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The Landau—de Gennes model for nematic liquid crystal bulk and interfaces has been extended to nematic
triple lines involving the intersection of two isotropic fluids and one nematic liquid crystalline phase. A
complete set of bulk, interface, and triple line force and torque balance equations has been formulated. The
triple line force and torque balance equations have linear, interfacial, and bulk contributions. The bulk contri-
butions appear as junction integrals, the surface contributions as junctions sums, and the line contributions as
gradients of stresses. Reduction of dimensionality from three to one dimensional creates the following effects:
(@ bulk terms enter interfacial balances as surface jumps and line balances as junction integrés, and
surface terms enter linear balances as junction sums. Line stress and torque equations are derived using
classical liquid crystal models. The correspondence between line stress and line torque and their surface and
bulk analogs is established. The triple line force and torque balance equations are use to analyze the contact
angle in a nematic lens lying at the interface between two isotropic fluids, when the prefered surface orientation
is tangential. The effect of anisotropy and long range elasticity on triple line phases is established. Under weak
anchoring the contact angle is shown to be a function of the anchoring energy at the nematic-isotropic
interface, while under strong anchoring conditions the contact angle is a function of the Peach-Koehler force
that originates from bulk long range elasticity and acts on the triple line. The use of the complete set of balance
equations removes the classical inconsistency in force balances at a contact line by properly taking into account
long range(bulk gradient elasticityand anisotropidinterfacial anchoring elasticipyeffects.
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[. INTRODUCTION that, in addition to normal stresses, there are bending stresses
and distortion shear stressgk3]. Bending stresses at the
The surface physics of nematic liquid crystals is currentlynematic triple line result in forces that are not tangential such
an active area of resear¢h—6] since many applications of that force balances in any direction can be accomplished
liquid crystalline materials involve multiphase systems,[12]. When considering solid triple lines that arise from the
where interfaces play significant roles. Interfacial orientationintersection of two fluid phases and a flat solid substrate the
phenomena and orientational transitions in fixed geometriesontact angle is given by the Young equati@9]. When
are well characterized experimentd|llly-3] and theoretically neglecting distortions in the solid substrate it is found that a
[4-7]. On the other hand, deforming soft nematic inter-model based on tangential stresses is not able to balance
phases are less well understood. Furthermore, Wettingorces a|ong the normal to the solid Surfam_ In the
spreading, flotation, foaming, and fluid-liquid crystal dis- present model we show that forces at a triple line may bal-
placement are examples where contact lines are pri&&ht  ance in all directions since stresses are not tangential tensors.
At present the understanding and characterization of contact qrce palances at a triple line, as in the Neumann and
lines involv!ng nematic phases is starting to be developeq(Oung equations, are used to model isotropic systE8id.
[10-12. This paper presents a contribution to the formula-g, e other hand, for anisotropic nematic liquid crystalline

tion of models of systems displaying bulk, surface, and trIIOIematerials force balances and torque balances are required.

line phases. In particular, we focus on a representative Sy%7|odeling of anisotropic surfaces using force and torque bal-

tem of three bulk phases, three interfaces, and one triple ”n%nces is very common in metallurgickll5. 16, thin mem-
which arises when two isotropic fluid phases intersect a nem- Yy viurg T
rane, and film[17,18 and liquid crystalline systems

atic phase. A typical example is a nematic droplet or len :
suspended at the interface between two isotropic fluids. Gend3:19- The need to use both force and torque balances is

eralizations to other triple lines, such as those arising at thBOt restricted to dimensionaligghree and two dimensional
intersection of solid isotropic and fluid nematic liquid crystal @1d carries over to anisotropic triple lines. This was first
phases can be made following the procedure presented in tHigcognized ir20]. Bulk, surface, and line force and torque
paper. balance equations under the coexistence of bulk, interface,

Fluid triple lines arising from the intersection of three and line phases give the complete set of equations in the
isotropic fluids are described by the Neumann equdt&jn  presence of anisotropy. In addition to anisotropy, nematic
which is a force balance of tangential forces acting along théiquid crystals display long range elasticifg4]. The bulk
three interfaces. The tangential forces at the triple line arisand surface long range elasticity have been used to model
because the surface stress tensor is a tangential tensor fietdany observed phenome(see for examplg1—-7,14,21). It
indicating only the presence of norméension stresses is therefore possible that endowing a nematic triple line also
[8,9]. Since liquid crystal interfaces are anisotropic, the surwith long range elasticity will assist in providing further
face stress tensor is not a tangential tensor field, indicatingnechanisms for wetting and wetting transitid@g,23.
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The tensorial Landau—de Gennes force and torque bal-
ance equations of nematic liquid crystals for surface phe-
nomena have been presented and used extendsety for
example[3,13,24). On the other hand there are few appli-
cations to contact line problems. [40] a two-dimensional
(2D) force balance equation for solid contact lines was for-
mulated and used to model wetting processes in the absence
of line tension effects. In this worKkLO] the role of bulk long s®@
range elasticity on the line force balance was established.
The vectorial Frank-Oseen force and torque balance equa-
tions of nematic liquid crystals have been formulated for
solid contact lines in the absence of long range eng2gY.

The force and torque balance equations at cusps using the
vectorial Frank-Oseen model have been formulated and used
to establish stability criterig6].

The objectives of this paper are as follows). To present
a complete set of Landau—de Gennes equations for nematic
liquid crystals for coexisting bulk, surface, and line phases, v
that include force and torque balances, using generalized
bulk, surface, and line energies that have homogeneous and FIG. 1. Schematic of the coexistence of three bulk, three inter-
long range contributionsThe presence of similar energies face, and one triple line phases. The nematic bulk regid®' iand
in the three phases allows for a systematic formulation ofhe isotropic bulk regions af@” andR®. The total bulk regiorR is
stress and torque equations as well as providing a unifiefie union of the three bulk regionsR=R'+R?+R®. The outer
approach at developing the force and torque balance equiounding surfaces of the three bulk region are, respectige)ys”,
tions) (2) To establish the effect of anisotropy and long andS®. The outward bounding surface Bfis Sand is the union of

.c_cl 2 3 H H H
range energies on the forces and torques at the triple linde three surfaces:S=S +S°+S°. The surface of discontinuity
phagse 9 q P betweenR! and R? is 32, betweenR® and R is 332, and

3 2 e (32 -
The organization of this paper is as follows. Section  betweenR® and R is %3, The union of the three surfaces of

, : discontinuity is3 =312+ 3G9+ 323 The outer bounding edge
defines the geometry, the nematic order parameter, and tf&gz(l,z) is Cy(lz) the outer bounding edge &3 is CGD a?ld 0]9

nema}ic .elasticitie.s, and derives the balanc_e equations al’iCiz,g) is C23. The intersection of the surface of discontinuly
constitutive equatlons for bulk, surface, and line stresses a%d the bounding surfac&is C=C12+ C3) 1 C(23_ The triple
torque_zs. S_ectlon Il develops the force and t(_)rque_\ balancgne C! is the common intersection %2, 33 ands @3 The
equations in the Frenet-Serret frame of the triple line. SecCiyersections of the triple lin€! and S are two end pointE!®),
tion 1V presents the applications to a nematic lens betweegng g(®) where's indicates the start, and the end. The total
two isotropic fluids under weak and strong anchoring condipounding surface for the nematic phasesis=3 12+ 3G9 4 St
tions. Section V presents the conclusions. The unit vectorg")) is the normal to the interface of discontinuity
30:D) and is directed fronR! into R'. The outward unit normal to
CU:) is ul-D, The unit vector normal to the triple ling", tangent
Il. BALANCE EQUATIONS to 3D, and directed away fror@" is »(")). The two unit tangents
to the triple lineC! at EY® and E!® pointing away fromC! are
a® anda!®. The outward unit normal t8 is v". The orientation
of the triple line is given by the unit vectdr Rotation of a right-
In this paper we analyze the statics of a nematic triplehanded screw in a clockwise direction advances the screw in the
line, denoted byC!, that arises at the intersection of two direction oft.
isotropic phases and a nematic phase. The geometry is shown
in Fig. 1. The nematic bulk region iB* and the isotropic
bulk regions areR? andR®. The total bulk regiorR is the

(3.1)

C(3.1)

A. Geometry and order in nematic bulk, interface,
and triple line phases

323 The intersections of the triple line" and S are two
union of the three bulk regions:R=R'+R2+R%. The €nd pointsE™® and EY®), wheres indicates the start anel

outer bounding surfaces of the three bulk region are, resped€ €nd. The total bounding surface for the nematic phase is
tively, S, %, andS?. The outward bounding surface Bfis =~ S == "?+X Y+ ' The unit vectog" is the normal to
S and is the union of the three surfaceS=Sl+2+<3.  the interface of discontinuit () and is directed fronR’
The surface of discontinuity betweeRil and R2 is 2(12), into Ri. The outward unit normal td:(l'J) is M(I’J) The unit
that betweerR® andR® is 331, and that betweeR® andR?  vector normal to the triple lineC!, tangent to3 ('), and
is 323 The union of the three surfaces of discontinuity is directed away fronC" is »('/). The two unit tangents to the
3 =312 36D 3(23) The outer bounding edge 8f%2 triple line C! at E'® and E'® pointing away fromC!" are
is C1?, that of 33 is CGY, and that of2(?? is C(23, a9 andal®. The outward unit normal t8' is v"). When no
The intersection of the surface of discontinulyand the ambiguity arises we drop superscripts.

bounding surface§ is C=C®2+ @Y+ 23, The triple The geometry of each interfac& (") is characterized
line C" is the common intersection &t (*?, 331V and by a mean surface curvatuk)) given by[8,9]
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. 1 . Q0 o) 1 . script T denotes the transpose. The first restriction givgs
H("”=—§VS-§<"”=§IS‘J B :_Els'J VD +r1,+3r3=0. Physically significant expressions for these
coefficients are

1 .
:_(Xg-'ul)_i_x(z'vl))' (1a) Sy 252
2 =sit g, == ra=—(8,+5,)/3, (6)
L) — _ ) = DD i) (5 D ad0) .
BV ==V g =) Ve ey Ve e wheres,; ands, are the uniaxial scalar order parameter and
o biaxial scalar order parameter, respectively. For isotropic
(i,))=(1,2,(3,,(2,3), (1b)  statess;=s,=0 (r;=r,=r;=0), while for uniaxial states

. . SZZO (r1:3r3).
where for each interfacg& (') vV =10").V is the surface

gradient,|{"V=1— (D g0D s the 2x 2 unit surface dyadic B. Bulk, interface, and line nematic elasticity

. . . . . (|’]) .
for interface (’_J)’ | is the 3X3 unit dyafzhc,ﬁs i’j)'s the In this section the bulk, surface, and linear free energies
2x2 symmetric surface curvature dyadic, apey} and ;¢ presented and discussed in reference to interfacial and

{ei}, m=1,2 are the eigenvalues and eigenvectors ofsiple line phenomena. For simplicity and when no ambiguity
B The divergence of{') is a normal vectorV,-1{'))  arises we drop thdi,j) superscripts to refer to tha ()
=2H0DED - The symmetric surface curvature dyadic interface.

ﬁg,j) is given in terms of mutually perpendicular unit vec- Generalizing the Landau—de Gennes theory, the total free
tors (€' ,&)")) in the directions of the principal axes of energy of the nematic liquid Cr%lls_tal in the regid®’,
curvature. The principal curvatureg{(" x4 ) of the sur-  Pounded byS", and the triple lineC™ is given by

face are defined by (). elV= 0Dl =12 Finally,

another common way to express the principal curvatures F:Jleb(Q.VQ)dVJr LnfS(Q,VSQ,g)dA

(4 x8) is in terms of the principal radii of curvature

(r"), as follows: x{i'=—1r{V, m=1,2. | +ftlf€(Q’V€Q,t)d€_ %)
To describe the geometry of the triple li@' we use the c

Frenet-Serret formulas. The principal frametip,b), where
t=pXxb is the unit tangentp=bXt is the unit principal
normal, andb=t is the binormal unit vector. Representing
the contact line by =r(s), the curvaturec and the torsiornr

In this paper we assume that the bulk, interface, and line free
energy densities in the Landau—de Gennes model have ho-
mogeneous and gradient contributions:

are fo(Q,VQ)=fun(Q) +f1y(VQ),
alt 0 x O]t fs(Q,VsQ, &) =fsn(Q,8) +fs((VsQ), (83
ds pl=|—> 0 7[|lp]. 3] _
o) | o —, ollb fQVQD=Tm( QO+ g(VQ.  (8b)

o _ ) ) _ The Frank elastic gradient free energy densjly, the bulk
The unit line dyad isl,=tt. The line gradient operator is homogeneous free energy density,, the interfacial homo-
given byV(-)=1,-V(-). The divergence of the unit dyad is geneous free energy density,, and the interfacial gradient
V¢-1,=xp. The linear curvature dyadig, is given by free energy densitys, are given by[3,4,26

Be=—V p=axtt () fon(Q)=a; tr Q*—a, tr Q%+ a,(trQ?)?, (9a)
and the line curvature by L, , Lo T
fog(VQ)= 5 trVQ™+ —=(V-Q)-(V-Q),  (9b)
x==Vep=leiBe=—1:Vp. 4

fsn(Q, &) =Tfs isot fs an;
In the bulk, at the two nematic-isotropic interfaces, and at st(Q8) =T iso s an

the triple line the nematic ordering is defined by the symmet- fo =211 Q- E+2,0Q:Q+2,/Q- £ £ Q
ric traceless tensor order paramgi&f Q= Q(x,), wherex,
is the position vector. The tensor order param&etan be +2)(§- Q- 67, (90
expressed as
L3
Q:rlnn+r2mm+r3|_ (5) fsgzig(stQ_QVsQ), (gd)

The orthogonal eigenvectors & appearing in Eq(2) are  whereV is the gradient operatofl;}, i=1,2, are the Frank
known as the directon and the biaxial directom. The re- elastic constant&nergy/length {a;}, i=1,2,3, are the Lan-
strictions onQ are Q:1=0 andQ=QT, where the super- dau coefficientgenergy/volumg f. i, is the isotropic inter-
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facial tension/f ., is the interfacial anchoring energiz;; }
are the anchoring coefficientenergy/arep and§ is the unit
normal.

The line energies for the generalized Landau—de Gennes
model can be written down using the same standard proce-
dures as for the bulk and surface contributions. The homo-
geneous line free energy density is

f{/h(Qat):f€ iso+f€ ans
fe an=Cpat- Q-1+ Cp0Q:Q+Cx(Q-1)-(Q-1)
+Co(t-Q-1)?, (10)

wheref, i, IS the isotropic contribution anfj, ., is the line
anchoring energy density. The line gradient free energy den-

sity fyq is FIG. 2. Schematic of a circular path of radi@ground the triple
line C!". The outward unit normal i&. Calculation of junction
_al 2
ffg_AiJkV‘kaiJ+Aiik|mnV€inJV€“Q|m' (12) integrals to compute long range bulk forces involves integration
aroundcC®.

Using the restriction#\|, = Aji, and A, = Afiol ¢o, then

AV Qi = (€ ettt €2Qit) V i Q (1 tensors ar&y), 3x3, CJV, 2x3, andC,, 1x3. Due to
their dimensionality these tensors obey
where ¢ ,¢,) are elastic constants. To find the second order

. (i) — i)
tensor coefjmentAz2 we use ’g‘izjklmn:Alzmnijk:Aﬁklmn T =15 T8, (143
= Aijkmin= Aijkimn = Aijoimnl ¢ok= Afjkimol cok» @and when us-
ing the one-constant approximation its contribution is Te=1¢- Ty, (14b
Ai2jk|mnveinjVenQ|m=€3VeinjVeinj/2, where{;>0 is m Wi
an elastic coefficient. Thus to lowest order the line energy is CV=1s-CV, (149
J 4 =1,-
flg= (V- Q) £ 00:Q 2V QY Q)T (19 Ce=le-Ce. (149

In addition, we also make use of the following junction in-
were we usedt:(V,Q)=V,-Q, and t-V,)Q=0Q/ds. tegrals:
It will be shown that the generalized line energy density
results in a natural and consistent system of balance equa-
tions. In addition, the line stress and torque constitutive
equations will be shown to have exact analogs to the corre-
sponding bulk and surface terms.

(k-Tp)de=lim > [ (k-Tghde, (159
DzS

jun 6—0 !

(k-Cp)de=lim f (k-Ccde, (15b)
C. Balance equations for nematic bulk, interface, jun 550 D(&')

and triple line phases

To write down the force balance equations we introducévhereD$ is the arc of a circle of radiuglying on phasdi);
the following stress tensors: the bulk stress teng)  the center of the circle is the triple lirf&" (see F)|g. 2(3?'”09
(energy/volumg the interface stress tensdii) (energy/  the isotropic phases do not support torques?) = Cf=0,
area, and the triple line stress tensby (energy/length The ~ @nd hence these couples are excluded from(Esp). Bulk
dimensionalities of the stress tensors affl, 3x3, t(),  1ong range effects at the triple line vanish when
2X3, andT,, 1X3. We recall that phases 2 and 3 are iso-
tropic and incapable of sustaining torques. To write down the (k-Ty)d€=0, (163
torque balance equations we introduce the du'ﬁfﬁ jun
=—&:T{) for the nematic bulk phas&{;)=—&:T{) for
the two nematic interfaces, anty,=—€:T, for the triple
line. These dual vectors contain the asymmetric information jun
of the stress tensors. In addition we have to take into account
the following couple stress tensors: the nematic bulk couplyhich arises wheneveF,~r —*, C,~r~*, A=<1, or when
stress te_n_soCE,l) (energyl/aren the interface couple stress k-T,=0, k-C,=0. Junction sums involving interfacial
tensorcg'*') (energy/length and the triple line couple stress stress and interfacial couples at the contact line are defined
tensorC, (energy. The dimensionalities of the couple stress by

(k-Cp)d€=0, (16b)
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> v Te=IlmY, (v(i’j)~T(Si’j))|c<5i,j) fv-deAzj V-dev+f [£Ty]dA
jun 501 s R s
_ (1,2 (12 (3) (39 (2,3 T7(2,3
v T+ BN TEY 4 (89 T +f- (k-Tp)de | de. 21)
(173) CII jLII"I
Using the surface divergence theorem the surface stress term
. . . becomeg9
> v-Ce=lim >, (v cl)| i 1
jun 5—0 1 d
=p12.C12 4 3. cBD| . (17b) fﬁp-TSd6=J VS-TSdA+J . 2 v-TS)d{’. (22
C 3 c®\ jun

whereel")) are the three intersections of the surface of dis
continuitiesS, (1) and the circleD 5 centered on the triple line
C!. Jumps in the bulk stressé§-T,,] and couple stresses
across interfaces are denoted as

“Using the line divergence theorem the triple line contribution
gives[8]

. ' . a Ty|gis+ a-T(|Etl(e):f tIV€~T€d€. (23
[&Tol =& TP =TV, (1,)=(1,2,(31,(23), ©

(183  Collecting the bulk, interface, and line terms yields the fol-
lowing integral force balances:

[£Cyl=&"-[C)-C}], (i,)=(1,2,(3,D),

1
(181 f V. TpdV=0, (243
R
cY'=cy’=o. (180
Lastly, we define the bulf14], interface[13], and line J(VS-TS+[§-Tb])dA=0, (24b)
torque vectors as follows: 3
=Tyt V-Cp, 19
b ° (193 f VTt V.Ts+§g (k-Tp)de€ |de=0,
ctl jun jun

I=Tg+V-Cg, (190 (249

which are satisfied when
F€=T€X+V'Cg. (190) .
V.- T=0, i=1,2,3, (253
The force balance on the total volume of the systeis N
[15] Vo T¢V+[k-Tpl=0, (i,))=(1,2,(3,1,(2,3),
(25b)

J(VTb)dA+f M‘Tsd€+a'T€|Et|<s)+a-T€|En(e)=O.
° ¢ VTt v Tt (k-T,)d¢=0 on C!.
(20) jun jun
(250

Using the divergence theorem in the presence of a surface of
discontinuity and a triple line, the surface integral becomesThus the complete force balance at the triple line has line,
[27] interface, and bulk contributions:

Vo To+ w02 T2 4 G0 T 4y (23, 703 ) fﬁ (k-T,)d€=0.

T Jun
line interface ————
bulk

(26)

Bulk, interface, and line long range effects enter in each corresponding term.
In the absence of line energy and long range energy effects the force balance e@&t&implifies to the well-known
classical Neumann equati¢8,9]
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> v Te=lim Y, (0. T8
jun 501, °

_ (1,2)_-r(sl,z)Jr]/(3,,1)_T(ss,l)_i_,/(2,3)'T(52,3)|C[I
=0. (27

The torque balance on the nematic regvhis
J’ rX(v-Tb)dA+f (rXp-Tyde+r
st C123
X{a’-T€|Etl(s)+d-T€|Etl(e)}+f1(]1' Cp)dA
s

* fclzsﬂ' Cedl +{a- Cylgus + a- Cylge} =0,

(28)

PHYSICAL REVIEW E67, 011706 (2003
V'(rXTg):rX(V'Te)'f'TgX

> vt ¢ (k-Tp)dl

jun jun

=—rX +T€X

(34

and the line divergence theorem, the torque from the linear
stress becomes

rX{X-To|gis+ a- Tlgio}

szﬂV(-(rxTe)de
e

We now proceed with the bulk, surface, and line couple

+ Tyt de.

> v Tt fﬁ (k-Tp)d¢
jun

jun

(39

where C12=C(1:2+ Cc(®D, Next we use the bulk, surface, stresses, and obtain
and line divergence theorem to evaluate the six terms in or-

der of appearence in E(R8). Using the divergence theorem

on the bulk stress term yields

frx(y.Tb)dA:f V-(rbe)dv+f rx[k-Tp]dA
Sl Rl 2123

|
Ctl

The first term on the right hand side of H9) is

é rx(k-Tb)d€)d€. (29

jun

V-(rXTp)=rX(V-Tp)+ Tp=~+Tpy, (30

where the second equality follows becadéeT,=0. Re-
placing Eq.(30) into Eq. (29) gives

JSZI’ X (V' Tb)dA: fRZTbXdV_l— J2123r X [k Tb]dA

; j( ﬁuan(k.w)df:O

(3D
where31?3=3124+ 361 gimilarly, using the identity

V- (rXT)=rxX(V-T+Tg=—rX[K-Ty]+ Tsy,
(32

the application of the surface divergence theorem gives

Sgcmr Xp-Tde= Lm( —rX[k-Tp]+TsdA

+f rx
ct

E v-Ts

jun

d¢. (33

Using

stV' deA: Jsz . deV+ f2123[§' Cb]dA
|
ct jun

3§C123ﬂ.c5d6= LmVS-CSdM— Lﬂ

(k-Cb)df)dé’, (369

> v~CS)d€,

jun
(36b)
a'C€|EtI(s)+ - C€|Etl(e): f llVg'nge. (36C)
C

Collecting terms we find the bulk, interface, and line bal-
ances for the nematic phase:

f {Toxt V- CpldV=0, (373
R

Lm{TSXJr V. Cot+[£ CylldA=0, (37h)

E v-Cg

jun

T+t Ve-Cot

J

Thus the differential torque balances on the nematic bulk,
interfaces, and line phases are

+ % (k-Cp)de td€¢=0.
jun
(370

Th+V-CyP'=0, (383
TE)+ Ve CUV+[£Col=0, (i,))=(1,2,(3,),
(38b)
Tt Ve-Cot| 2 »-C|+ ¢ (k-Cp)d€=0, on C".
jun jun
(380
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“In terms of torque vectors the balance equations read where @T)ijk=Aikj [13].
(b) Surface stress tensor, surface couple stress tensor, and
V=0 (398 surface torque vector
N For the Egs(13) and(12) nematic interfaces, the surface
riV+r£.c,1=0, (i,j)=(1,2,(3,), (39 stress tensor iEl3]

E v-Cs

jun

r,+ + ?Q (k-Cp)d¢=0. (390 Ts=Tent Tsqt Tsp (44)

jun

The torque balance equation at the triple line has the followVhere the normal'g,, distortionTsy, and bending’s, com-

ing line, surface, and bulk contributions: ponents are

ij) — (i) ii)=
Tt Ve Cot | 2 v C |+ ¢ (k-Cdl=0. Tsl QM. V=155, (1)) 120,
e LI A L ) 3
interface bulk (40)
; - . o of D)
Bulk, interface, and line long range effects enter in each TUD(Q,e0h) v.Q)=— s (V.Q)T,
corresponding term. In the absence of line energy and long sd s aVQ " " ®

range bulk contributions the torque balance equation reduces

to the analog of the Neumann force balance equation: (.])=(L2.(3.0 s
E v-Cs=0. (41) ) . af(Si'j) “
" T(SIBJ)(ng(I']),VSQ)Z—|S_W§(I,J),

D. Constitutive equations for bulk, surface, and line stresses,

couple stresses, and torques .
, L (i,))=(1,2,(3,1 (450
The force and torque balance equations at triple lines re-

quire constitutive equations for,, Ts, T,, C,, Cs, Cy,

'y, I's, andIy, in their corresponding isotropic and nematic i j)_ of¢ N gfg T 0Olie (L)=(1.2.(3.)
bulk, interface, and line phases. The bulk stresses and inter=s | |9V .Q | 9V.Q Qe (1L)=(12.3.1),
facial stresses for the isotropic fluids are (450
THO= _ (i)|, i=2,3, 42 . . o
b ="P (423 D=0 4 v.cl
TPI=139, (42b)

= E:

The constitutive equations for bulk and interfacial stresses P ofEINT
ample,[3,10,13). The constitutive equations are as follows.

ot of )
. Is-(%é'*”) +——=—=(VQ)T
wherep( is the pressure anfﬁf) is the interfacial tension. g IVsQ
and torques in the Landau—de Gennes model involving the | ==
nematic phase have been presented previolsgg, for ex- IVQ 19VQ
(a) Bulk stress tensor, bulk couple stress tensor, and bulk (i,)=(1,2,(3,2). (450
torque vector

D (1) _ fp T (c) Line stress tensor, line couple stress tensor, and line
To'=— (M=t avQ’ V-Q), (433 torque vector
In this section we present the derivation of line stress
of afy \T tensor, line couple stress tensor, and line torque. With the
e Mo [ o\l (a3p ized I
b VO oV -&, adopted generalized line free enerfyy=f,(Q,V,Q,t), we

find that the line stress tensor contains the following normal
of ( of )T) Ten, distortionT .4, and bendindl ,, components:
Qij&jik »

C =( + 430
PO oV Qi 1 aVoQ 439
T€:T€n+T€d+T€b' (46)
of
(1) _ (1) oW . b . v. T
Ty =ty + V- Gy 8'(aVQ (V-Q) ) If the line energy is independent §,Q [f,=f,(Q,t)] then
there are no distortion stresses. If the line energy has no
of of T . . . .
s b b )l _8) (430d) anchoring contribution then there are no bending stresses.
dVQ | aVQ ' Here we wish to treat the most general and admissible case.
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The normal stress components, equivalent to pressurg in du [ou\T [dr T
and surface tension ifig, account for the line tensiof8]: as_\ar) lgs/ T (Vu - t=t(Veu), (54)
Tin=+Telee. (47) the extensiore simplifies to
The distortion stress components, equivalent to bulk Erick- ds'—ds d
sen stres$13], are found from a variation oV ,Q at con- e= s - S_ s —1=tt:(V,u), (55)
stantQ andt: ds  ds
af, - _ - from which we can obtain the following equation for
5F€_ o (9V Q 5(V€Q) dé= C“T(d.(Vgu) de dg/ds’:
(- Te):(Vew)Tde= | (Teg-10):(Veu)Tde ds !
e Tl (Ve it ear o) (Ve , do ~ 1re 1 tti(Vu=1-tt:(V.u). (56)

(48)
Differentiatingr’ =r +u with respect tos’ we find the rela-
whereu is the displacement, which displaces a point fromtion betweert andt’:
positionr tor’: r’=r+u. SinceQ’(r',t')=0Q(r,t"), dif-

ferentiation with respect to’ at constant’ gives dr’ dr ds
@Et/ dsds =t[1—tt:(V€u)]+t-V€u
SV, QT==(V, Q- (V)T (49
=t+ (1 +tt)t- (V,u). (57)

and the corresponding distortion stress is
Thus the small change in the tangent vettand the change

Tea=— (éf o (V,Q)T= ( c?(Vf{)Q) (V,Q)T7 in line energy due to displacementare given by
af St=t'—t=(1—-tt)t-(V,u), (583

- all - . T
5F€_fc“ E '&dﬂ—fotngb.(Vgu) de¢

The distortion stress is a normal stre3sg=(l,:T¢q)l¢,

and accounts for tension due to order parameter gradients.
The bending contribution is found from a variation due to :f t|(|€.-|-“));(V€U)Td€_ (58b)
small changes in the unit tangent vector c

af, . From this last result we find that the line bending stress
5F€: fc“ W otde = fctngb :(Vgu) d¢ tensor is

of of
:JCtl(le.Teb):(V(u)Tde. (51 T€b=t(|—tt).Tf:t(perbb).(g_:. (59)

Next we present the non_trivial derivation &f. To coml|.3ute In the principal line framét,p,b) the bending stresE,, has
St we introduce a small displacemanthat moves tor': fwo components:

r’=r-+u. The differentialdr’ is

dr’=dr+du. (52 T€b=(p-aa—ft€ tp+

b )b 60
gl (60)

Using the definitions of arclengthds’?=dr’-dr’ and
ds?=dr-dr, the expression for differential arclengttis’ is ~ The bending stress takes its name because it only(thas
and (tb) components. Collecting results, the totak 3 line

ds'?=ds?+ 2dr - du, (539 stress tensor is given by
ds'=d dr_du 53  T—fil— —_(v,Q)T ( ALY TN PN
S =ds| +d_5d_s ( ) ¢~ tels™ 07(VQ)( €Q) pEp W ’
(61)
ds'—ds dr du du
€= “ds _ds ds t'd_s’ (539  which in component form is
where the symbot is known as the extension. Since Teo=Tiptt + Tihtp+ Tito, (623
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af, aTe
T =f,—tt: (V,Q7, Ttp—p~y, (¥+7Tt}’ +b-

Z v-Tg|+

jun

(k-Tb)d€) =0,
(680

af,
aV.Q)

jun

of 3
fb_ b-—+ (62b) Likewise the components of the line torque balance equa-
tion are

The derivation of the line couple stress tensor is analo-

gous to those of its bulk and surface counterparts and its( gCf -
expression has the same form as theirs: a_+ kC{ | +b- J% v-Cq| +t ff;jun(k'cb)de =0,
af, af, |\ T2 (693
CK_H(?WQJF(&WQ) -Q].a. (63 0
&f( aCy t tb
o . . -b——+——+xC,—7C, | +p- > v C
In the principal line frame the line couple stress tenSer é’t Js jun
becomes
C,=Cltt+CPtp+CPth, CU=tt:C,, fﬁjun(k‘cb)dg) =0, (690
ClP=pt:C,, CP=bt:C,. (64) of, aCtP
(— g TGP+ b > v-CS)
Next we compute the line torqué,. To derive the dual of J J Jun
the line stress tensdr,, we use its formal definition and get
+b (k-Cpde | = (690
(9f€ fg jun
T€X:_8:T€:T€bX: p W b b X p (65)

A number of limiting cases worth enumerating arise when
Thus the line torque vectdr, is given by certain energies are negligible, and when certain geometric
conditions prevail. Below we use the term “isotropic en-
ergy” to denote negligible anchoring and gradient energy.

_ 4l Ity tt tp th L
Uy={p-—-|b={b- 5 |P+ Ve (Citt+ Cltp+Coth). (a) Isotropic line energy
(66)
Using the Frenet-Serret formulas the line torque simplifies to EH'(% v Ts| +t jun(k'Tb)d€)—0, (709
JCY af ctp
= —" tp e, TTe tt_ _~th
Fe=| Gs RGO\ ~b Gp g FrCemTCl)p (Fon) +p:| 35w To| +p- $ n(k-Tb>d€)=o,
ju
of, aCtP o) (70b)
+ p‘W_l—o-'_—}_TC( , (67)
where the contributions of the line anchoring and gradient b- (Jun v-Ts|+b-: jun(k.Tb)d€> =0, (709
energies are made clear.
IIl. BALANCE EQUATIONS FOR NEMATIC t: ( v-Cg|+t jg (k'Tb)d€>:01 (700
TRIPLE LINE PHASES Jun un
More tractable expressions of the force and torque bal-
ance equations are found by projecting them along the prin- p- < v-Cs|+p: jun(k'Cb)de =0, (709
cipal (t,b,p) frame. Projecting the line force balance along
the principal line framet,p,b), we obtain
STt b- ( v-Cs|+b-| @ (k-cb)de):o. (70f)
(J—KT;P [ S v T+t fﬁ (k-Tp)d€ | =0, " 2
Js jun jun . . Lo
(683 In this case all balances at the triple line involve surface and
bulk components.
JTiP (b) Isotropic line and interfacial energies
(—+%Ttt TP +p-| X v Te|+p: (k-Tp)de
d jun jun af(’h
— +t- k-T,)d¢|=0, 71
=0, (68D Js jun( 2 ) (713
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=si{nn—1/3 73
(e o) +p- | 12112 1 pBUFED 4 23523) Q=s7{ ) (73
where s{% minimizes f,,. Thus only orientation contribu-
B tions are taken into account. In addition we further simplify
+ ﬁun(k'Tb)d{‘)) =0, (71b the energies by considering only first order anchoring effects
and use the one-constant approximation in the bulk. The sur-
face energies artl-?=f3V=0f239=23 and
b- ( V(l,Z)f(s}1,2)+ V(S’l)f(s%’l)-f— V(2,3)ff52h,3)|ctl+ . (k~ Tb)d€) g sg S s iso
jun

f(SJHZ):f(l"Z)—’_f(l’Z) f(l,2):"z‘(:ﬂ-i2)(n_g(l,Z))Zy (74@

S ISO s an? s an
=0, (719
GV =100+ fCm, =20 (n 512 (74D
ﬁun(k' Cp)d¢=0. (710 \vhere all scalar order parameter contributions have been ab-

sorbed into the remaining coefficients. Whety/)>0 the

Equation(713 is the lineal Marangoni force balance and Eq. surface energy favors tangential director orientation at the

(71d is the vanishing bulk couple condition. No torques act(jj) interface and whe()) <0 it favors orthogonalhomeo-

on the triple line. Bulk contributions arise on all balances. tropic) orientation at the interface. The favored orientations
(b) Rectilinear triple lines with constant isotropic line and that minimize surface energy are known as the easy axes.

interfacial energies Let (t,p,b) represent an orthogonal Under strong anchoring conditions bulk elastic energy is less

frame, witht along the triple line. Then costly and the director orients along the surface easy axis.
Under weak anchoring conditions surface energy is less

t. ( (k-Tb)d€) =0, (728 costly and bulk distortions are avoided. For systems bounded

jun by different surfaces, hybrid conditions are possible. The

bulk gradient energy in the one-constant approximatiop (

p'(V(l'z)félh'z)JrV(S’l)f(s?r’{l)“LV<2'3)f(szh'3)|ctl+ % (k~Tb)d€) =0) used here is
jun

K T
0, (72b) fog= (VN):(VN)T, (75)

_ 5 -
b.| p12§12 1 ,BDFBD L 23523 o 4; K-T.)de wr_]ergK—ZLlS Is the Fre_mk constant of elasticity. The
(V s H VS o jun( ») principal geometric frame ist(p,b)=(t,»*3 £>%). The

previously defined tangent and normal vectors to the inter-

=0, (729 faces at the triple line ared=— 31 £@3=_ £B1)
The contact angle between the two nematic interfaces at the

% (k-Cp)d€=0. (720 triple line is defined by cos=112. p3=—p(12). 23

jun and sins=¢®2). 23, For simplicity we assume tha};?

=73Y>0, and the easy axis at both surfaces is tangential.
he two representative cases &gweak anchoring ancb)
strong anchoring. Under weak anchoring conditions the role
of interfacial anisotropy on nematic triple lines will be char-
acterized. Under strong anchoring conditions the role of bulk

Obviously the balance equations at the triple line are comlond range elasticity on nematic triple lines will be charac-
plex and full rigorous solutions to specific problems are beferized. _ _ ,
yond the scope of this paper. In this section we wish to show (&) Weak anchoringThe geometry and director field un-
representative effects of anisotropy and long range forces &€" weak anchoring are shown in Fig. 3. Under weak anchor-
triple lines using approximations and simplifications that reniNg conditions, the characteristic thickness of the nematic
der the equations tractable and provide insights on how nenfegion becomes smaller than the extrapolation lergit}’
atic triple lines may differ from isotropic lines. More rigor- and bulk gradients vanish. Thus at finite distané¢es¢
ous treatments will have to be performed in the future.= K/(Z(lliz) tans) the director fieldn is constant and given by
Previous work in the area is found [ih2]. In this section we n-»*?=n.p3Y=cosE/2). Since the director field is con-
present an application of the formalism to a large nematicstant the bulk equations are satisfied. Since we assume that
lens(phase 1bounded by two isotropic phasgshase 2 and surface anchoring is negligible when compared to bulk elas-
phase 3 The triple line is a flat large circle. We assume thatticity, the interfacial equations are satisfied. Thus at the triple
the lower phase 3 is very dense so that the nematic—phasdiie the junction sum of stresses must vanish. In contrast to
interface is flat. We assume constant and isotropic line enersotropic triple lines, the forces that act arise from normal
gies. For a sufficiently large lens we can neglect line curvaand bending stresses. The anchoring energy contributes to
ture. The nematic phase is uniaxial, and the scalar order p&oth normal and bending stresses. The stress sum junction is
rameter is unchanged and equal to its equilibrium value: therefore

In this case no torques and no tangential forces act on t
triple line.

IV. APPLICATIONS
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FIG. 3. Schematic of geometry
and director field in the vicinity of
a nematic triple line under weak
anchoring conditions. The support
bulk phaseR® is assume to be
very dense such that the bottom of
the nematic lens is flat. It is as-

(1 sumed that the director field be-
g2 / ~ R (nematic) comes homogeneous as the triple
' line is approached. Deviation
from parallel surface orientation
in the nematic phaseR(Y) in-
creases the anchoring energy and
introduces bending stresses. Bend-
ing stress forces are normal to the
interface and provide a mecha-
R‘”(isotropic) r_\ism to balance forces in all direc-
tions.

g0

R® (isotropic)

vz

é,f(ll) é,f(ll)
— o (1,2) (12 3,1) £(3.1 23) £(2,3 1,2) £(1,2 3,1 £(3,1) _ 1,2) 05 an 10 31 ) an 3
E V‘TS—V( )fg isl"'”( )fg isl""’( )fg is3)+ v )f(s ;.n+ v )fg a.g o )aé_{l,Z) é I+ )&§(3,1) §( ) 5

jun

v v~
~

normal stress normal stress "
bending stress

(76)

showing that both tangential and normal forces arise throughange of long range bulk elasticity on the contact angle.

anchoring energy effects. Since the triple line coincides with a topological defect of
Thep component of the triple line force balance equationstrengths=+1, the long range effect is contained in the
gives the following generalized Neumann equation: Peach-Koehler forcé™ acting on the triple line:

ff= 100 gcoss FA= & (k-Ty)de (79

S 2 jun
SIn( E)

(coss—1)—sins?}, (77)
showing that the effect of anchoring energy on the conta
angle is due to bending and normal stresses. Usingbthe
component of the force balance equation gitgg)=%,,1
—coss—sin(s/2)?] and shows that the upper-directed force FPK= lim f (1)(k.T<bl>)d€. (80)
due tof{%:2 is balanced by the downward anchoring force 516" s
714 1—coss—sin(s/2)?]. Combining the horizontal and ver- . . _ . . . .
tii:jgl balan::es yi(zld)g(]z,g):f(g,l)Jr;Lw C0Ss—5—C0ss?)/4, Likewise, the junction couple integral at the triple line be-

- . “siso s iso ] ’ comes
showing that in this case anchoring increases the contact

angle. Partial wetting occurs whenever

+7ll

Since we are using a director model in which a topological
defect is singular we introduce a cutoff radiysof the size
Cbt the defect core and define the force by

k-C d€=|imj k-CV)de. 81
0< 1P 128, 8 L
showing that the upper threshold is a function of anchorindJsing theQ tensor model there is no need to introduce a
strength. Finally, the triple line torque balance equation iscutoff since the topological defect becomes nonsingular. Also
satisfied by the assumed constant director field. noncircular cores may introduce second order effects ne-
(b) Strong anchoringThe geometry and director field un- glected here.

der strong anchoring are shown in Fig. 4. Here we are con- We use a cylindrical coordinate system¢,z) attached
cerned with a nematic wedge with a pure splay distortion irto the triple line, with unit vectors & ,ds,48,) where ¢ is

the proximity of the triple line, and wish to establish the measured from®Y. The unit vector along the triple line is
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FIG. 4. Schematic of geometry
and director field in the vicinity of
a nematic triple line under strong
anchoring conditions. The support
bulk phaseR® is assumed to be
very dense such that the bottom of
g - R"(nematic) the nomadic lens is flat. It is as-

sumed that the director field has a
pure splay as the triple line is ap-
proached. The pure splay in-
creases the bulk long range energy
and produces a Peach-Koehler
force that acts along the bisector
and is directed away from the
nematic phase.

R® (isotropic)

R® (isotropic)

&(3,1)

t=—6,, andk= 4, . In the cylindrical coordinate system the

directozr field is F;Ianarn=()(/:osa,sin0,0). In the gulk the p'(”(l’z)f(sl’i?oJr vV 22
director angle satisfie¥26=0. A radially independent solu-
tion is #= ¥ and the corresponding bulk free energy density
is fgzK/2r2. The corresponding stress vectiorT, com-
puted using Eq(75) is purely radialk-T,=K/(2r?)é, and
the corresponding stress couple vedto€,, computed using
Eq. (75) is equal to zero. The junction integrals therefore are

K
= 5 [sins ¥3 4+ (1- COS§)§(2'3)]) =0,
C

(84b)

R

0
F<PK>=f (k-Tp)lr redd
S

K
— —[sing ¥®V+(1— c03g)§<2'3>]) =0.

K 2r.
= —[—sins¥®*Y+(coss—1)£*?], (823
2r (849
#{ (k-Cy)d€ =0, (82b) The horizontal projection leads to
jun
K
indicating the presence of horizontal and vertical forces and fih2, coss +f e~ f23— 2r, sing=0 (89

absence of torques. The forE8X acts along the bisector and

away from the nematic phase: and shows that the long range force increases with contact

angle and is directed away from the nematic phase. The ver-

FPK=2£[—sin; p3D 4 (coss—1)£23] tical projection leads to
r‘C
K S S S (1,2 i K _
__ r—sin E) CO{ E) V(3’1)+Sin 5) §(2'3)} (83) fs iso SINs — Z—rc(l—COSG)—O (86)
c

The presence of a downward vertical force eliminates thénd shows that the long range force increases with contact
inconsistency that arises when using the Young-Neumangngle, and how the surface tension force is balanced by the
contact angle equation and the supporting material is considong range Peach-Koehler for¢28]. Combination of both
ered rigid and inelastif9]. In that case the vertical forces are force balances leads to

unbalanced. In the present model long range elasticity pro-

vides a balancing force to capillary forces. The components K .
9 piifary P fA 4+ (f3D —£23) coss— =— sing=0. (87

of the force balance equations at the triple line then become 2r,
t. (k-Tp)de€ | =0 (843 The partial wetting limits are thus independent of long range
jun ' effects:
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(51@0 tion sums of interfacial stresses and torques and junction
_ 1<m< 1, (89 integrals of bulk stresses and torques are the lineal analogs of
S IsOo S IS

the well-known interface jumps of bulk stresses and torques.
In the absence of gradient energies the equations are shown
to reduce to the classical Neumann force balance at a fluid
triple line. The structure of the force balance equations in

and the contact angle for partial wetting is

s KI2ro+(K/2r)2—[(f12)2— (123 - 132)2)

tan— — S IS0 siso s iso terms of bulk, surface, and line stresses and torques is shown
2 (f(sl’i?O —(f(sz‘ig)o—f(ss’ég) to follow from their dimensionality. A Landau—de Gennes

(89) free energy density for nematic lines is derived and used to
formulate line stress and line torque equations. The nature of
line stresses and line torque equations is revealed by identi-
fying normal, distortion, and bending components. Normal
line stresses are 1D analogs of pressure in 3D and surface
tension in 2D, line distortion stresses are 1D analogs of the
Ericksen stresses in 2D and 3D, and line bending stresses are
1D analogs of surface bending stresses in 2D. Similarly, the

correspondence between lineal, areal, and bulk torques is es-

If (fED—£23)=0 there is partial wetting driven by long
range elasticity if
212y

- 1<3Tis°<1 (90)

and the contact angle is

2 f(l’z) tablished.
sing= L"rc (92) Projection of the balance equations along the Frenet-
K Serret triple line frame shows which of the stress and torque

S . components balance in the principal frame. Applications of
The one-constant approximation in the bulk gradient énergyhe model to the contact angle of a nematic lense between

eliminates a number of effects that may be present when thg,, fiyids show that interfacial anchoring and bulk gradient
anchoring conditions are of the hybrid type, involving splay gnergy modify the classical results. Under weak anchoring
and bend. In addition, cases with escaped cores or NoNcircye main effect on the triple line is due to interfacial anchor-

lar cores may reduce or change the nature of the long rangRy (anisotropy effects, while under strong anchoring the

forces. main effects on the triple line are due to bulk long range
contributions. Lack of force balance at a triple line due to
lack of long range forces and anisotropic effects is removed
aland a consistent formulation is shown to emerge. More rig-

The Landau—de Gennes model for nematic liquid cryst licati f the bal : I h
bulk and interfaces has been extended to nematic triple line rous app ications of the balance equations as well as other

involving the intersection of two isotropic and one nematic'"® free energies of nematic contact lines will predict a
phase. A complete set of bulk, interface, and triple line forcd 219€ of other phenomena not discussed here.

and torque balance equations has been formulated using a
systematic approach that takes into account homogeneous
and long range bulk, surface, and line energies. Force and This work was supported by a grant from the Donors of
torque balances at the triple line contain lineal, interfacial, The Petroleum Research FuBRP administered by the
and bulk contributions. The interfacial contributions at theAmerican Chemical Society. This research was supported in
triple line appear as junction sums, while the bulk contribu-part by the National Science Foundation under Grant No.
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