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Phase diagrams of hard spheres with algebraic attractive interactions

Philip J. Camp
School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, United Kingdom
(Received 15 August 2002; published 17 January 2003

The phase diagrams of systems made up of hard spheres interacting with attractive potentials of the form
—1/r3*7 are calculated using Monte Carlo simulations, second-order thermodynamic perturbation theory, and
an augmented van der Waals theory. In simulations of the systemsrwithl, 1, and 3, fluid-solid coexist-
ence results are obtained using the Gibbs-Duhem integration technique; simulation data for the vapor-liquid
coexistence envelopes and critical points are taken from previously published®afk Camp and G. N.

Patey, J. Chem. Phy&14, 399(2001)]. It is shown that the agreement between the theoretical and simulated
phase diagrams improves as the range of the potential is increased, reflecting the decreasing role of short-range
correlations in determining the bulk thermodynamics. In the extreme case=@.1 both theories are in
excellent agreement with simulations. Phase diagrams for systemsrwith 5, and 6 are computed using
second-order thermodynamic perturbation theory. The results indicate that the vapor-liquid transition becomes
metastable with respect to freezing wher 5, in broad agreement with results for the hard-sphere attractive
Yukawa system which is commonly used to model colloidal particles, globular proteins, and nanoparticles.

DOI: 10.1103/PhysRevE.67.011503 PACS nunier64.70.Fx, 64.10th, 64.70.Dv

[. INTRODUCTION interactions proportional te- 1/r3* [9,8].
Recently, vapor-liquid criticality in hard-sphere systems

The thermodynamic behavior of systems made up of parwith long-range attractive potentials was studied using
ticles interacting with long-range potentials has long been #nixed-field finite-size scaling simulatiof$0]. The intermo-
topic of interest in condensed-matter science. In effect, vafecular potential studied in this work was of the form
der Waals’ eponymous equation of state was derived by as-
suming that the molecules in a fluid interact with uniform v(r)=vo(r)+va(r), (1)
weakly attractive potentials. Such models have provided a . . _
valuable insight into the physical mechanisms that give riséVherevo(r) is the short-range hard-sphere potential, defined
to phase separation in fluids, but they fail to describe accuby
rately the vapor-liquid critical regions of real fluids. Most

one-component three-dimensional fluids possess interactions v (r):[oc r<d )
which are “short ranged”(to be defined beloy and the 0 0 r=d,

corresponding vapor-liquid critical exponents take on univer-

sal (Ising) exponents. For example, the difference betweeranduv(r) is the attractive tail, given by

vapor and liquid coexistence densities on approach to the

critical temperatureT, from below scales like T,—T|?, _ Sto

where the Ising exponent 8= 0.326(4)[1]. In contrast, the va(r)="—¢€l 7 3

van der Waals equation of state predicts the mean-field value
B=73. Nonetheless, almost a century after van der Waalsin Egs.(2) and(3), d is the hard-sphere diameter, ani the
seminal work, vapor-liquid criticality and magnetic critical- potential well depth. When reporting thermodynamic proper-
ity were predicted theoretically to belong to the mean-fieldties of this system, it is convenient to define the following
universality class, provided the interactions operating bereduced units: the reduced temperatlife=kgT/e, where
tween the particles or spins are sufficiently long rangedkg is Boltzmann's constant and is the temperature; the
[2—-6]. Indeed, if the intermolecular pair potential varies with reduced inverse temperatur@* =gBe=1/T* where B
the separatiorr like —1/r377, with >0, then three re- =1/kgT; the reduced pressung* =pd®/e, wherep is the
gimes of critical behavior for the system I dimensions pressure; the reduced number density,=pd3, where p
can be identified(i) the short-range regime>2— 7, ex- =N/V, Nis the number of particles, andis the volume of
hibiting Ising-like criticality; 7, is the Ising value of the the system; the reduced energy densif{/=u/e, whereu
correlation decay exponent, which in three dimensions has-U/N, andU is the configurational energy.
the value 0.03350.0025(7]; (ii) the long-range regimer In Ref.[10] it was shown that witlr= 3 the vapor-liquid
<D/2 for which the criticality is mean fieldiii) the critical behavior was entirely consistent with the Ising-like
intermediate-range regim®/2<o<2- 7, in which the criticality expected in the short-range regime. For long-range
criticality interpolates linearly between the short-range andootentials withoc=1 ando=0.1, significant deviations from
long-range regimef8]. These regimes have been studied inlsing-like criticality were observed. In addition, the relation-
detail in recent simulations of lattice models with attractiveship between the critical density, critical temperature, and the
range parametesr was tested against a prediction made by
Brilliantov and Valleau employing a mean-field analysis of
*Email address: philip.camp@ed.ac.uk the Landau-Ginzburg-Wilson effective Hamiltonighl]. It
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was seen that the theory becomes more accurate as the rangelo investigate the phase diagrams of systems with long-
of the potential is increased, indicating the crossover taange interactions, we have carried out MC computer simu-
mean-field criticality. Brilliantov and Valleau first tested their lations of the model defined in Egdl)—(3) with ¢=0.1, 1,

relation against Monte Carl¢MC) simulation results for and 3. We have determined the fluid-solid phase boundaries
square-well fluids, with the same conclusion. for each system using the Gibbs-Duhem integration tech-

To date, studies of off-lattice systems with long-range in-hique devised by Kofk§25]. Simulation data for the vapor-
teractions have largely been restricted to calculating vaporiquid coexistence curves and associated critical parameters
liquid coexistence and criticality. Mention has already beerwere taken from Re{.10]. We have also computed the equi-
made of the work by Brilliantov and Valleau on square-well librium phase diagrams using second-order thermodynamic
fluids [11], but we might also note the study on the sameperturbation theorySTPT), and an augmented van der Waals
system by Vegeet al. [12] in which Gibbs ensemble MC theory. We will demonstrate that the agreement between the
(GEMO) simulations were used to correlate the shape of théimulated and theoretical phase diagrams improves as the
vapor-liquid coexistence envelope with the crossover tgange of the potential is increased; @t 0.1 the accuracies
mean-field criticality as the range of the potential was in-of both theories are essentially quantitative.
creased. The phase behavior of various hard-core systems with

One of the aims of this paper is to present complete phaseery short-range attractive interactions has recently received
diagrams of systems with long-range interactions calculated great deal of attention because of the relevance to colloidal
using accurate computer simulations, and to assess how welystems, globular protein crystallization, nanoparticle aggre-
classical, or mean-field, theories perform in comparison. Pegation, and fullerenes. For example, a widely studied generic
haps the most widely used theoretical approach is the themodel of such materials is the hard-sphere system with at-
modynamic perturbation theofTPT) of Barker and Hend- tractive Yukawa potentials of the foram(r)= — eexd —«(r
erson[13-15. TPT provides expressions for the change in—d)](d/r), where € is the attractive well depth, &/is a
Helmholtz free energy of a reference hard-core system in thiength parameter characterizing the range of the potential,
presence of an attractive intermolecular potential as an exandd is the hard-sphere diameter. Hagen and Frenkel found
pansion in 1T. The first-order termO(1/T) can be calcu- that the vapor-liquid transition becomes metastable with re-
lated exactly using the radial distribution function of the ref-spect to the fluid-fcc-solid transition wherd=6 [26],
erence hard-sphere systegy(r). The second-order term whilst Bolhuis et al. showed that the same potential gives
O(1/T?) is given in terms of four-particle correlation func- rise to an isostructuralfcc) solid-solid transition whenxd
tions, but can be approximated in terms @f(r) and the =25[27]. The phase diagram and formation of glassy phases
isothermal compressibility of the reference system. TPT ign this system have recently been studied in detail by Foffi
expected to be most accurate when the attractive potenti&t al, using a combination of TPT, mode-coupling theory,
varies slowly over distances comparable to the hard-core dand the self-consistent Ornstein-Zernike approximafsj.
ameter; in this case the potential can be thought of as proFhe qualitative features of the attractive Yukawa system have
viding a roughly uniform attractive background, which doesalso been found in square-well fluids with very short-range
not significantly alter the short-range correlations arisingattractiong29,27,28. Integral equation and TPT approaches
from the hard-core repulsions. are generally quite successful for all of these systems, al-

The van der Waals theory corresponds to the limit of athough first-order TPT has recently been shown to give rise
weak uniform attraction between the particles. Widom ando unphysical phase diagrams for extremely short-range po-
Longuet-Higgins showed how an augmented van der Waaltentials[30].
theory can be constructed for fluid and solid phases from the Relatively little work has been reported on the particular
knowledge of the reference hard-core sysfd®-18. Such  potential defined in Eq$1)—(3) with large, but finite, values
a theory is equivalent to calculating the Helmholtz free en-of o, although some equations of state and other thermody-
ergy in TPT by evaluating the first-order tef@(1/T) with namic properties have been obtained for fluid systems with
go(r)=1 for r>d, and ignoring higher-order terms. Im- 3<o=<233 using computer simulatiori81] and STPT[32].
provements over the original van der Waals theory arise fron¥We also note the recent work of Nogt al. [33], in which
treating the hard-core reference system very accurately, arftie phase behavior, and in particular the formation of a gel
hence the freezing transition can be accommodated withiphase, was studied in systems wiit=47 and a uniform
the augmented theory. long-range attraction.

With regard to the reference hard-sphere system, the For completeness, we will present phase diagrams calcu-
Helmholtz-free energies and equations of state are welkted using STPT for systems with=4, 5, and 6, which
known for both the fluid 19] and face-centered cubiécc) show that the vapor-liquid critical temperature drops below
solid phaseg20,21]. The corresponding radial distribution the triple point temperature when=5, whereupon conden-
functions, go(r), have also been accurately determinedsation becomes metastable with respect to freezing. The ef-
[22,23. In the present work we will not consider the hex- fective range of the potential with=5 is comparable to that
agonal close-packe@HCP) phase, which has been found to for the corresponding attractive Yukawa potential witd
have a chemical potential onk 10 3kgT higher than that =6 [26].

of the FCC solid, close to the melting densf34]. Other This paper is organized as follows. The simulation tech-
crystal lattices can be safely ignored by virtue of having lowniques employed to determine the fluid-solid phase bound-
close-packed densities. aries are described in Sec. Il. In Secs. lll and IV we summa-
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rize the STPT and augmented van der Waals theorieshe system. Fowr=0.1 we usedss* =0.01, whilst for o
respectively. The results are presented in Sec. V, and Sec. W1 ando=3 we usedsg* =0.1. Upon completing a nu-

concludes the paper. merical integration between the initial and final tempera-
tures, we fitted the rhs of Eq7) (in simulation unit$ to a
Il. COMPUTER SIMULATIONS cubic polynomial in8*, from which the function3* p* (8*)

) ) ) ) was obtained by analytic integration,
Isothermal-isobaric MCN p T-MC) simulations were per-

formed on systems withl=256 particles in a cubic simula- dg* p* 8
tion cell of dimensiorL, with periodic boundary conditions P 2 a,B*", (11
applied[34]. The attractive part of the potential,(r), was ds n=0
truncated at .= L/2; pair interactions were evaluated using 3
the minimum image convention. The long-range contribution % ok ok xn+l

. . =11. +1). 12
to the total energyJ, g, was estimated in the usual way by AP (B7) 69t ,go anp f(n+1) (12

assumingg(r) =1 for r=r,
NpT-MC simulations were then performed at each value of

” 2nNp*e [ d |7 B* using the appropriate value @ p* obtained from Eq.
ULR:ZWNer trzg(r)vl(r)dr: T (Kut) (12). The fit to the rhs of Eq(7) was then updated, and the
“ (4) process iterated until the values @f p* at coexistence con-
verged to within a desired tolerance of 1%. In practice, this
Fluid-solid coexistence was traced using the Gibbsonly took one extra iteration after the initial integration using
Duhem integration technique devised by Kofkg5]. We  a predictor-corrector algorithm. In the current application,
chose to integrate a Clapeyron-type equation that relates thiid-solid coexistence within a single simulation cell con-
derivative of gp at coexistence with respect t6. The  taining O(10?) particles is precluded by the free energy as-
Gibbs-Duhem equation for a single-phase one-componerfociated with forming an interface. Therefore, the fluid-phase

system can be written as and solid-phase simulations required to evaluate the rhs of
_ Eq. (7) need not be coupled in any way to allow for, or
d(Bu)=udp+(1lp)d(Bp), (5) forbid, a simulation spontaneously changing phig&.

whereu is the chemical potential. For two phases, labeled 1
and 2, to be at coexistence at given reciprocal temperature
and pressure, we have the conditiep= u,. If the recipro-

IIl. SECOND-ORDER THERMODYNAMIC
PERTURBATION THEORY

cal temperature is altered by an infinitesimal amow@, Phase diagrams were computed using the STPT formu-
then for coexistence to be maintained, the pressure must hgiaq by Barker and Hendersft3—15. The total Helmholtz
adjusted such that free energy per particle, in units kT, is written as the sum

_ of the hard-sphere contributigf,, plus first- and second-
d(Bra)=d(Bus). © order termspBf, and Bf,, respectively, arising from the at-
Substituting Eq(5) into Eq. (6) yields a Clapeyron-type dif- tractive part of the interaction potential,

ferential equation describing the changesip at coexistence

in response to a change in reciprocal temperature, Bi=piot pla+ Bl (13
dgp Up— Uy The first-order termO(8*) is given in terms of the hard-
B =— ( Tp,—1ipy)” (7) sphere radial distribution functiogg(r), at the desired den-
27 1

sity by

The integration was performed using simulation data for o
the rhs(right-hand sidg of Eq. (7), starting frompB* =0 at ﬁf1=27'rpﬂf r2v,(r)go(r)dr. (14
which the fluid-solid transition coincides with that of hard d
spheres(the solid phase is assumed fcc throughoihe
coexistence data for the hard-sphere fluid-solid transition i
the current simulation units af@5]

rThe second-order ter®(3*2) is given exactly by an inte-

gral involving the hard-sphere four-body correlation func-

tion. We employ Barker and Henderson’'s “macroscopic

B*p*=11.69, (8)  compressibility” approximation13—13, in which gf; is
given by

Piia=0.943, C)

f:rzvﬁr)go(r)dr. (15)

_ P
Bt= —Wpﬂz(%)o

pLoiig=1.041. (10)
In practice, for each system we first carried out the integrawhere @p/dBp), is evaluated in the reference hard-sphere
tion scheme as originally proposed by Kofk@5], i.e., by  system.
using a predictor-corrector technique. The interval in recip- The thermodynamic and structural properties of the refer-
rocal temperaturejB*, used for the integration depended on ence hard-sphere system are well known. We use the
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Carnahan-Starling expressions for the hard-sphere fluid fre¢  -64 - - - -
energy and equation of staft&9],
7(4—37)
Bfo=—7 (16)
(1-7)
5
Bpo l+nm+tn’—1n° 2
v an g
P (1-m) ©
ap (1-n)*
app o l+an+an’—4ni+yt
where n=mp*/6 is the packing fraction. The fluid-phase -87 L L L L
radial distribution function,gy(r), was obtained as pre- 0.00 0.04 0.08 . 0.12 0.16 0.20
scribed by Verlet and Weil22].
For the thermodynamic properties of the hard-splife FIG. 1. dB*p*/dB* along the fluid-solid coexistence line for
solid, we use the expressions given by Aléeial. [20], the system withr=0.1; MC simulation(circles; cubic polynomial

fit [Eq. (11)] (solid line).
Bfo=Inpg+3In

| — _ _ 2
2a) So—Sia=Sa’, (19 measure of temperaturg; /o= 1/cT*, and hence the phase
diagrams of systems with different potential-range param-

Bpo 3 eters can be obtained by a trivial scaling of temperature; the
TZ Z+C0+Cla* (20) density remains unchanged. For instance, the critical tem-
perature and density, obtained by solvingp{dp)+=0 and
ap 3 6 -1 (6°pl9p?)7=0 simultaneously, are
(_) = _+—+CO_C1 y (21)
IBP/y \a® @ 0T =1.131944. -, (25)
in which the coefficient§,, S;, S,, Cg, andC, are listed in * _ -
Ref. [20], p§ = \/2 is the close-packed density, and=(p P =0.249129- . (26)
—p*)Ip*. The radial distribution function of the hard-
V. RESULTS

sphere fcc solid was calculated using the expressions given
by Kincaid and Weig 23]. _ We have computed the phase diagrams of systems with

Once the Helmholtz free energy is known, all other ther- __ 51 1 and 3 usind\pT-MC simulations, STPT, and
modynamic functions follow. The conditions for coexistence, 4, qer Waals theory. In each case we présent fluid-solid
between phases 1 and 2 arg=T,, p1=p,, andu1=p2.  coexistence results obtained using the Gibbs-Duhem integra-
The latter two quantities can be obtained using the thermogo technique: vapor-liquid coexistence data are taken from
dynamic relationships Ref.[10]. For completeness, we also present phase diagrams
for systems witho=4, 5, and 6, calculated using STPT.

Bp  [dpf
— =Pl o) (22
P P A 0=0.1
Bp Simulation results from Gibbs-Duhem integration along
Bu=pBf+ e (23 the fluid-solid coexistence line for the system wiih=0.1

are shown in Figs. 1, 2, and 3. In Fig. dg* p*/dg* [Eq.
(7)] is plotted as a function of reciprocal temperature. Also
V. VAN DER WAALS THEORY shown is the cubic polynomial fit defined in E@L1). We
One way of generating an augmented van der Waal§ote that the relative variation of this quantity is small
theory is to sep3f,=0 in Eq.(13), and to evaluate Eq14)  (<1%) over the reciprocal temperature range g <0.2.
assuming thagy(r)=1 (r=d). The first-order term in the In Fig. 2 we plot3* p* at fluid-solid coexistence, along with

Helmholtz free energy can therefore be approximated by the integrated fifEq. (12)]. The variation ofg* p* with g*
is approximately linear. An estimate of the triple tempera-

B * B ture, T¥ was obtained by extrapolating the simulation results
'Bfl_zm’ﬁjd ro(rdr,=—2mp* f*lo. (24) to B* p;* =0. Of course, the pressure and temperature at the
triple point are finite, but the ratip*/T* is clearly very
The hard-sphere thermodynamic properties and phase coesmall, at least compared its value at infinite temperature. An
istence are obtained as in the preceding section. We note thapproximate value for the triple temperature is therefore
the phase diagram is characterized in terms of a reducef =5.589.
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12 T - T parameter critical exponent g8=3, which is appropriate
for a system witho<<3/2 in three dimension§2—6]. The

10 . success of the theories in describing the simulation results
with ¢=0.1 is due to the fact that the fluid structui@ver

g L | length scales of a few sphere-diameléasslargely dictated

by the hard-core repulsions, and is relatively insensitive to

2 gl | the presence of additional slowly varying long-range interac-
& tions. Moreover, a significant proportion of the configura-
tional energy arises from interactions between particles at
4} i

large separations, which means that it is not essential for a
theory to describe accurately the short-range correlations of
2+ . the system. Even for the solid phase, in whigfir) retains
structure at all distances, the approximatgyfr)=1 leads

0 . . . to accurate results as compared to the simulations.
0.0 05 1.0 1.5 2.0

ﬁ*

B. o=1

FIG. 2. p*p* along the fluid-solid coexistence lines for the  gjmylation results from Gibbs-Duhem integration along
systems with 0=0.1 (circles, o=1 (triangles, and 0=3 0 f,i.s0lid coexistence line for the system with 1 are
(squares The solid lines are fits according to Eq41) and(12). shown in Figs. 2, 4, and 5. Figure 4 contaihs* p*/d8* as

) _ ) a function of 8*, and shows that some curvature may occur

The phase diagram for the system witt+=0.1 is shown i the plot of 8* p* against@* . The latter is shown in Fig. 2,

in Fig. 3. Of the simulation results, the fluid-solid points are the curvature is hardly discernible from the plot. By ex-
from the present work, and the vapor-liquid coexistence dat?rapolating the line toB* p* =0, as before, we obtain an

are taken from Ref.10]. Also shown in Fig. 3 are the theo- estimate of the triple-point temperatufg =0.830.

retical phase diagrams calculated using STPT and van der The phase diagram for the system witke 1 is shown in
Waals theory. The figure clearly shows that both STPT angj, ‘5 ag pefore, simulation data for the vapor-liquid coex-
van der Waals theory provide excellent descriptions of thqStence envelope’ are taken from REF0]. Figure 5 shows

simulation results. Critical-point and triple-point parametersy . sTpT provides a good description of vapor-liquid coex-
from simulation and theory are summarized in Table I. A.

: . ) - istence, but is only moderately successful in locating the
comparison of simulation and theory shows that there is Very id-solid phase boundaries. The van der Waals theory per-
little to choose between STPT and van der Waals theor

" : . ) ” %orms poorly in comparison with STPT. Critical-point and
Coincidentally, the S|m}JIat|on estimate of the critical tem'triple-point parameters from simulation and theory are sum-
perature, T¢ =11.452 lies exactly half-way between the yarizeq in Table I, and underline the superiority of STPT
STPT and van der Waals theory results of 11.585 anghyer van der Waals theory in describing the simulation re-
11.319, respectively. Mean-field theories predict an ordergts. Mean-field theories predict an order-parameter critical
exponent of3=3, which is appropriate for a system with
0<3/2 in three dimensionf2-6]. Clearly, the approxima-
tions made in the van der Waals theory are unjustified for the
potential witho=1. Account has to be taken of the short-
range correlations between the particles, which the STPT
achieves through use of the hard-sphere radial distribution
. function, go(r).

20

18
16
14

12 C.o=3

10 8 Simulation results from Gibbs-Duhem integration along
the fluid-solid coexistence line for the system witk- 3 are
shown in Figs. 2, 6, and 7. Figure 6 shows that there should
be some discernible curvature in the plot 8fp* against
B*, and Fig. 2 shows this to be the case. Extrapolating the
curve in Fig. 2 top* p* =0 yields an estimate of the triple-
point temperature of{ = 0.500.

The phase diagram for the system witk- 3 is shown in

FIG. 3. Phase diagram in the'-T* plane for the system with Fig. 7. Simulation data for the vapor-liquid coexistence en-
o=0.1: MC simulation(circles; second-order thermodynamic per- Velope are taken from Ref10]. STPT is seen to provide a
turbation theory(solid lines; van der Waals theorydashed lings ~ reasonably accurate description of the simulation results.
The fluid-solid simulation points are from the current work; the Critical-point and triple-point parameters from simulation
vapor-liquid simulation points are from R4fL0]. and theory are summarized in Table I. STPT overestimates
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TABLE |I. Critical-point and triple-point parameters from Monte CatMC) simulation, second-order thermodynamic perturbation
theory (STPT), and van der Waalé/dW) theory. MC estimates of the vapor-liquid critical parameters are taken fron| Faf.Figures in
parentheses are estimated statistical uncertainties in the last digit.

Method T Ps T pt (vap) oy (liq) pr (sol)
o=0.1
MC 11.4528) 0.2475) 5.589
STPT 11.585 0.252 5.585 0.000812 0.892 1.104
vdwW 11.319 0.249 5.260 0.000563 0.901 1.098
o=1
MC 1.37241) 0.29931) 0.830
STPT 1.3834 0.2857 0.863 0.00709 0.836 1.127
vdW 1.1319 0.2491 0.526 0.000563 0.901 1.098
o=3
MC 0.59721) 0.375714) 0.500
STPT 0.6221 0.4143 0.532 0.0757 0.751 1.152
vdW 0.3773 0.2491 0.175 0.000563 0.901 1.098
o=4
STPT 0.5341 0.4815 0.494 0.181 0.700 1.165
o=5
STPT 0.4822 0.5183 0.473 0.390 0.617 1.180
o=6
STPT 0.4447 0.5377
TZ andT{ by about 10% and 6%, respectively. The van der D. 0=4-6

Waals theory predictdg =0.3773, and so for the sake of  |n the previous sections we have shown that STPT pro-
clarity the phase diagram has been omitted from the figureyides reasonably accurate predictions for the phase diagrams
Mean-field theories predict an order-parameter critical expopf systems witho<3, whereas the van der Waals theory
nent of =3, whereas for short-range interactions the cor-fgres badly with short-range potentials%1). We have

rect (Ising) exponent isg=0.326(4) [1]. As for =1, a  therefore used STPT to calculate the phase diagrams of sys-
poor description of the short-range correlations in this systems withoc=4, 5, and 6, which are shown in Figs. 8, 9,
tem compromises the performance of the van der Waalgnd 10, respectively. As the range of the potential is de-
theory. The accuracy of STPT is diminished slightly becausereased, the vapor-liquid critical temperature decreases with
at low temperatures the effect of short-range interactions ofespect to the triple-point temperature, untiloat 6 the en-

the fluid structure is more pronounced; the attractions no

longer arise from a slowly varying potential between the par-

ticles.
22t .
—9.2 T T T T T T
+ 20 F 4
1.8 + .
16 + .
L 14 9 ]
) 1.2 4 .
= 96F | I T /J4 }F TR [o)
in, o~ 0
©

2

08 \ o ]
06 | -
0'4 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.4
_10'0 L 1 1 L 1 L p
00 02 04 06 08 1.0 1.2 1.4 ) . .
B FIG. 5. Phase diagram in the -T* plane for the system with

o=1: MC simulation(circles; second-order thermodynamic per-
FIG. 4. dB*p*/dB* along the fluid-solid coexistence line for turbation theory(solid line9; van der Waals theoriydashed lines
the system witho=1: MC simulation(circles; cubic polynomial = The fluid-solid simulation points are from the current work; the
fit [Eq. (11)] (solid line). vapor-liquid simulation points are from RéfL0].
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-5.2 T T T T T T T T T 0.60

0.55

0.45

-6

.4 L 1 L 1 1 L 1 L 1 0.40
00 02 04 06 08 10 12 14 16 18 20 :

p* P
FIG. 6. dB*p*/dB* along the fluid-solid coexistence line for ~ FIG. 8. Phase diagram in the"-T* plane for the system with

the system witho=3: MC simulation(circles; cubic polynomial =4 from second-order thermodynamic perturbation theory. The
fit [EqQ. (11)] (solid line). dashed lines indicate where vapor-liquid coexistence is metastable

with respect to freezing.

tire vapor-liquid coexistence envelope is contained within o )

the fluid-solid coexistence boundaries. Critical-point andfial in Eq. (3) wheno=36/7=5.14.. . . ;this is entirely con-

triple-point parameters from STPT are presented in Table |Sistent with the results from STPT obtained in the present
The vapor-liquid transition becomes metastable with reWork.

spect to freezing whemwr=5. This result is in broad agree-

ment with that for the hard-core attractive Yukawa system VI. CONCLUSIONS

[26]. We can make a link between the potential in Eg),

and the Yukawa potential,(r) = — e exd — «(r—d)](d/r), by

calculating the effective interaction strengily as being pro-

In this paper we have calculated phase diagrams of sys-
tems consisting of hard spheres interacting with algebraically
: w ) decaying attractive interactions, using Monte Carlo simula-
portional tofqr ”12(r)dr' For the Yuka\_/va_potenual we get tions, second-order perturbation theory, and an augmented
€eri (xd+1)/(«d)", and for the potential in Eq3) we get a1 der Waals theory. The main aims of this study were: to
€ 1/o. Equating these expressions gives an approximal§sqess the performance of mean-field theories in describing
mapping between the two range parameters. On the basi§e phase boundaries obtained from high-accuracy simula-
that vapor-liquid coexistence becomes metastable with rejong of systems with long-range interactions; to locate at
spect to freezing for the attractive Yukawa system wkeln  \yhich point the interactions becomes so short ranged that the
=6 [26], we should expect the same to occur for the poteny,anor-jiquid transition becomes metastable with respect to

freezing.
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FIG. 7. Phase diagram in the -T* plane for the system with
o=3: MC simulation(circles; second-order thermodynamic per- FIG. 9. Phase diagram in the -T* plane for the system with
turbation theory(solid lineg. The fluid-solid simulation points are o=5 from second-order thermodynamic perturbation theory. The
from the current work; the vapor-liquid simulation points are from dashed lines indicate where vapor-liquid coexistence is metastable
Ref.[10]. with respect to freezing.
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long ranged §=0.1), they perform less well when the range
of potential is decreaseds&1 and 3). This can be put
down to the fact that in systems with short-range potentials,
the short-range correlations are significant in determining the
overall thermodynamics. By contrast, in systems with long-
range potentials, a larger contribution to the overall configu-
rational energy, and hence free energy, arises from interac-
tions between pairs of particles that are so far removed from
one another that their relative positions are uncorrelated.
Hence, it is more important to describe the short-range cor-
relations accurately for systems with short-range potentials
than it is for systems with long-range potentials. Accord-
ingly, for c=1 and 3, second-order perturbation theory is
seen to be more reliable than the augmented van der Waals
theory.

Phase diagrams for systems with shorter-range potentials
(0=4, 5, and 6), calculated using second-order perturba-

o=6 from second-order thermodynamic perturbation theory. Th&jon theory, indicate that the vapor-liquid transition becomes
dashed lines indicate that the vapor-liquid transition is metaStabl?netastable with respect to freezing wheee5. This is in

with respect to freezing.

broad agreement with simulation results for the hard-core
attractive Yukawa systerf26], which indicate that vapor-

A comparison of simulation and theoretical phase diadiquid coexistence disappears from the equilibrium phase
grams, and associated critical-point and triple-point parameiagram whencd=6. An approximate mapping between the
eters, shows that while second-order perturbation theory andukawa potential and the potential studied in this work
van der Waals theory are very accurate when the potential ishows that these criteria are, to some extent, equivalent.
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