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Improved simulation method for the calculation of the elastic constants of crystalline
and amorphous systems using strain fluctuations
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In this paper, a method is proposed for calculating the elastic constants of arbitrarily soft or stiff systems
using strain fluctuations. For stiff materials, for example, strain fluctuations may be enhanced by appropriate
choice of elastic constants for the bath. Example calculations of the isothermal elastic constants of the nearest-
neighbor Lennard-Jones fcc crystal demonstrate improved convergence properties over standard techniques.
Elastic constants for a model amorphous polymer system are also presented.
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I. INTRODUCTION

The elastic constants are an important property of a
terial. Significant effort has therefore been devoted to th
calculation in anisotropic~crystalline! solids using molecular
simulations@1–4#. Less work has been aimed at simulati
the elastic properties of amorphous polymer glasses. Di
application of the molecular simulation techniques dev
oped for crystalline solids becomes difficult for these sof
materials.

The isothermal elastic constant tensor can be express
terms of the thermal strain fluctuations at zero applied st
@5# according to

Ci jkl 5
kBT

V0
@^e i j ekl&2^e i j &^ekl&#21, ~1!

wheree i j is the strain tensor,kB is Boltzmann’s constant,T is
the temperature, andV0 is the average volume. The indice
represent the Cartesian coordinates in three dimensions
run from 1 to 3. The strain tensor is given by

e i j 5
1

2
@^h̃& ik

21Gkl^h& l j
212d i j #. ~2!

If a, b, andc are the principal axes of the simulation bo
then hi j 5$a,b,c% i j ~the so-called the scaling matrix! de-
scribes its size and shape. The matrix^h& i j describes the
reference box and̂h̃& i j

21 is the inverse of the transpose

^h& i j . The metric tensor is defined asGi j 5h̃ikhk j . Summa-
tion over repeated indices is implied.

In terms of the fluctuations in stress and strain, the i
thermal elastic constant tensor@6# is given by

Ci jkl 5^e i j spq&^eqpekl&
21, ~3!

where the stress tensor iss i j 52(Pi j 2P0d i j ) and the pres-
sure tensor is given by

Pi j 5
1

V F(
a

pa i
pa j

/ma2 (
b.a

r ab
21uab8 r ab i

r ab j G . ~4!

The potential energy between interaction sitesa and b is
denoted byuab , r ab is the distance between them,pa and
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ma are the momentum and mass, respectively, of sitea, and
the prime indicates a derivative with respect tor ab . Equa-
tion ~3! has been shown@6# to have improved convergenc
properties over Eq.~1!.

The derivation of Eqs.~1!–~3!, using theory of linear elas
ticity assumes small strain values and small strain fluct
tions. Small thermal strain fluctuations are typically encou
tered in stiff, low-temperature solids such as crystals.
stiff materials, these small strain fluctuations can hinder
equate sampling of accessible strain values, thus reducing
precision of the averages in the fluctuation formulas. Alt
natively, the presence of large thermal strain fluctuations a
material becomes softer limits the use of the above lin
theory. In this paper, we present a simulation technique
facilitates fast and accurate calculation of the elastic c
stants of anisotropic and/or amorphous materials from m
lecular simulations.

II. SIMULATIONS

Configurations of interest are generated in the isotherm
isostress-isobaric (N-s-T) ensemble using a simple Me
tropolis Monte Carlo method. One Monte Carlo move co
sists of a sequence of random attempts to displace all
particle positionsr a , and the scaling matrixhi j . Trial con-
figurations are accepted with the following probability:

Ptrans5min$1,exp~2DH/kBT!%, ~5!

whereDH is the change in enthalpy associated with the d
placement. The enthalpy change is given by

DH5DU1P0DV2NkBTln~Vnew/Vold!1V0s i j De j i ,
~6!

whereDU is the change in energy of the proposed move,P0
is the external pressure,DV5Vnew2Vold is the change in
volume, V05det(̂ h&) is the volume of the reference stat
and N is the number of particles. The change in strain
De i j 5e i j

new2e i j
new. Random displacements of each eleme

in hi j are generated according to

hi j
new5hi j

old1Dhmax~2j i j 21!, ~7!
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whereDhmax is the maximum allowed displacement of a
element ofhi j , andj i j is a random number uniformly dis
tributed between 0 and 1. In order to prevent rotations of
simulation box, we impose the constraint thathi j 5hji .

III. ELASTIC BATH METHOD

For small strains, the strain energy per unit volume o
deformed system can be written in general as

Ês5
1

2
Ci jkl e lke j i . ~8!

For an isotropic material, the strain energy per unit volu
@7# is given by

Ês5
1

2
le i i

2 1me i j
2 , ~9!

wherel andm are theLamécoefficients. If we immerse the
system in an elastic bath with appropriately chosen ela
constants, we can amplify~or attenuate! thermal strain fluc-
tuations. By using an appropriate choice of elastic bath,
can control the strains that are subsequently used in Eq.~1!.
To do this, we include the strain energy of the elastic b
from either Eq.~8! or Eq. ~9! in the Monte Carlo acceptanc
criteria. Equation~6! then becomes

DH5DU1P0DV2NkBTln~Vnew/Vold!1V0s i j De j i 1DEs
b ,

~10!

whereDEs
b is the change in energy of the elastic bath. Us

Eq. ~8!, DEs
b can be written as

DEs
b5

1

2
V0Ci jkl

b @e lk
newe j i

new2e lk
olde j i

old#, ~11!

whereCi jlk
b is the chosen elastic constant tensor of the ela

bath. Because the elastic bath is only a mathematical c
struction, we are free to choose anyCi jkl

b , including non-
physical values, i.e., less than zero. The simulation is t
carried out as outlined above, and the elastic constants o
material including the elastic bath,Ci jkl

t , can be calculated
using Eq.~1!. To recover the elastic constant tensor of t
system of interest, we use the continuum theory of lin
elasticity of composites with uniform strain fields to arrive

Ci jkl 5Ci jkl
t 2Ci jkl

b . ~12!

Note that the volume fraction of both the elastic bath and
system of interest is unity.

At all times the elastic bath and the system of inter
have identical strains, and both take as their reference s
e i j

0 50. Therefore the equilibrium state for the combined s
tem will also be the reference state,e i j

0 50. The addition of
the strain energy of the bath, Eq.~8!, would apply an addi-
tional effective average stress to the system. This additio
applied stress is zero on average with this choice of refere
state, i.e.,
01150
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b 5Ci jkl

b e lk
0 50. ~13!

If the elastic constants of the bath are too large, poor s
pling of relevant phase space will reduce the accuracy of
fluctuation formula, Eq.~1!. The elastic bath method is mos
useful for very soft or very stiff systems. In these cases,
appropriate choice ofCi jkl

b is always available, i.e., of orde
210 to 10.

By adding a term to the energy expression, Eq.~8!, this
approach follows in the spirit of umbrella sampling@8# or
extended Hamiltonian@9# simulation techniques. In this
method, the additional term depends on the strain tenso
the system, and not explicitly on the particle positions. O
erwise, our approach should simply be viewed as a stand
umbrella method for mechanical constants.

IV. FCC CRYSTAL

To verify the above procedure, we employ the previou
studied first-nearest-neighbor Lennard-Jones fcc cry
model @2,4,10–13#. The system consists of 500 particles a
ranged in an fcc crystal at an isotropic pressure of 0 Pa.
simulations in this study were performed in theN-s-T en-
semble. All components of the applied stress tensor,s i j ,
were set to zero for all simulation runs. Reported elas
constants are expressed in dimensionless Lennard-J
units, and are represented using the Voigt matrix notat
@14#. For fcc systems, there are three groups of nonze
independent elements of the elastic constant matrix

C115C225C33,

C125C135C23, ~14!

C445C555C66.

The average value of each group is given by^Ci j &.
In Fig. 1, we shoŵ C11&, ^C12&, and^C44& as a function

of temperature calculated using Eq.~1!. Each simulation was
equilibrated for 2.53106 Monte Carlo~MC! steps. The en-
semble averages were then computed from an addition
3106 MC steps. Two different strengths of the elastic ba
were used by setting the Lame´ coefficients of the bath to
lb5mb50 and lb5mb510. Ci j

b is expressed in terms o
the Lamécoefficients asC11

b 52mb1lb, C12
b 5lb, andC44

b

5mb. For each temperature belowT50.225, an additional
set of Lame´ coefficients, namelylb5mb5210, was also
used. There is excellent agreement between all sets of d
Table I lists the isothermal elastic constants in units
NkBT/V for three temperatures for comparison with liter
ture data@6#. Values of the elastic constants for all three s
of the bath coefficients agree well with available data.

Whenmb5lb50.0, Eq.~10! reduces to Eq.~6! and cor-
responds to the usual strain fluctuation technique, i.e., w
out an elastic bath. AtT50.01, the thermal strain fluctua
tions are extremely small, and the convergence of^C11& from
Eq. ~1! is slow @Fig. 2~a!#. The convergence of̂C11& is also
slow at this temperature when using Eq.~3! @Fig. 2~b!#.
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Whenmb5lb510, the system is immersed in a positiv
stiffness, isotropic elastic bath. In this case, the compo
system is ‘‘stiffer’’ than in the previous case, and the stra
due to thermal fluctuations are attenuated. Using Eq.~12!,
we obtain the correct elastic constants from Eq.~1!, as shown
in Table I and Fig.~1!.

With mb5lb5210, the system is immersed in
negative-stiffness elastic bath. Now, the overall compo
material is softer than in the absence of the bath. Using

FIG. 1. The elastic constants of the fcc crystal as a function
temperature: (h) zero elastic bath, (n) positive elastic bath, and
(,) negative elastic bath. All values are shown in dimensionl
units of e/s3.
01150
te
s

e
q.

~1! and Eq.~12! with Ci j
b as before, we recover the corre

elastic constants as shown in Table I and Fig. 1. In this ca
the strain fluctuations are amplified and the convergence
Eq. ~1! is improved. Figure 2~c! shows that the value o
^C11& converges to within a few percent of the correct val
almost immediately when a negative bath is applied. Tab
shows that atT50.125, the accuracy of the calculation
improved when negative Lame´ coefficients are used for th
elastic bath. Results are not provided forT50.225 andT
50.3 because at these higher temperatures, the comp

f

s

FIG. 2. Convergence of̂C11& for the fcc crystal atT50.01. ~a!
Using Eq.~1! with zero elastic bath.~b! Using Eq.~3! with zero
elastic bath.~c! Using Eq.~1! with negative elastic bath.
TABLE I. Values of the elastic constants of the fcc crystal~in units of NkBT/V) calculated from Eq.~1!
for three different sets of Lame´ coefficients of the elastic bath. Data from the literature@6# are shown in the
last column~NA stands for not available!.

T ^Ci j & m50,l50 m510,l510 m5210,l5210 Ref.@6#

^C11& 491.561.4 494.263.6 489.560.8 490.660.8
0.125 ^C12& 235.161.3 236.760.9 233.960.4 234.460.3

^C44& 249.561.0 249.660.8 249.060.4 248.560.7
^C11& 236.960.5 238.860.3 235.061.0

0.225 ^C12& 108.060.3 110.361.7 NA 108.460.7
^C44& 121.760.6 121.661.2 121.060.2
^C11& 157.060.5 157.660.4 155.360.6

0.300 ^C12& 69.060.2 69.360.5 NA 68.160.3
^C44& 82.060.3 82.560.2 80.660.4
5-3
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system becomes mechanically unstable with this choice
Lamécoefficients for the elastic bath.

Care must be taken when choosing appropriate values
the elastic constants of the bath. Figure 3 shows the per
deviation of^C44& for the fcc crystal atT50.125 as a func-
tion of the strength of the elastic bath. The percent devia
is defined as

D5
^C44&2^C44&lb50

^C44&lb50

3100. ~15!

For all values of the elastic bath, the correct average is
tained. However, if the composite system becomes too s
the strain fluctuations are reduced and the convergence
accuracy of the resulting elastic constants are decreased~the
errors are larger!. Deviations of less than 2% occur fo
lb,mb.150. If the composite system becomes too soft,
strains due to thermal fluctuations may grow so large that
use of Eq.~1! may become inappropriate. The system m
also become mechanically unstable with an inappropr
choice for the elastic constants of the immersing bath.
this system at these conditions, this happens withlb,mb

,212. Note that the useful range of appropriate values
the elastic bath will depend on the particular system un
study.

V. AMORPHOUS POLYMER

In this section we apply the above methods to a so
glass, namely, a model polymer system as it approach
glass transition. Our polymer model consists of linear cha
of 16 Lennard-Jones interaction sites connected by harm
springs. The interaction potential is truncated atr 52.5s.
Each simulation box contains 56 chains and the usual p
odic boundary conditions are used. All simulations are c
ried out at an external pressure of 2.0 in units of«/s3.

In order to use the methods outlined above, the zero-st
reference state must first be calculated. To do this, the p
mer system is equilibrated in theN-P-T ensemble at each
temperature in order to relax any nonisotropic stresses.
reference box shape,^hi j &, is subsequently chosen to corr

FIG. 3. The percent deviation of^C44& for the fcc crystal as a
function of the strength of the elastic bath in units ofe/s3. Here the
choicelb5mb is taken for convenience.
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spond to the average equilibrium density at each temp
ture. Figure 4 shows the density as a function temperature
the model polymer system. An apparent glass transition t
peratureTg is often assumed to correspond to the tempe
ture at which the slope of the density changes, hereTg
.0.5.

Simulations are then conducted in theN-s-T ensemble at
an external pressure of 2.0 with zero applied stress,s i j 50.
Figure 5 shows one component of the strain tensor,e33, as a
function of MC steps atT50.8 with and without the effect of
an elastic bath. For the elastic bath,mb550 andlb550 are
as in Eq.~9!.

The magnitude of the strains can be as high as 0.1 w
no elastic bath is used. Furthermore, the scaling matrixhi j
can drift significantly from the reference state during t
course of the simulation. When an adequate, strong ela
bath is used, the magnitude of the strains can be reduce
less than 0.05, well within the limit of small strains implie
in Eqs. ~1! and ~3!. The drift of the scaling matrix is also
eliminated.

Figure 6 shows the contribution of the polymer to t
composite’s Young’s modulus (DE) as a function of tem-
perature using an isotropic elastic bath withmb550 andlb

550. The Young’s modulus is given by

FIG. 4. Density as a function of temperature for the mod
amorphous polymer.

FIG. 5. One component of the strain tensor,e33, vs MC step for
the amorphous polymer atT50.8 with and without the elastic bath
5-4
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E5
~3l12m!m

l1m
, ~16!

wherel andm are the isotropic Lame´ coefficients. Interest-
ingly, a sharp decay ofDE is observed precisely in the tem
perature range where the density changes slope (T50.5). As
the material undergoes a glass transition, the contributio
the polymer to the composite’s modulus exhibits a sharp
cay, thereby providing a useful mechanical diagnosis to id
tify or characterize glass transition phenomena by simu
tions.

FIG. 6. Contribution of the polymer to the Young’s modulus
a function of temperature.
01150
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-

VI. CONCLUSION

We have presented a simulation method that facilita
calculation of the elastic constants of anisotropic or am
phous materials. This was achieved by immersing the sys
in a perfectly elastic bath, thereby creating an ideal comp
ite material whose properties can be tuned artificially. W
demonstrated the use of the method by simulating the w
known Lennard-Jones fcc crystal and showed that, relativ
previous work, the method improves convergence proper
at low temperature when a negative elastic bath is used.
also applied our method to a model polymer system a
examined the behavior of the Young’s modulus of the res
ing composite belowTg . This method can provide a usefu
framework to characterize the mechanical behavior of gla
forming systems upon vitrification. Because the evaluat
of forces is not required, this method is also useful for s
tems in which the calculation of stresses is difficult or tim
consuming. Studies of the elastic moduli of a binary gla
will be presented in a future paper.
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