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Improved simulation method for the calculation of the elastic constants of crystalline
and amorphous systems using strain fluctuations
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In this paper, a method is proposed for calculating the elastic constants of arbitrarily soft or stiff systems
using strain fluctuations. For stiff materials, for example, strain fluctuations may be enhanced by appropriate
choice of elastic constants for the bath. Example calculations of the isothermal elastic constants of the nearest-
neighbor Lennard-Jones fcc crystal demonstrate improved convergence properties over standard techniques.
Elastic constants for a model amorphous polymer system are also presented.
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I. INTRODUCTION m,, are the momentum and mass, respectively, of gjtand
the prime indicates a derivative with respectrtg;. Equa-
The elastic constants are an important property of a mation (3) has been show[6] to have improved convergence
terial. Significant effort has therefore been devoted to theiproperties over Eq(1).
calculation in anisotropi¢crystalline solids using molecular The derivation of Eq91)—(3), using theory of linear elas-
simulations[1—4]. Less work has been aimed at simulating ticity assumes small strain values and small strain fluctua-
the elastic properties of amorphous polymer glasses. Diredions. Small thermal strain fluctuations are typically encoun-
application of the molecular simulation techniques develtered in stiff, low-temperature solids such as crystals. For
oped for crystalline solids becomes difficult for these softerstiff materials, these small strain fluctuations can hinder ad-
materials. equate sampling of accessible strain values, thus reducing the
The isothermal elastic constant tensor can be expressed jmecision of the averages in the fluctuation formulas. Alter-
terms of the thermal strain fluctuations at zero applied stressatively, the presence of large thermal strain fluctuations as a
[5] according to material becomes softer limits the use of the above linear
theory. In this paper, we present a simulation technique that
facilitates fast and accurate calculation of the elastic con-
Ciji = [<5|15kl> <Eu><fkl>] @ stants of anisotropic and/or amorphous materials from mo-
lecular simulations.
wheree;; is the strain tensokg is Boltzmann's constant, is
the temperature, and, is the average volume. The indices
represent the Cartesian coordinates in three dimensions and
run from 1 to 3. The strain tensor is given by Configurations of interest are generated in the isothermal-
isostress-isobaricN-o-T) ensemble using a simple Me-
%) tropolis Monte Carlo method. One Monte Carlo move con-
sists of a sequence of random attempts to displace all the
particle positions ,, and the scaling matrik;; . Trial con-
If &, b, andc are the principal axes of the simulation box, figurations are accepted with the following probablhty
then h;;={a,b,c};; (the so-called the scaling matyixde-
scribes its size and shape. The maifh;; describes the Porans= Min{1,exg — AH/kgT)}, (5)

reference box an«jﬁ)i} ! is the inverse of the transpose of
(h)ij . The metric tensor is defined &; = kth Summa- whereAH is the change in enthalpy associated with the dis-

II. SIMULATIONS

1
€j :§[<h>ﬁ<lel<h>ﬁl_ Sijl.

tion over repeated indices is implied. placement. The enthalpy change is given by
In terms of the fluctuations in stress and strain, the iso-
thermal elastic constant tengd] is given by AH=AU+PyAV—NKgTIn(V"®Vh + Voo A€,
. ®)
Cijia =€) 0pe){ €gpe) ()

whereAU is the change in energy of the proposed md¥g,

is the external pressureyV=V"®"—V°¢ js the change in

volume, Vy=det((h)) is the volume of the reference state,

and N is the number of particles. The change in strain is

P> Pa;Pa; /Ma— > r;gu;l;ra,gira,gi - (4 Aej=e"— )", Random displacements of each element
“ p>a in h;; are generated according to

where the stress tensordg; = — (P;; — Py d;;) and the pres-
sure tensor is given by

The potential energy between interaction sitesand B is e old
denoted byu,, T, is the distance between them, and hij "= hij"+ Ahpad 26, — 1), )
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where Ah,.« is the maximum allowed displacement of an Uﬁzcﬁklfﬂ(:o_ (13
element ofh;;, and §;; is a random number uniformly dis-

tributed between 0 and 1. In order to prevent rotations of thef the elastic constants of the bath are too large, poor sam-

simulation box, we impose the constraint thgt= h;; . pling of relevant phase space will reduce the accuracy of the
fluctuation formula, Eq(1). The elastic bath method is most
Ill. ELASTIC BATH METHOD useful for very soft or very stiff systems. In these cases, an

appropriate choice (ﬁ:ibjk| is always available, i.e., of order

For small strains, the strain energy per unit volume of a

deformed system can be written in general as ~101010. . .
By adding a term to the energy expression, B, this
1 approach follows in the spirit of umbrella samplifg] or
Es=5 Cijui €ik€ji - (8)  extended Hamiltoniar[9] simulation techniques. In this

2 method, the additional term depends on the strain tensor of

F SOtrODi terial. the strai it vol the system, and not explicitly on the particle positions. Oth-
[Y?risagii/sgnrgglc material, the strain energy per unit vo umeerwise, our approach should simply be viewed as a standard

umbrella method for mechanical constants.

.1
Es=§7\€ﬁ + Meizj , 9) IV. FCC CRYSTAL

. . _ To verify the above procedure, we employ the previously
where\ andu are theLamecoefficients|f we immerse the gy gied first-nearest-neighbor Lennard-Jones fcc crystal
system in an elastic bath with appropriately chosen elastig,qel[2,4,10-13. The system consists of 500 particles ar-
constants, we can amplifior attenuatethermal strain fluc- yange in an fec crystal at an isotropic pressure of 0 Pa. Al
tuations. By using an appropriate choice of elastic bath, Wg;yjations in this study were performed in tNeo-T en-
can control the strains that are subsequently used iINBJ. gemple. All components of the applied stress tensgy,

Rvere set to zero for all simulation runs. Reported elastic
constants are expressed in dimensionless Lennard-Jones
units, and are represented using the Voigt matrix notation
[14]. For fcc systems, there are three groups of nonzero,
independent elements of the elastic constant matrix

from either Eq.(8) or Eg.(9) in the Monte Carlo acceptance
criteria. Equation6) then becomes

AH=AU+PoAV—NKgTIn(V""VO% + Voo A€+ AES,

(10)
whereA E'sJ is the change in energy of the elastic bath. Using C11=C2=Cas,
Eq. (8), AE? can be written as
C12=C13=Cpg, (14
1
AE=5VoCij [ elic "€~ efy efi”]. (1) Cas=Cec=Ces.

whereCibjIk is the chosen elastic constant tensor of the elastidhe average value of each group is given(iy;).
bath. Because the elastic bath is only a mathematical con- In Fig. 1, we show(C,y), (C1,), and(Cys) as a function
struction, we are free to choose aﬁyjkl , including non-  of temperature calculated using Ed). Each simulation was
physical values, i.e., less than zero. The simulation is thegquilibrated for 2.5 10° Monte Carlo(MC) steps. The en-
carried out as outlined above, and the elastic constants of trgemble averages were then computed from an additional 5
material including the elastic batig);,, , can be calculated < 10° MC steps. Two different strengths of the elastic bath
using Eq.(1). To recover the elastic constant tensor of thewere used by setting the Lammefficients of the bath to
system of interest, we use the continuum theory of lineah= =0 and\=u°=10. C} is expressed in terms of
elasticity of composites with uniform strain fields to arrive atthe Lamecoefficients a<C8,=2u°+\P, C5,=\P, andC},
= uP. For each temperature beloW=0.225, an additional
Cijt =Clja— Cl - (12 set of Lamecoefficients, namely\"= = —10, was also
ijkl ijkl ijkl ) M )
used. There is excellent agreement between all sets of data.
Note that the volume fraction of both the elastic bath and theraple | lists the isothermal elastic constants in units of
system of interest is unity. NkgT/V for three temperatures for comparison with litera-
At all times the elastic bath and the system of interesture datg6]. Values of the elastic constants for all three sets
have identical strains, and both take as their reference statgf the bath coefficients agree well with available data.
eioj =0. Therefore the equilibrium state for the combined sys- When x°=\"=0.0, Eq.(10) reduces to Eq(6) and cor-
tem will also be the reference staté}zo. The addition of responds to the usual strain fluctuation technique, i.e., with-
the strain energy of the bath, E@), would apply an addi- out an elastic bath. AT=0.01, the thermal strain fluctua-
tional effective average stress to the system. This additionalons are extremely small, and the convergencgyf) from
applied stress is zero on average with this choice of referendgg. (1) is slow[Fig. 2@@]. The convergence dfC,) is also
state, i.e., slow at this temperature when using Eg) [Fig. 2b)].
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) ) FIG. 2. Convergence gfC,,) for the fcc crystal aff =0.01. (a)
FIG. 1. The elastic constants of the fcc crystal as a function Osting Eq.(1) with zero elastic bath(b) Using Eq.(3) with zero

temperatur_e: Q) zero elastic bath,A) positive ela_s,tic_bath, _and elastic bath(c) Using Eq.(1) with negative elastic bath.
(V) negative elastic bath. All values are shown in dimensionless

units of e/ o®.
(1) and Eq.(12) with Cf} as before, we recover the correct

When u°=\P=10, the system is immersed in a positive- elastic constants as shown in Table I and Fig. 1. In this case,
stiffness, isotropic elastic bath. In this case, the compositéhe strain fluctuations are amplified and the convergence of
system is “stiffer” than in the previous case, and the strainsEq. (1) is improved. Figure @) shows that the value of
due to thermal fluctuations are attenuated. Using @8), (Ci,) converges to within a few percent of the correct value
we obtain the correct elastic constants from @9, as shown almost immediately when a negative bath is applied. Table |
in Table | and Fig.(1). shows that aff=0.125, the accuracy of the calculation is

With uP=\"=-10, the system is immersed in a improved when negative Lanepefficients are used for the
negative-stiffness elastic bath. Now, the overall compositeelastic bath. Results are not provided fb+0.225 andT
material is softer than in the absence of the bath. Using Eg=0.3 because at these higher temperatures, the composite

TABLE |. Values of the elastic constants of the fcc crystalunits of NkgT/V) calculated from Eq(1)
for three different sets of Lamepefficients of the elastic bath. Data from the literafi§kare shown in the
last column(NA stands for not availabje

T (Cyj) p=0A=0 w=101=10 pu=—10A=-10 Ref.[6]
(Cyp) 4915+1.4 494.2-3.6 489.5-0.8 490.6-0.8
0.125 (Cyo) 235.1+1.3 236.7-0.9 233.9-0.4 234.40.3
(Caa 249.5+1.0 249.6-0.8 249.0-0.4 248.5-0.7
(Cyp) 236.9+0.5 238.8-0.3 235.0-:1.0
0.225 (C12) 108.0-0.3 110.3-1.7 NA 108.4-0.7
(Caa 121.7+0.6 121.6-1.2 121.0:0.2
(C11) 157.0-0.5 157.6-0.4 155.3-0.6
0.300 (C1) 69.0+0.2 69.3-0.5 NA 68.1:0.3
(Caa 82.0+0.3 82.5-0.2 80.60.4
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FIG. 3. The percent deviation dfC,,) for the fcc crystal as a FIG. 4. Density as a function of temperature for the model

function of the strength of the elastic bath in unitset=. Here the amorphous polymer.
choicerP= uP’ is taken for convenience.

system becomes mechanically unstable with this choice ofPond to the average equilibrium density at each tempera-
Lame coefficients for the elastic bath. ture. Figure 4 shows the density as a function temperature for
Care must be taken when choosing appropriate values féhe model polymer system. An apparent glass transition tem-
the elastic constants of the bath. Figure 3 shows the perceRETatureTy is often assumed to correspond to the tempera-
deviation of(C,,) for the fcc crystal af =0.125 as a func- turé at which the slope of the density changes, hge

tion of the strength of the elastic bath. The percent deviatiori=0-5- . )
Simulations are then conducted in tNeo-T ensemble at

is defined as
an external pressure of 2.0 with zero applied stregss 0.
(Caz)—(Cadroo Figure 5 shows one component of the strain tensgy, as a
= % 100. (15  function of MC steps af = 0.8 with and without the effect of
(Caahrb=o0 an elastic bath. For the elastic bajt,=50 and\"=50 are
as in Eq.(9).

F(_)r all values of t_he elastic bat_h, the correct average is ob-"r o magnitude of the strains can be as high as 0.1 when
tained. However, if the composite system becomes too st|ffh elastic bath is used. Furthermore, the scaling mésgix
the strain fluctuations are reduced and the convergence ang ' ' 9 !

. X can drift significantly from the reference state during the
accuracy of the resulting elastic constants are decrgésed ) . .

L2 course of the simulation. When an adequate, strong elastic
errors are larger Deviations of less than 2% occur for

AP, 10> 150. If the composite system becomes too soft, th bath is used, the magnitude of the strains can be reduced to

qess than 0.05, well within the limit of small strains implied

strains due to thermal fluctuations may grow so large that thgen Egs. (1) and (3). The drift of the scaling matrix is also

use of Eq.(1) may become inappropriate. The system may . i ted

also become mechanically unstable with an inappropriate Figure 6 shows the contribution of the polymer to the

choice for the elastic constants of the immersing bath. FOEOm osite’s Youna's modulu ) as a function of tem-
this system at these conditions, this happens wifhu® P 9 SAE

> ) erature using an isotropic elastic bath wjitA=50 and\”
< —12. Note that the useful range of appropriate values OE 50. The Young's modulus is given by

the elastic bath will depend on the particular system under

study.
0.08
V. AMORPHOUS POLYMER 006  zero elastic ba]h\
In this section we apply the above methods to a softer E‘% 0.04
glass, namely, a model polymer system as it approaches a £
glass transition. Our polymer model consists of linear chains g ‘1
of 16 Lennard-Jones interaction sites connected by harmonic & Lt Lt 2% &
springs. The interaction potential is truncatedrat2.50. < Y
Each simulation box contains 56 chains and the usual peri- £ ]
odic boundary conditions are used. All simulations are car- -0.04 positive elastic bath
ried out at an external pressure of 2.0 in unite6é>.
i - -0.06 . . . .
In order to use the methods outlined above, thg zero-stress 0 Tor5 2015 3015 4015 505
reference state must first be calculated. To do this, the poly- MC Steps

mer system is equilibrated in the-P-T ensemble at each
temperature in order to relax any nonisotropic stresses. The FIG. 5. One component of the strain tensag, vs MC step for
reference box shapéh;;), is subsequently chosen to corre- the amorphous polymer at=0.8 with and without the elastic bath.
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50 r . T T VI. CONCLUSION

We have presented a simulation method that facilitates
calculation of the elastic constants of anisotropic or amor-
phous materials. This was achieved by immersing the system
in a perfectly elastic bath, thereby creating an ideal compos-
ite material whose properties can be tuned artificially. We
. ] demonstrated the use of the method by simulating the well-
known Lennard-Jones fcc crystal and showed that, relative to
. ] previous work, the method improves convergence properties

. at low temperature when a negative elastic bath is used. We
Cea, also applied our method to a model polymer system and
' examined the behavior of the Young’s modulus of the result-
ing composite belowl;. This method can provide a useful
framework to characterize the mechanical behavior of glass-

FIG. 6. Contribution of the polymer to the Young's modulus as forming systems upon vitrification. Because the evaluation
a function of temperature. of forces is not required, this method is also useful for sys-
tems in which the calculation of stresses is difficult or time
consuming. Studies of the elastic moduli of a binary glass

N (9] H
o o o
[
[
[

AE [units of /3]

=
o
T

0.0 0.2 04 0.6 0.8 1.0
Temperature [units of £/kg]

(BN+2u)u : .
=— (16) will be presented in a future paper.
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