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Columnar phases of three-fold molecular structures
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We study the occurrence of both positional and helical orders, for three-fold symmetric flat molecules in a
columnar liquid crystal phade,,q. Working in the group-theoretical Landau’s framework, we identify a set of
three order parameters giving rise to supercells of intercalated column with helical order and opposite helici-
ties, as observed experimentally. The first-order nature of the transition is also discussed. The degrees of
freedom introduced give rise to various other phases, including a new type, having helical order but no
positional order along the columns.
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[. INTRODUCTION served at the approach to the transition, with formation of a
propeller-type conformation, in which every second tail is
In the framework of understanding the thermodynamica|bended above the molecular plane with the next one bended

properties of aggregates of disk-shaped molecules, the studyg!ow, resulting in D3 invariant structure. After consider-
of phase transitions between columnar liquid crystal phase@Uon Of various structures based on a detail mapping of the
[1,2] is of fundamental interest. On the other hand, as ormolecule’s structure functions, the best-fitting model for the

ganic materials with unusual properties such as high anisoi:—;ho phase has a helical order present on each column. Ad-

. e . o cent molecules within a stack have a relative tail rotation of
ropy in elasticity and electric conductivif], the columnar nearly 45°, in line with the analysis of intermolecular pair-

liquid crystals are currently seen as candidates for moleculajise ‘interactions and minimization of steric hindrance be-
electronic applications such as fast photoconductors, molecyyeen tails for similar derivative16]. The vertically dis-

lar wires and light emitting diodefgt]. While implications to  placed column is found to have opposite helicity from the
other materials will be pointed out, the present work is jus-other two. Recent studig®] have focused on this orienta-
tified primarily by the results for hexahexylthiotriphenylene tional order, assuming fixed crystalline molecular positions.
(HHTT) liquid crystal made of molecules having a rigid core Consequently, no theory has so far been proposed to account
of aromatic cycles with six flexible tails of hydrocarbon for the simultaneous occurrence of positional and orienta-
chains. tional orders at th®,4« Dy, transition in a phenomenologi-

By means of high resolution x-ray diffraction on both cal, symmetry-based description, as opposed to a detailed

microscopic analysis. Our objective, in the present work, is
powders{5] and freely suspended straridi7], a number of to provide such a description. To account for both positional

phases have been identified for HHTT. In addition to theyny pejical orders occurring at the same temperature, a mini-

high temperature isotropic I.|q.u|k:lphase (> 93°C) andthe  ym of two IR’s are expected to be involved at the phase
low temperature monoclinic crystallineK phase T  transition, given the two independently measured wave vec-
<62°C), two intermediate phases have been observed. liors appearing along the broken columnar direction in the
the temperature rang&=[70,93 °C, the D,4 phase is Dy, phase. Theories with more than one IR’s have been in-
formed with a two-dimensional hexagonal ordering of disor-voked in other structural phase transitions, and are generally
dered columns. In the temperature ranfe,[ 62,70 °C, the  associated with strong coupling between the [RS]. In the
more intricateD,, (also calledH) phase sets in. In what may present work, such coupling reflects the tail extension near
be called the main feature of tH2,,, phase, HHTT mol- the transition, and will be shown to play an important role as
ecules are ordered or quasiordered along the columns, witfell. . .

one out of three columns displaced along the columnar axis The paper is organized as follows. In Sec. II, we present
by half the intermolecular distance, hence forming,/a the model used to study the,q— Dy, transition, a model

X 3R 30° (or honeycomb superlattice in the hexagonal involving COﬂtI’IbUtIOﬂS from a total of three IR_’s with a free
plane. This frustration-relieving intercolumn intercalation energy expansion developed to fourth order in the order pa-

was recently studied in a phenomenological approggh rameter coefficients. In Sec. Ill, we obta_in and de;cribe a
Starting with the symmetry grou,=(R®Z2)/\Dg, and number of phases from the model, and point out salient sym-
densitypo(x) of the parenD,4 phase, the irreducible repre- metry features. Then in Sec. IV, we _show how our model
sentation(IR) involved in the density incremerdo(x), ap- provides the lowest harmonics of an intercalated set of col-
pearing at the transition, was identified together with othetmns, with counter-rotating hehca! structures on eaph cok-
related phases. Only an orientationally isotropic density inyimn, as expgnmentally observed in HHTT. Concluding re-
crement was considered in the treatment. However, an m{parks follow in Sec. V.

portant additional feature of thB,, phase remains to be Il. MODEL

considered: helical ordering of the molecular tails sets in

along each column at the phase transition. Lowering the tem- The parent phasB4, composed of disordered columns

perature, a stiffening and extension of the six tails is ob-on a triangular latticéhence, featuring a continuous symme-
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FIG. 1. Contour plot of theD,4 phase, after Eq(2) (usingrg
=3/2, ry=1). Lighter regions are of higher density. Also shown
are theD,4 andDy,, primitive cells and the column numbering.

try axis) has been classified @&,=(R®Z?)/\Dg, [10]. To
describe theD,4 phase in the plane orthogonal to columns,
we pick for lattice generators

a. 3 .

b2=5ex+7aey,
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b= aéx:
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B1,B, are the two basic vectors in the reciprocal space. To

&

the lowest order in the modulation, one may express th
density as

3

po<x>=ro+r1§1 cogB;-x), (2)

whereB;= — (B;+ B,). A contour plot ofpq is shown in Fig.
1. In the Landau’s framework, the modification in density
taking place at the transition point is written as

3

where the density incremenp is expanded on a basis span-
ning at least one IR o&,. Following the symmorphic nature
of Gy, IR’s are identified by a vectdt of high symmetry in

p(X) = po(X)+ dp(X),

the first Brillouin zone of the parent phase along with an IR

of the corresponding little groufll]. The IR suitable for

positional order, IR1, is associated with the positioning of the

disk-shaped moleculd$]. It is obtained from the vectdt,
=A;+C;, with A; on the edge of the Brillouin zone and
C,=(2wlcy)e, along the columnar direction. Specifically,
we introduce the second set of reciprocal space ve@ers
=2B;+3B,+C, A,=(B,—B;)/3, and Az;=—(A;+A)),
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TABLE |. Character table o€, .

Ca, E 2C; 30,

A, 1 1 1

A, 1 1 -1

E 2 -1 0
op1=(y,u,+y_u_)+c.c, 4

with basis functionsu. (x)=33_,e/A=C)* and complex

order parametery, andy_. Minimization of the free en-
ergy for IR1 has been showi8] to lead to three distinct
phases, all featuring &3x /3R 30° superlattice and break-
ing of the ztranslation symmetry. Among them, phase 2A
was identified with the intercalated columnar positioning of

the molecules in th®,,, phase. Namely, the pattern £03)
was found, where the relative positions of the density incre-
ment maxima are indicated in units of the permdalong the

z axis, for columns 0, 1, and 2.

In order to treat the orientational aspects, the essential
step is to invoke one or more IR's db, appropriate to
account for the additional symmetry breaking brought about
by the counter-rotative helicoidal structure present inDig
phase[7]. Based on the theee-fold symmetry of the HHTT
molecules, along with the Bragg peak structure found experi-
mentally [7], the helicoidal phase is expected to preserve
2C,, but break aIIaAi, OB, OH, 2S5, i, 2S3, andC,. Here,
op, are vertical mirrors cutting through;, and similarly for
OB, OH is the horizontal plane perpendicular to the colum-

ar direction. Other operations follow Shoenflies’s notation
with the rotation axis along a column.

The natural starting point is among the IR's based on the
similar wave vectorka=A;+C; and little groupC;, that
was used in finding IR1. So after selecting a different wave
vectorC,= (27r/c2)éZ along the columnar directiore (@xis),
we formk,;=A;+ C, and form IR2 based 0A; of the little
group C3, . The star ensemble has four componehts:
{x£A;=C,}, and we use basis functio®s , andSv _ along
with their complex conjugates, where

3

va(x)= D, elAi=Cdx )
i=1
and
3
S=R*3-R3 R=), &@™MRginB, .x. (6)
n=1

The functionS, invariant under the small lattice translations,
preserves th€5 symmetries along theaxis and the vertical
mirror Tp but nevertheless breaks the vertical mirrogsi.

It will be seen, however, that the combination IR1 and IR2

making 120° between themselves. The associated littlare by themselves insufficient to reproduce the rotational de-

group isCs, , whose characters are provided in Table I. Pick-

ing the invariant representatidky, one may write a density
increment as

grees of freedom of the HHTT molecules.
We then add IR3 built from yet another different wave
vector k,=C,, whose vanishing in-plane component has
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been shown to obey Lisfshitz condition in two dimensions TABLE Il. Character table for representati@j of point group
[12]. In this case, the star space is two dimensiokfl Ceu-

={=C,} and the(largep little group Cg, has a total of six
possible IR’s. Among them, we pick the one-dimensidal Ce. E Ca 2G4 2Cs 30, 304
whose characters are listed in Table Il, forming basis func- g 1 1 1 1 1 1
tions TeC* and its complex conjugate, wherg=R*3
+R3. Putting together the three IR’s, one has in tafal

= Sp1+ Op,+ Sps, with expansions given by Ed@4), along Ill. STABLE PHASES
with
Depending on the signs and magnitudes of the expansion
Sps=S(n.v4+17_v_)+cC.cC., coefficients, the free energi®) admits a number of stable
@) phases. In this section, we study many of these phases, al-
Sps=eTed 2+ c.c. ways demanding the presence@j symmetry. We consider

the results for one and two IR’s, keeping the case of three

for IR2 and IR3, respectively. The complex order parameterdR's for the following section, where references to the ex-
y., 7+, € are of total dimension ten. We define their phasepenmental results for HHTT will be made explicitly. We also
aﬁgles_ throughy.. = | 7+|ei¢t ne=| 77+|ei01 = |8|ei¢. focus on the lowest order stable point in coefficient's space.

and also introduce mean and differential phase angles N general, of course, higher order terms in the free energy
could provide additional stable points and consequently af-

1 1 fect the nature of the transition between different phases.
Pr=¢Pm>5¢d, 0= 0TS 0. )
A. Single IR solutions

Up to fourth order_, the free energy has the following order Tpe stable phases withy(. = 7_=&=0) involving only
parameter expansion: the degrees of freedom of IR1 have already been stUéied
Of the three phases found, one has the columnar pattern
Fa=a(|ly.|?+]y_|?)+ &(|y+|4+ ly_|9)+Balv+|4y_|?  (0,5,%) and two have the pattern @3). In the latter, phase
2 2A was found to display the intercalated column pattern oc-
B curring in theDy,, phase of HHTT. Turning to the solutions,
+a'(|ne|?+]n_|?)+ ?(| et - wherey, =y_=g=0 involving only IR2, it is to be noted
that the free energy for IR2 is identical to that for IR1. As

el such, the stable phases are identical, as far as symmetries are
+ Bl i [P+ a"|«‘3|2+7|«*3|44r palln Py |? concernedup to the change af; —c,). However, chosen to
describe helical order, our basis functiof® for IR2 are
+Ply_— 12+ pal| e Pl 1P+ 7P v+ 1) quite different than that for IR1, and the actual density con-

5 5 5 ) 5 5 figurations look fairly different as a result. The first such
+)\1|8| (|7+| +|‘y,| )+)\2|8| (|77+| +|777| ) phase,RZ-]_, has|7]+|:1/—a/’/ﬂi and 777:0 (or vice
+Ng(7_pe2+c.c), (9) versag and a density incremerdp, given by

3
where the individual parts of each IR has been included, 8po=2|7.]iS>, Si(Ai+Cy)-X, (10)
along with the lowest order coupling between one another. i=1

Note that the last term is the only one involving the phase
angles of the order parameters. with conutour plots as shown in Fig. 2, where the unmodu-

Z=c2/3

yla

X/a X/a

FIG. 2. Plots of phas®2-1: py+ dp,, with Sp, given in Eq.(10), and using . |=0.06.
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Z=cz/2

y/a
y/a

x/a

FIG. 4. Plots of phas®3: py+ dp3 with Sp; given in Eq.(13),
where|g|=0.1.

symmetric and the entire point groly,, of G, is preserved.
Only translation symmetries are brokéne., continousz
translations and discrete in-plane hexagonal Bravais lattice
vector translations For 6,,= w/2 (phaseR2-3), column 0 is
also changed. All three columns are modulated alongzthe
axis and column 0 is phase shifted by 60° with respect to
columns 1 and 2. Phade2-3 has fewer symmetries left,

yla

x/a with C5(A;) (C, rotations aroundh;'s axis), op 253, and
oy, Surviving.
FIG. 3. Plotspy+ dp,, Wheredp, is given in Eq.(11) with 7 A solution exists, for IR3 alone withe|=\—a"/8" and
=0.03. () PhaseR2-2 with 6,,=0 and(b) PhaseR2-3 with 6,,
=7/2.

Op3=2|e|T cosC,- X, 13
lated column number shifts from 0, to 2, to 1, as one moves pa=2le| 2 (13

along thez axis in steps o€,/3. As discussed previously, the
degenerate phase |=—«a'/B; andn, =0 are similarto \ypare the phase angik of & was “gauged away” by shift-
the abpve, but are never.theless topologically d'StﬁB]:t_ . ing thez axis. Plots of phase R3 from E(L3) are shown in
A different set 9f solutions for IR2 has two nonvanishing Fig. 4, where it is seen how all the three columns in a super-
and equal amplitudes 7.|=[7_|=97=\-a'/(B1+83)  |atiice cell have three-fold molecules at the same height.
giving rise to a density increment Within a given column, adjacent molecules are phase shifted
3 by 60°. We note that by itself, pha&8 leaves bothrBi and
5p2=477iScosC2«xz Sin(A;- X+ 6,,), (1) oy, unbroken, and it is thus unsuitable to describe helical
=1 structures. Nevertheless, these phases are allowed based on
symmetry considerations for the two-dimensional hexagonal

structure in the plane. To our knowledge, they have not yet
been observed.

where the mean phase andlg is determined by the sixth-
order termv,( %> 7° +c.c.)=2v,7° cos &,,. The sign ofv,
allows for two groups of degenerate configurations,

2
O*ig'i?-”' degenerate B. Two IR solutions
Om= 5 (12 A few solutions are possible with=0 (involving only
i%,i;ig degenerate, IR1 and IR2. One of them hay_=»_=0 and
where the first group is favored for,<0. All degenerate lys]= /M
configurations in Eq.(12) are equivalent, being related M%-,Blﬁi
through a column translation or shifted along thaxis by (14)

half a periodc,/2. The contour plots for both casés,=0
and 6,,= m/2 are shown in Fig. 3. It is seen that f6f=0 @' - ap!
(Phase R2-R dp(x=y=0)=0. That is, column 0 remains 17| = %
completely disordered. For each periog columns 1 and 2 wi— BB
are stacks of three-fold molecules, with a 60° phase shift

between adjacent molecules in a column and between col-

umns 1 and 2 at the same vertical level. Phase R2-2 is highlyhe associated modulation is
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Z=0 2= Cz/ 16

y/a

yla

yla

yla

FIG. 5. Plots ofpg+ 8p,+ Sp3 in Eq. (17), with »=0.06 and
|e|=0.09. () PhaseR23-1 with n=—1 and 6,=0, (b) phase
R23-2 withn=—1 and,,= /2, (c) phaseR23-3 withn=0 and
0,=0, and(d) phaseR23-4 withn=0 and 6,,= 7/2.

3

5p=2|y+|§1 cog (Ai+Cy)-x]+2|7,iS

3
le SI((Aj+Cy)-x+ 60, —(ci/cr)e, ], (15

with a degenerate configuration having instead=», =0
and|y_|,| 7—| given by Eq.(15), with the change in sub-
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scripts+ « — andC,— — C,. In order to fix the phase angle
0,—(ci/cr)e, in Eqg. (15, a term of the formy’ %™
+ .- is necessary in the free energy. From #ieanslation
invariance, the conditiom/m=c,/c, must be obeyed be-
tween integers andm . Also, m must be even owing to the
sign reversal ofy, under the vertical mirror symmetries.
Moreover, in-plane lattice translations by b,+n.b, im-
poses the condition—m=3p, wherep is an integer. Under
these constraints, the possible ratias/8, are then the frac-
tions3(4), 2(7), $(10), ¥¥(11), etc., where the number in
parenthesis is thdowes) order of appearance in the expan-
sion of the free energy. Physically realized helical order
should have 8,>c; , where the factor 3 in the period ratio
originates in the three-fold helix structur&3]. The first case
(with 3c,/c,=3) indicates a rotation of 120° between adja-
cent molecules in a colum@@nd hence, no rotation at all
The second possibility with &/c;=6/5 comes with an
angle of w/3 between consecutive molecules representing
only a molecular inversion rather than a rotation. A comple-
mentary solution to the free energy minimization is instead
with y_=%,=0 . In that case, the phase angte,
+(ci/cy)e_ is fixed by a term in the free energy of the
form 41 ™+ . ... The allowed ratios 8,/c; are ther6(3),
3(6), 2(9), ¥(9), etc. But in both cases withc3/c;>1,
only molecular inversion is again present. Thus, despite a
large amount of symmetry breaking taking place in phases
arising from IR1 and IR2, none of them is suitable for the
type of helical order observed in HHTT. We also note how
by construction, in all such cases, the ratjdc, can only be
a rational number, contrary to the experimental results for
helical order in HHTT.

Considering other solutions to the free energy minimiza-
tion, none exist where only,, y_, and n», are vanishing.
This is somewhat expected, since it would represent a mix-

ture of two types of columnar modulation$0,3, 2) and

(0,3,3) vertical displacements However, minimization of
Eq. (9) admits solutions with|7,|=|7_|=% and e#0
(IR2+1R3) as long as the relation

—2¢=nm (16)

is fulfilled between the order parameter phase angles in Eq.
(8). The integem is fixed by the sign of\ 5 in Eq. (9). For
N3>0, nis odd and even for the opposite casg<0. The
increments are

naw\ S )
Sp,= 47;|Scos<C2-x+ 7)2 Sin(A;- X+ 6,,),
i=1
(17

S8p3=2|e|T cosC,- X,

where 6, is fixed by Eq.(12). Consider the case where
=—1 andé#,,=0, which gives rise to phage23-1 as shown

in Fig. 5. It is seen that in this case, columns 1 and 2 have
opposite helicities. Column 0 is not rotating but instead rep-
resents a stack of two molecules per period, equidistant and
in antiphase. Of the symmetries &,, only C;(B;) (C,
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rotations arounds;’s axis) is preserved but the screw sym- nar axi;. Of course, this is only true because we have picked
metry, nevertheless, exists as obtained by shiftingzthgis ~n=—1 in the above. _
by an amount,/2 and Cg or C.,). A different result is obtained when=0 and 6,=0,

A physically more interesting case is far= —1 and 6, which gives rise to phasR23-3. In this case, on each col-
— /2, which gives rise to phasg23-2. In phaseR23-2 umn, two molecules are equidistant, and stacked in an-
column 0 rotates in the opposite direction with respect tdiPhase. However, the molecular alignment does not coincide
columns 1 and 2. This is in line with the rotational patternWIth the lattice geometry, breaking many more symmetries.

observed experimentally for HHTT. Obviously, no mirror Fggrt;l_y, mbtth_e s(;tuatt:on whera=0 and 9mh= 7T/|2’ phﬁse w
symmetry exists in that phase. In fact, both the modulatior?23-4 is obtained, where once again, each column has two

6p and its gradienV¥V dp are vanishing at the column centers three-fold molecules per period.

(i.e., .x=n1b1+ n,b,), despite the orien.tatipnal order. The IV INTERCALATED HELICOIDAL ORDER

density(17) thus models a new type of liquid crystal, which

can be thought as a one-dimensional analog of the nematic A case of special interest in the present work is the one
order. Indeed, the columns are disordered with respect tmvolving all three IR’s introduced in Secs. Il and IIl. Within
positions, yet are ordered with respect to their azimuthathis set, we specialize to the case of equal amplitudes within
angles. It is interesting to note that while IR2 or IR3 alone iseach IR:| 7, |=|7_|=7% and|y.|=|y_|=7. To the lowest
insufficient to yield molecular rotations, the sum of the two order, minimization of the free energ9) provides values for
does provide the observed helical structure along the colunthe amplitudesy, y, and|e| with

yz\/a(Zkz—ﬁ”ﬁ’)+a’(ﬁ”ﬂ—2>\7\1)—a"(w—Mﬁ’)
B"(BB' — uA)+2 i (A=A 18" )+ 2 (A u—\B)

. \/a(/a"u—mma'(zxi—ﬂ"m—a"(w—xm .

B"(BB' = u?) + 2Ny (App—N1B") + 2N (A u—\B)’

le]= \/_Za()\ﬂ_)\lﬁl)_za,()‘l'“_7‘18)_“"(,3,3' - )
B'(BB' — k) + 2 (A= N1B') + 2N (A1 —B)

where use was made of the effective expansion coefficients  ,,(y, y_%2 % +c.c)=2v3y?7*cog4 0+ 20p),

u=pitpn, B=P1t+B2, B'=B1+B;, and A=),

T .
+(—)"\3. In such phases, the total density increment takes va( Y2 Y2 s+ C.C) =214y  7PCOS 2 0t bepyr).

the form,
3 For some subset in the range of the coefficientsv,, v,
Sp1=4ycosCy-X >, COgA; X+ @), (199  andw,, no competition exists among the terms in E20).
=1 In Table I, the values ofp,, 6, are given in such cases up

to equivalent configurations related by the choice of column

] nm\ S ) (0, 1, or 2 and the choice of rotational direction. When the
Opy=4miScog Co x+ A+ —- 21 SIN(A;j- X+ 0p), signs of thev;,v,,v;, andv, are not one of the combina-
tions listed in Table lll,¢,, and 6,,, continue to be multiples
8ps=2|e|T cogC,-x+A) of 7/6, at the cost, however, of frustrating minimization of at
where A=¢—(c,/¢,)(¢g/2). In obtaining Eq.(19), the TABLE lll. Cases of no competition in the minimization of the

condition(16) was imposed, and theaxis was shifted moy- Sixth-order terms in the free energy.
ing the phase angley into §p, and §p;. The mean phase

anglese,, and 6,, in Eq. (19) are determined by way of the __~hase va V3 Va #m Orm
following set of sixth-order terms R123-1 <0 <0 <0 <0 0 0
3 3 6 R123-2 >0 >0 >0 >0 /2 /2

vi(¥3 ¥~ +C.C)=2v177COS Gpp, (20 R123-3 >0 <0 >0 <0 @2 0

R123-4 <0 >0 <0 >0 0 2

vo(73 7% +c.c)=2v,7%c0s 66,,,
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least one of the terms in EqR0). Of course, in that case, the
existence of a nonvanishing and » may not be energeti-
cally sustainable anymore as determined at fourth order.

Consider the case of pha&d23-4 with ¢,=0 andé,,
=/2. Suppose further thak=0. The incremen{19) is
then further simplified into

3
Spy=4vycosCy-X >, COSA;-X,
=

3

Sp,=47iSsinC,- XE COSA;- X, (21)
=1

Sp3=2|e|T cosC,-x,

wheren=—1 was chosen for producing the helical struc-
ture. Contour plots of5p;+ dp,+ Sp5 in Eq. (21) are pre-
sented in Fig. 6 for the case whearg/c,=8/3. The counter-
rotating structure found experimentally, model 11l in Rgf],

is seen to correspond to this phaR&23-4. Namely, the

helicity of columns 1 and 2 are the same and opposite to tha.
of column 0. A helical phase shift of 60° was noted in the

PHYSICAL REVIEW E 67, 011707 (2003

2=c,4/2

y/a

a
yla

=

-2

X/a Xx/a

FIG. 6. Counter-rotating helical pha$®l23-4 py+ dp1+ dp,

analysis of Ref[7] between columns 1 and 2 on one hand s, as specified in Eq21), usingy=0.127=0.04g=0.12.
and column 0 on the other. However, in view of the noncom-

mensurate nature of the ratig/c,, we consider the value of

60° to be rather arbitrary as all phase shift values are essen-

tially covered as one moves along thexis for an incom-

mensurate situation. In the present analysis, an incommensu-

rate value ofc,/c; indeed does not allow a term in the free
energy to fix the value od, leaving it arbitrary. The contour
of Fig. 6 also differs from the one in Rgf7] by the density

Feri=2ay’+ By + 019+ 20’ 9°+ B' '+ 0,n°
" 2 1 " 4 6 2.2
+2a"|¢] +§,8 le|*+ osle|®+2uny

+2)\1|8|272+2)\|8|2772. (23

obtained between molecules, for example, on column® at The potential described by EQR3) generalizes to three di-

=c,/2. In the present case, working on the lowest harmonicsnensions, the symmetric model studied in R&g], involv-

of the modulations and focusing on the symmetries, fine feaing the interaction of two order parameters with biquadratic

tures such as the molecular tails sticking out of the moleculacoupling. The sixth-order coefficientg’s are assumed to be

plane are not reproduced. all positive. In order to obtain a first-order transition between
Experimentally, theD, 4~ Dy, phase transition was re- the parent phase witly=y=|e|=0, directly to a phase of

ported to be of weak first ordgr]. To study the nature of the the typeR123, with all nonvanishing amplitudes, the fourth

transition, we complement our model Bf, in Eq. (9) with

order coefficients3, 8',8 should be positive. However, the

the following set of sixth-order terms, introduced to ensurecouplingsu,\,\; ought to be negative so as to favor simul-

stability of the phases, in each of the order parameters:
Fr=xa(ly+ %+ 1y 19+ xal v Pl 2y [P+ 1v-1?)
+ri(y3 Y +ec)txall me |+ 70+ xal 74 |2

X[ -2 4|2+ n-12) + va( 75 7> +c.0)+ x5 ||

taneous occurrence of more than one order parameter. As the
temperature is modified, a trajectory is defined in the three-
dimensional space of quadratic couplingsa’,a”. Upon
approaching the origin from the positive quadrant’,a”

>0 (bringing down the temperaturea first-order transition

will take place provided that the following set of conditions

are verified:
(22)
BB’ — u?>0,
In phaseR123’s introduced above, where no competition is
present between phase angle fixing terms, the terms with "oy 2
coefficientsv; and v, in Eq. (20) do not play an essential BB 2\=0, 24
role. Along with other possible sixth-order coupling terms, o )
they are not retained in Eq22) for simplicity. Specializing B'B"=2\">0,
to the case of equal amplitudes for IR1 and IR2., | 7. | _ »
—|%_|=»and|y,|=|y_|=7v), and also using Eq16), an along with the global condition
effective free energy is obtained frofy+F’ for the order o ) 2
parameter’s amplitudes: BB'B"—=2BN"=2B' N1~ B"n +4uNN;<0. (25
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Note how conditiong24) impose limits to the amplitude tice, the total goes up to 3. For the density increments built
of any individual coupling between the order parameters, andn IR2 and IR3 and responsible for the helical order, each of
serve to rule out transitions to phases with only two nonzerdghem act as a stationary wave with a progressive wave pos-
order parameters. The conditi¢?5) ensures that the combi- sible only when the two are combined. We have explicitly
nation of couplings are sufficiently strong to trigger the tran-shown the conditions, under which the phd3g, may be
sition. obtained as a first-order transition from the ph&sg, in

agreement with experimental results. Using those conditions,
V. CONCLUSION the phase transition surface in the quadratic coefficient space

. ) . a,a’,a” may be computed numerically, once the various
We have presented a model involving a total of three iIrhigher order expansion coefficients are specified.

reducible representations with explicit base functions repre- “\we nave also discussed how. for columnar arrangements

senting three-fold molecules. Fixing of angle phases an(\j/vith displacements in modulation (B,2), involving onl
thermodynamic stability required an expansion of the Lan- splacements odulation (3),5)., olving only

dau coefficients up to the sixth order. We have discussed ?0 IR's, commensurability of the two wave numbers along

number of, hitherto unobserved phases related to the hexag €z ‘F?‘X'Shw?s necessaryl,v:n order to pLoduce tt)he aggle-flx!n%
nal array of liquid columns by a group-subgroup relation, (€M In the free energy. Many more phases, based on neigh-

For example, we have shown the possibility of a One_boring IR’s, were not studied in detail. But calling on mo-
dimensional positional liquid having a helical order for the lecular engmeerlng,.further Stl‘!dy |s_reqUIred to dgtermlne
molecular edges. Consistent with x-ray diffraction results fo what phase has desirable elastic, optical, and electrical prop-

the Dy, phase, we have shown explicitly the emergence of gries

stable phase with intercalated columns and counter-rotating

helical structures on each columns, with arbitrary commen-

surability. It was seen that although a minimum of two IR’'s  This work was supported by the Natural Sciences and
were in principle required to account for such phase, in pracEngineering Research Council of Canada.
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