prob-
regions and Chirikjian and War{d4] derived partial differ- lem under investigation. Although it is possible to calculate
ential equations for the end-end orientation and locatiorsome properties of interest for this formalism analytically,
probability of a stiff polymer. However, work by Cordeiro, there are many questions for which the constraint of unity of
Molisana, and Thirumaldil5] has described conformational the tangential vector is extremely difficult to treat math-
properties of flexible chains between plates. Furthermore, reematically. In many cases, this condition can only be re-
cent experimental work by Pfolelt al. [16] has investigated placed by an average constraint of unity along the whole
the orientation of biological macromolecules within micro- chain. Amongst many works, that of Gupta and Edw#id3
channels. contains a discussion and several references. Wilhelm and
In this paper we present the method and calculations foFrey [4] also point out that the extreme limits for very flex-
segment density of three different models of confined chaingble or extremely stiff chain limits are usually the only ac-
cessible ones in many calculations.
We use the previously introduced concefit]. By char-
* Author to whom correspondence should be addressed. Email ad@cterizing a bond position by a vectorspecifying its geo-
dress: kkmn@physics.sun.ac.za metrical center and orientation, a bond fugacigr)
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=(r|z|r) and interaction weightv(r,r')=(r|w|r’), i.e., a toonly one other segment. Furthermore, we associate to each

Boltzmann factor, can be defined. The partition function forsegment a fugacity which is dependent on the position and

N bonds orientation of the given bond. The fugacity term can be used
to represent an external potential acting on each segment,

_ such as might be caused by confinement of the chain. The
:N_f [drydry- - -dryJ(rafz|ry)(ra|wiry)- -- resulting partition function then leads to an expression for
the segment density, which contains much useful information
><<rN—1|W|rN><rN|Z|rN>- (1-2) about the chain.

This is used in order to write the expression for the grand The expression for the chain segment density depends

canonical partition function as follows: crucially on the quantitiess and ¢ which are defined in
terms ofw andz We determiney and ¢, and consequently
. _ _ n(r), for three situations.
==1+ Nzl (1z(w2)" 1) =1+(1z(1 -w2)*|1). The bending energy terms for models of stiff chains could
(1.3 also be related to other quantities of interest for such chains
such as the persistence length and end-to-end distance. Our
The vector|1) is the vector of ones, resulting in the sum or method provides a direct means of calculating the local dis-
integral over all spatialand angulgr locations. One can tribution of segments rather than correlations. The monomer
write for the number density ensemble, for example, permits relatively easy calculation
for confined chains with which one cannot deal as readily in
many other formulations which enable more direct computa-
tions of end-to-end distances. A more technical treatment
. ) (beyond the scope of this papewithin the monomer en-
which gives semble formalism could facilitate the determination of cer-
tain correlations.
1 : . . . -
n(r==(1(1—zw) ) z(n(r|(1 —wz)~Y1). (1.5 The different approaches in this paper involve specific
= formulations of the stiffness which are incorporated into Eqs.
o - (1.6 and(1.6b) for the functionsy in order to determine an
By defining ¢ and ¢, expression for the density functiail.7). Section Il shows
the computation for the density of a discrete polymer con-

oo

)=t

520" (1.4)

1
n(r)==2(r)

— _ -1
() =(rl(1 —wz)~4[1), (1.69 fined between two parallel plates. In the Sec. Il a general
N _ form for the integral equations faf of a chain with bending

— _ 1
P =(1 1 =zw)~Hr), (1.6B yigidity and torsion is derived. This method is illustrated by

numerical results for the solution of the integral equations for
a chain in a spherical container. Finally, a simple example for
n(r)  (r)(r) a differential equation formalism is presented in Sec. IV.

2 E (€.7

one can simplify the expression for the density,

IIl. CONFINED POLYMER ON A CUBIC LATTICE

The grand canonical partition function is calculated from EQ. | this section we make use of a discrete formalism for
(1.3 as stiff chains. In addition to associating a position on a cubic
lattice, each segment also has one of six possible directions
o= 1+f dr z(r)g(r). (1.8 along the lattice. The bond direction is added to the previous
bond position to give the next bond position for the chain.

The average degree of polymerization is given by We map the states for the directions onto real-space unit

vectors
§=f drn(r). (1.9 (ole{(1], .. (6]}={xy,z,=x,—y,—z}={t,}
(2.1

The solution of expressiorid.6a and(1.6h plays the cen- jn a cartoon representation in which all bonds lie along co-
tral role in our calculations of the density. ordinate axes and assign to each pair of bonds the weight

Whereas in the previous works,2] the physical interpre-
tation of the vector represented the location of the junction ) 1. 1.
between any two segments of the polymer chains, the for- W(ry,01:12,02) = 5[ 2= |t §t<f1+§tvz)
malism is identical when a larger degree of freedom is rep- o
resented by a vector of such a kind. 1 if ty t5,=1

Therefore, in summary, we look at a sequence of seg- .
ments described by their positions and orientations. These xq a if t,-t,=0 2.2
segments are linked into a chain by Boltzmann factargor P
all consecutive pairs of segments. The chain ends are linked b if o o, =1
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The first factor in the expression above constrains the centers P(r)=yy(=r,, and (2.8a
of adjacent segments of the polymer; the second factor is
responsible for the bending energetics. We express all P (r)=o(—r,). (2.8b

lengths in terms of the step length of the walk. For the case

when the chain igree transfer matrix techniques applied to Since ¢ is defined in half lattice constants through weight
the lattice model defined above can be used to determine tH@.2), we shall also use the notatigh (r,) = ¢; n, wherem
free energy and free chain persistence length. Indications d$ an integer or half integer, etc., interchangeably.

how this can be done are given in Appendix A.

Due to asymmetry under exchangergfandr, of this
interaction, two functiong, as defined earlier in Eq61.63
and(1.6b), are invoked

P(r,o)=(1(1—zw) ~Yr,o) (2.33

(r,o)=(r,a|(1-wz) 1), (2.3b

such that
1=—, f A3’ (r,a|WTr' o Yz(r' o' )it ")

+d(r,0), (2.4a

1= —2 J A3 (r,o|lwlr’,a"yz(r" oY (r' ") + (1, 0),
7 (2.4b

whered3r’ is here as-function measure that converts inte-
grals to sums over half-space lattices.

We investigate this polymer located between two paralle
plates located at,= trg= *+N. At the platesghe boundary
conditions require that a segment of the polymer be oriente
in parallel to the plate or perpendicularly away from it, but
not perpendicularly into it:

0 |rg>r?
0 r,=rlando=3

2z a)=Y r,=—rando=6 29
zo otherwise.

Due to symmetry the functiong and ¢ depend only on the
z component of position and am. Thex andy components

are confined to a fixed large length and all thermodynamic
potentials normalized appropriately. Furthermore, by com-

paring Egs.(2.43 and (2.4b) for  and ¢ with the weight
(2.2) substituted, we conclude that
P(ry,0)=(r,,(c+3) mod6), (2.6)

with the convention thai(r,,6)= ¢(r,,0). Under the above
mentioned conditions we introduce the convenient notation

I,UH(I'Z) c=1,2,4,5
P(ry,o)=14 ¥1(ry) o=3 (2.7
lpl(rz) o=06.

Symmetry dictates that

The following two Secs. Il A and Il B contain the infor-
mation required to solve the Eq&.4a and(2.4b) for ¢ and
. The reader not interested in the procedure for solution
may skip to Sec. Il C.

A. System of equations

By inserting the bending energy and chain positier?
+1=<r,=<r2-1, the factorw of Eq. (2.2 into the condition
for ¢, Eq. (2.4b), the following equations are obtained after
suitable translations:

1
1=4)(r)[1—2zo(1+2a+ b)]—azowT( r,+ >

1
_azolﬁi(rz_i)r (2.99
1 1

1:¢T(rz_E)_bzo%(rz_§>_zo¢1 2+ 5
—4azyy)(ry), (2.90

| 1ele =

g 1—lﬂl rz+§ —bZOIﬂT rz+§ —Zolﬂl I’Z—E
—4azyip(ry,). (2.99

These equations are valid away from the two plates acting as
boundaries to the system. Consequently we shall refer to
calculations relating to the above conditions as those pertain-
ing to the “bulk.” By using the expressions from the above
system[Eqgs. (2.98-(2.99] ¢(r,) can be eliminated, leav-
ing equations expressing(r,+1/2) and ¢ (r,+1/2) in
terms of s (r,— 1/2) and,(r,— 1/2). By defining the col-
umn vector

r

"'(”:(ﬁm)’ @19
it is possible to relate functions af at different steps by
Y(r+1/2)=C- y(r —1/2)+ D, (2.11)

with the matrices
_ ( g: gj) (2.123

Dy

:(_Zo(l_b)Dl)' (129

with
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oo 1-zo(1+2a+b) )1 - 4az, vy ~ 4a%z;
Y z[1-2zo(1+ 2a+b)+4a%z,] (2129 1-zo(1+2a+b)  "IN"Y¥2 {717 (1+2a+b)
(1+Cy) +bzy | ) N1 (2.15b
=0, (2.120
Zo(1—b)

Similarly, one can derive for the bottom plate,
b[1—2zy(1+2a+b)]+4a%z,

= 2.12
2 [1-2zo(1+2a+b)+4az] (2129 1= 4azy Tty B 4a’zg
1-zo(1+2a+b)  "HNTL 11—z (1+2a+b)
Cy;=—-0C,, (2.129
+bzy |y —N+1s (2.150
Ca=25(1—b)(1-C,), (2.129
4az, 4a%z;
1-2zy(1+2a+b)+4a =— -
D,=— ol )+4az . (2.12y ! 1—20(1+2a+b)+"/ji"”+1’2 (1—20(1+2a+b)
Zo[1—zo(1+2a+b) +4a%z]
As a consequence any “bulk” values @f can be calcu- b2 |41 N (2.159

lated given the values ofy at a point(integer and half-

intege) on the lattice: A solvable system of equations now remains. We know
from the boundary conditions given above that the two com-
Y m=C"thy+(C—1)"(C"=1)D, (2.133  ponent of the column vectayy_, are not independent and
we also know from EQ.2.133 that ¢4 _, is related to

Ui ms 12= C" 1o+ (C—1)"H(C"—=1)D. (2.13h "[’—fol' All remaining valugs for_ the functipnj/ can be de-
termined from the expressions in Appendix C and from the

Before commencing on further calculations we note: results of the preceding subsection.

(i) According to Eq.(2.9a ¢(r) can be computed with The relationship betweeghy—; and ¢y, is
the knowledge ofj(r =1/2).

(i) The matrixC can be written in terms of, as follows: Pn-1=CN 2+ (C-1)TH(CN 2D,
(2.16
1+C,
c m C, 21 Together with the boundary conditiof.159 and(2.15b), it
- : (2.14 is straightforward to determine the value @gk,_; from
—Cy  Zy(1-b)(1-Cy) which all other values ofy can be calculated.

The left and right matriced, andR, of C diagonalizeC,
A simple calculation shows that the determinant of the ma-

trix is 1, which means that its two eigenvalues are inverses of A. O A 0
one another. LCR=( 0 )E( 0 )\_1), (2.17
B. Boundary conditions and solution
) o where LR=RL=1, (2.18
To determine values off it is necessary to use Egs.
(2.133 and(2.13h in conjunction with the conditions at the
plates confining the polymer. Wheg=N— 3 it is necessary with L= Ly L (2.19
to refer to the full equations fap (2.4b) rather than the bulk Ly L)’ '
values used in the preceding subsection. Equations at the
upper plate, for example, are readily derived and recorded in 1 14C
Appendix C. and N, =5|zo(1-b)(1-Cy)+ —2}
EquationgC4b) and(C5) relatey, 1 to ¢y and Egs. 2 Z5(1—-D)
(C30 and(C4a relate ;n_1/2 1O ¢/ N_12- 1\/ 17C, |2
+ — — — - —
. 4oz, 42272 3 (ZO(l b)(1 C2)+zo(1—b))
T 1-zy(1+2a+b) YN T (Tr2atb) (2.20

+bzy | N-1, (2.159  Equation(2.16) becomes
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A2N"2 0
Lify—1= 0 A2N-2 LN+
A2N-2_q
R 0
A1
+ N2 1 LD. (2.2)
0 -
A_—1
The solution is
—2N+2_1q
_ _y —2N+2 _
Fin-17) | LaXg—A L4Xq 11 (LsDy
+L4D2) ()\*2N+2L3+)\*2N+2L4x3)*1

X(NINT2L NN 2L, X0) + NN T2LX G — Ly X

)\ZN—2_1

4+
A1

(LD, + |—2D2)“ / {L1Xo+ L,

NN+ LoXo) (Lat+ LaXp)  H(LgXo+ Lo,

(2.22
where we have defined
X=1+ 4az d 2.2
L= T 1 (1+2a+p)y A" (223
4a%z;
X, (2.24

“1-z(1+2a+b) 0%

(They are the constant and coefficient in the boundary con-
dition equationg.Standard methods can be used to find com-

plete (albeit lengthy expressions fokq, ... L.
Clearly, solution(2.22 is lengthy to write out in full,
although it is given explicitly. It is simpler to consider lim-

iting expressions. For the purposes of this we shall choose a

specific case, whefle=a? and 0<a<1, and expand to first

order ine=a, i.e., the case of an extremely stiff polymer.

Functions for this scenario are labeled by a supersci$ot “
For the stiff case and fane Z* we have,

z," 0
C'= .| +0(e?), (2.25
0 1z
z,
- 0
1-2z4 70 Y
E,= 1
0 —(Zh—
20—1(ZO 1)
1 4
20 1_206 2
X +0(€9), (2.26
14 %
1_206

PHYSICAL REVIEW B7, 011801 (2003

where E,=(C—1)"*C"-1)D. (.27
1 4z
s s _2N-2 oN-2_ 0
YIN-1T 7 -Ne1= 20 +Zo—1(Z° te 1_20)
2N-2
Z -1
x| 2N-2, 70  — .
Z + Zo—1 | (2.28
1 1 4z 1
S S N—1 0
=S = - + +
¥ o= ¥70=2% (l 1—20) 1=z, “1-2|1-7
e . 1 (2.29
0 1-2z) | -
1 2z 1
s 0 N-1 N—-1
- + + Tt (= :
l’[jH,O ]_—ZO El—ZO 1_20 %0 1_20(1 %0 )}
(2.30

Similarly we have the following approximation for the
floppy (“ F") case, whera=b=1,

1-4z,

(2.31)

C. The grand canonical partition function, the density, and
average degree of polymerization

The grand canonical partition function, which also fea-
tures in the expression for the densftly.7), for the discrete
model is given as usual by

E=1+ {2;, 2(r,0) (1, 0)

=1+2zo(4¢), Nt by, +20(1,1)-(1-C) 7
X{(1=CM) h_ 1ot (1= CN N g
+[(1-C) }(1—-Cc®M)—2N1]-D+[(1-C)

X (1-C?N"1)—(2N—1)1]-D}. (2.32

It is a number dependent dw, zy, a, andb.

The parameters of the present model can be understood to
give two different types of behavior when considering, for
example, the parallel and perpendicular orientations at the
center of the two plates. We wish to investigate the ratio of
the probability that the segments in the middle of the plates
have a perpendicular orientation with respect to the plates to
the probability that they are parallel to the plates using Eq.
(1.7),

no.1) _ ¥
n(0J)  yf0)’

(2.33

The values ofiy;(0) and;(0) at the center are easily cal-
culated according to the scheme in Appendix C and in pre-
ceding sections of the paper.
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We calculate the ratia(0,1)/n(0,|) for the limiting case whera andb=a? are almost equal to 0 using E¢€.29 and
(2.30 (the “stiff” case labeled by ‘S").

+e€
1-2z, 1-2z,

1 1 4z 1
N-1[ 4 _ + + 0 + N1 1=
nS0,1) %0 (1 1—20) 1—zp “1—25|1—27 z |1 1-2z -
n(0J|) B - 229 N-1 1 N-1 (239
’ +zpg t——(1-2z5 )

1-2z, 1-2z

F(_)r chgins with a low fuga_city an_d plates which are far apart,zz(;a) =exf - BV(Fs)], with ;3 representing the supervector
this ratio approaches 1, indicating that the chain segmeniSsniered around position 3. The rolewfiies in connecting

are isotropic in the center. For the stiff case it can be seefhe other points correctly for the preceding and succeeding
clearly that for long chains and small plate spacing most of,,,4-related angles. It does this as follows:
the polymer is parallel to the plates.
The degree of polymerizatiofi.9) can also be evaluated 2 AWl 1277
< ALrlz e (rlw|r |z

N
&= @ [y2+ 2¢ﬁ]+221 (¢¢,i¢1,i+2¢2,i)]- = (r]zZr) 8(r—r2) 8(ry—1r3) 8(r5—14) 8(rj—Ts)

(2.39 X(F'|2]f")- .
h . b | . h bulk ib Part(b) of Fig. 1 shows how the preceding mathematical
The summation above also contains the nonbulk contribug oserintion of labeling follows when the monomers are
tions at the edges of the system.

o ; viewed as having internal structure, with appropriate weights

In theory it is also possible to compute averages of end, ytarna| conformations. The monomers interact so that
to-end distances for co_nfmed pOIymerS using the monomeéppropria\te parts of the substructure coincide. This fixes
enser_nble method. Th's.WOUId require aItera'uons_to th ndw, respectively. We remark that there are several possi-
fugacity term and calculations beyond the scope of this paper
and is briefly discussed in Appendix B.

The Potts-type model which has been discussed in the
present section can also be investigated from the viewpoin
of a set of differential equations. The discrete “bulk equa-
tions” can be converted into differential equations by ex-
panding around, to second order. The coupled set of dif-
ferential equations can be solved by Laplace transformation
The need to solve for the roots of a fourth-order polynomial
for the inverse Laplace transform means that this methoc
does not bring about much of a simplification of the system.

IIl. INTEGRAL EQUATION

To obtain an integral equation for a system with stiffness
one can employ a system of double labeling of successive
bonds. Thus one can write for the partition function

ENZJ dada dbdb ---(alw|a’)a’|z|b)(b|w|b")- -,
(3.0

where thea,a’,b,b’, ... denote successive bonds. The
scheme is illustrated in Fig. 1. For the bond labeled either 3 r 2

or 2" in Fig. 1 the unit vector for the bend can be computed ] ) ) .
Sy — FIG. 1. The figure depicts the double labeling scheme in part

by means of (,—r3) and (3—r,). The torsional angle must _ i
be computed by taking more vectors into account and can b@)' This scheme can also be seen to emerge ction Bolt-

constructed by investigating, for example,{ry) X (r Zmann factors connecting monomers with five-segment structures,
. . y 9 9 PIel1 2 2 as depicted in parth) of the figure. The dashed double arrows
—rg) inrelation to {3—r4) X (r,—rs). The full torsional and

bendi - . . is th indicate which parts of the monomer 12345 must be the same
ending energy at position 3 in Fig. 1 is then expresse hysical locations on the monomer2t 3’4’5, In this way the

through a potentiaV/(ry,r,r3,r4,rs)=V(rs) which can be  dashed double arrows agfunctions of the respective positions.
written as a weight in the chemical potential facter We show one sucld function joining points 5 and 4
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bilities to incorporate flexural and bending terms in the inte-

gral equation formalism; we shall illustrate one such way.
The equation forz//(F) becomes

() =(rl(1-w2) Y1), (3.2
leading to

1=¢(r1r2r3r4r5)—f d3r LZ(rorararsts) Yr(rorararsrs).
(3.3

By assuming simple bending without torsional effects, the

description can be simplified by making use of three con
secutive position coordinates:

z/;(r1r2r3)=1+f a3’ z(rorar" ) i(rorar’),  (3.48
and
fp(rlrzrg)=1+f d3r’z(r'rory) g(r'riry).  (3.4b)

A model that lends itself readily to an iterative numerical

solution is that of the chain of segments of fixed length
which is confined to a spherical region. A bending probabil-

ity for two adjacent segments labeled 12 and 23, with uni
vectorsn,, andn,z, can be assigned

(3.9

This causes the forward direction to be favored, wathO.
The function ofz=z(rq,r,,r3) in this model is to restrict
r1—r,=N;, andr,—r;=nys to unit vectors, and to keep the
vectors for the spatial locations of bondsr,, andr; from

P(N12,M55) = p(1+ N1 Ny).

going out of the confines of the sphere. Consequently, one

can write

2(ry,2,2) = P(1+Nyp Npg) (N3 — 1) 8(|Npg — 1)
X F(R=|r ) H(R—|r]) 9(R—|r)),
(3.6

whereR is the radius of the confining sphere afidis the
Heavyside step function.

The spherical symmetry and Ed8.6) and (3.4 require
the following dependence:

P(rararg)=(|rol,ngsy), 3.7
wheren,g, is the radial component of the unit vectoy;.

A. Results

PHYSICAL REVIEW B7, 011801 (2003

Density function at p=0.4

-8

2.5x10 et =2
n=+1,r=25 -~

2.0x10% Ry, n=+1,1=29 e
n=1,r=2 -
n,=1,r=25 -

15x10°% | n=11=29 -

1.0x10°8 |

normalised density (n)

5.0x107 |

ol
0.0x10

-1 05 0 05 1

z-component of unit vector

FIG. 2. Plot of the density at different radii f&=30 andp
=0.4. Dependence on the radial component of the first of the two
consecutive vectors is shown, with the different lines representing
the second segment oriented either outward or inward along the
radius at different positions within the sphere. Right- and left-
sloping lines represent forward and backward directions, respec-
tively. We see how the straight conformation is much favored for
regions with smalr well inside the sphere. Near the boundéay
r=30) the straight outward orientatiafboth unit vector compo-
nents equal to+ 1) is seen to be greatly suppressed.

w(r,nr)=1+fdﬁ’p(l+ﬁ-ﬁ’)§zjz(r+ﬁ,ﬁ’). (3.9

tIn this equationz ensures that the positions of the bonds
remain within the spherical region. We findppendix D
that s can be split into a sum of two parts in successive
spherical shells, one of which is only a function of the radial
distancer and another which is directly proportional to the
radial component of the unit vectoy multiplied by a func-
tion of r only. Therefore, to integrate from one spherical shell
to the next we write:

P(r,n)=de(r)+nedy(r).

With this manner of splitting the functiow it is possible to

divide the system into a number of spherical shells for each

of which a¢, and ¢, have been defined. Equati¢8.8) for

¢ can be iterated until the values converge. The integration

scheme for the different shells is discussed in Appendix D.
With the knowledge ofiys the value ofE can be com-

puted, and the density expression is

(3.9

. ,\ 1 A
N(Nyp,[rof,Ng) = = P(1+ Ny Nog) (5, N1p ) (T 2, N3y ).

(3.10

This five-dimensional quantity can be plotted in a variety of
manners. In Fig. 2 we plot the density at three different radii
in dependence on thecomponent oﬁ23 and both unit vec-
tors lying in the same plane. The other directional component
is chosen as lying either radially outwamg= + 1 or radially

In a numerical scheme to solve the equations, it is posiwardn,= —1. For central regions of the sphere we see that

sible to iterate equatio(B.49 at different values of the pa-
rameters. By rewriting the basic integral equation wW#h
given by Eq.(3.5), one has

01180

the straight configuration is favored and that the angular dis-
tribution is more-or-less isotropic, i.e., that both unit vectors
lying inwards pointing or outwards pointing is almost

1-7
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Density as function of radius and probability Z( flfzrs) :NB[(Q— rl) . (rg_ rz)]2

density, n;=x, ny=x

1
X(rz—rl)zex% - ﬁ(rz_rl)z)

6.0x10°8
5.0x10°8
4.0x103 1
3.0x10’
2.0§IO'§ X(rz— rz)zexy{ - ﬁ(rs_ rz)z) (3.11
1.0x10° v
’ 30
220 _ ) ~ . .
0 51 - 15 Radius could be introduced. The first factor aft&r{which, as in Eq.
Probabily 03 570 (3.6), confines points to an appropriate redioapresents the

bending interaction term of the type éésbetween two

FIG. 3. Plot of the density at different radii f6t=30 and vari-  bonds, while the peaked functiomgexp(—xz) set a length
ous values of. The significant decrease of the probability of the scale to the segmenta/ is a normalization.
straight orientation near the boundary can be seen clearly. The weightz and s can be expressed as a sum@éner-

alized Hermite polynomialg 18]
equally probable. This changes appreciably at the sides,
where the radially outward density is considerably lower
than the inwards-facing case.

In Fig. 3 the density for both unit vectors perpendicular to
the radial direction and the bond being straight is plotted as a
function of the radius and the probabilipy The density de- tp(rlrzrg):E Ym(raraors/Hm). (3.13
creases towards the boundary of the system, locatdd at m
=30, and increases with. Note that the chemical potential
is built in throughp.

From these graphs a clear picture emerges of a chai
which is homogeneous in the center of the confining sphere
and which becomes depleted at the boundaries. At these IV. DIFFERENTIAL EQUATION FORM

boundaries a tangential orientation of the segments is consid- In Ref.[1] the density distribution for a polymer confined

erably favored above the perpendicu(eadial) case. ; ) -
In Fig. 4 the dependence of the degree of polymerizatior?i gasgr;erlcal cavity was computed by expressing Eq.

on the combined probability and chemical potentalis
shown.

z(r1r2r3>=§ An(Hnlr1rar3), (3.12

These functions could be inserted into bending integral equa-
fion (3.48, and terms compared.

zp=w"(y—1), (4.2

and by making the appropriate choices for the fugacity inside

and outside the cavity. The inverse Boltzmann fastor!
Another method to solve the integral equation is makingVas taken to be the differential operator of whietis the

use of an expansion in terms of eigenfunctions, and usingreen function. A suitable choice was that of a Yukawa form

successive substitutions to determine coefficients. For thirading to a Helmholtz operator,

case of Eq(3.43 a weight

B. Possible alternative methods for solution

—Klr=r’
_1Ae [r—r |:
|r_r’| 47A

S(r—r')y=w (V2—K?w. (4.2

Xi or degree of polymerization as function of p, R=30
4.0x10° ————————————— A solution can be found readily for this system.

3.5x10° ¢ In order to introduce stiffness a segment of the polymer
3.0x10° chain is now described by the positions of its ergs and
2 5e10® | the orientation of those ends,n’. Clearly, for a rod
i 5 oxlof - —x'), n andn’ are related. The vectdr) then has the

Lsx1o8 | dependencér)=|x,9, ). By noting that,
1.0x10° )

7 | -1 J a ,
5.0x10 — —2—a2 _g dla-a }zg(a_a/), 4.3
00x10? a? )\ da 2

005 01 015 02 025 03 035 04 045

Probability

a simple multiplicative, bending “Boltzmann” factor is in-
FIG. 4. Plot of the degree of polymerization at a functiorpof  troduced,

011801-8
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r

c,+b%<0. 4.1
WO 0, X 97,p') = 0 gmalo= '] bio— |-k’ ‘ (414
4x—x']|
(4.9 ) )
With Eq. (4.11), ¢, must be negative.
The substitution
r
y—1= nl(_)g( ) (P) (45) V. CONCLUSIONS

In summary, the formalism we have presented lends itself
will separate the variables. For the spherical container wéor tackling the difficult problem of a chain which is both
need to solve stiff and confined. Although it is possible, in principle, in our

method (see Appendix B we do not calculate end-to-end
S V7 . vector averages, but can express the distributions of the ori-
W‘a (?752_ b= | (VE=K%) n(x)&(9){(#)=0, entation and location of polymer chain segments. In our for-
(4.6 malism it is relatively simple to implement constraints and
chain stiffness. Its strength lies in this simplicity and power-

for the outside and fulness with respect to the usually tedious route of imple-
menting, for example, the wormlike chain constraints of the
N AR PR Kratky-Porod model when computing statistical physical av-

2o~ E_a asz_b (Vo-K )Y & erages. In many of the alternative approaches the conditions

of stiffness can be treated only very approximatske, e.g.,
Ref. [7] or Ref.[13]). Furthermore, it becomes even more
difficult to compute polymer chain properties when the chain
itself is confined to some space in many of the other meth-
for the inside. For the outside the usual radial solution isods. Although in this paper we do not calculate end-to-end
obtained, whereas for the inside of the sphere we have  distributions for the chains, we have shown, nevertheless,
how to derive useful information about the constrained, stiff
polymer.

We have demonstrated how the method accommodates
potentials with angular dependence in three different ways.
( 2 ) For a stiff lattice polymer constrained between two parallel

{=cyd,

+47ra2b220;§§, 4.7)

32
(E—:ﬁ)g:cg, (4.9

J
—2—b2 (4.9 plates, we showed that the polymer orientation behaves as
d¢ expected during confinement. The integral equations for this
lattice model are tractable to advanced stages in the compu-

a_Z_KZ _ 41 tation. For a spherical pore we demonstrated another method

Ix2 7=Co, (4.10 by means of which stiffness can be assigned to a polymer

chain through overlapping of more complicated monomer

where elements. Indeed, the formalism is quite generally applicable
to a variety of polymer problems with more than positional

ciC.c,= —AmAa’h?. (41D degrees of freedom. In subsequent work we shall develop

L . : .this formalism for a path integral formulation to include the
Here the radial distance and orientation of parts of the chait b g

are completely decoupled. This is physically acceptable. W(Gah vestigation of the effects of lateral interactions.
impose the fact that the boundary conditions are cyclic in
that £(9+27)=¢&(9) and {(¢+ 7)={(¢). For the poly-

mer confined to the spherical cavity, the external solution for

r only is required. The results forare identical to the results H.L.F. acknowledges the financial support of NSF Grant
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K?2—K'2 (1+KR)sinhK'r rica.
r(g(r)-1)=

I'— [l
K’2 KsinhK’'R+K'coshK'R

r<R. (4.12 APPENDIX A: PERSISTENCE LENGTH BY MEANS OF
TRANSFER MATRIX
Since the solutions to Eq&t.8) and(4.9) have to be periodic

or constant, the condition on the constatsandc, are that Defining the orientation of thth segment of chain given

by Eq.(2.2) r;e{*X,*y,*2}, the transfer matrix takes the
c.+a’<0 and (413  form
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R-2 R-1 R

Ny

(rilTIri )= (A1)

O o O O T
Q9 9 O T

a
a
b
1
a
a

O o T B 9 o
o P 2 9 9 o
l—‘UQJQJg)m

FIG. 5. Schematic representation of the integration procedure
A persistence length for this model could then be Compute(ﬂ“’er shells. The shell numbering is illustrated, as well as the mixing

. A~ . between different shells.F” represents the forbidden region for
by taking the average of; - xy by usual transfer matrix tech- -
’ . . . y bond of the polymer.
niques. If one wishes to determine the persistence Iengtﬂ
when the chain is confined to two dimensions between the

p:;altes, the matrix above needs only to be reduced dimension- 1= —4azo¢(f(z))—zo¢¢( ro— % +y, ro+ % '
ally.
y (C2b
APPENDIX B: GENERATING FUNCTIONS FROM E 0 0 1
l1=-a r) gy r;+ 5. (C20
The monomer ensemble method introduced in Sec. | is 2+ T2 2
completely general for the form of the fugacity temfr). 0 _ .
Modification ofz enables the use of the calculations Bras (3) Forr,=r;, and foro=1,|, and||, respectively,
a generating function. _ 0 0
If z(r) were changed by the use of a parameteaind an 1==bzoi (ro) +¢41(r7), (C3a
arbitrary three-dimensional vectérin addition to the usual 1
spatial constraint.,,(r) as follows: 1= —4a20¢//|( rg— 5) — zom(ri’— 1)+ ,m(rg),
Z(r):Zconstn(r)eiMen'ga (B1) (C3b
1
wheren is the segment orientation, this would resultzh 1= —azozm( rd— > +[1—2z9(1+2a+ b)]t,bH(rg).

=HE(u,t) as given by Eq(1.8).
Derivatives ofE with respect tof then generate expres-

Si.OHS in terms Oﬁ:seg.mentQ:.Rend—tol—end i-e-: the end-to-end (4) For I’erg—%, and foro=1, and|, respectively,
distance of the chain. Suitable integration ovyerwould

(C30

transform to canonical values. 1o 4 0 _p o 1 o 1
In order to apply such a method the equationsyf@nd = —4azy(r;) —bzoy | 1o = | 1 5 )
(1.69,(1.6b would then have to be solved for the nevl his (C4a

would result in more complicated expressions than presented

in the body of this paper and has been left for future work.
Y o1 TS pap —aze (10— 1),

APPENDIX C: LATTICE BOUNDARY CONDITION AND (C4ab
CENTRAL VALUE EQUATIONS (5) Forr,= r0—1 ando=1
z z )

1=[1-zy(1+2a+ b)]¢<r2—%

Here we employ Eq(2.4b for different values of, and

. 1
o near the boundaries. - _ ( 0_ _) _ 0_ 0_
1=—4a r b r>—21)+ ¢ (r;—1).

(1) Forr,=r%+1, and foro=1,|, and|, respectively, 2\ 1z~ 5] ~P2d (= D * (=)

(CH
1= ¢T(rg+ D), (Cla Halfway between the plates the symmetry dictates that
1= =204, (r) + ¢, (r3+1), (C1b Ur0= 1.0 (C6)
1= lﬂu(r2+ 1). (Clo APPENDIX D: NUMERICAL INTEGRATION SCHEME

FOR SPHERE-CONSTRAINED WALK

_,0,1 - i . . .
(2) Forr,=rz+z, and foro=1,|, and, respectively, In order to elucidate the integration scheme used for the

numerical calculations we refer to Fig. 5. The spherical ge-
ometry of the system is shown here up to the edge of the

1

0
+= :
2 system. For each shell of thickness 1 we calculgte ¢{*

5 (c2a

011801-10



STIFF POLYMER IN MONOMER ENSEMBLE PHYSICAL REVIEW B7, 011801 (2003

+nz¢i(2). Since the shells have the thickness of the radius ofhemiddleof each shell. In the final shell ending at the radius
the bond, at each stage there are contributions from the twB, the bond vector is permitted to move only in the allowed
adjoining shells, according to Eq3.8. These can be regionA with zero weight in the forbidden regidn of Fig.
summed if we assume that the valuesggf’ and ¢{?) are 5. The se{ #*),¢{?] is iterated through E¢(3.8) until the
constant and approximately equal to the value of¢fein  values no longer change.
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