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Model for gelation with explicit solvent effects: Structure and dynamics
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We study a two-component model for gelation consistingf-aifnctional monomergthe ge) and inert
particles(the solvent After equilibration as a simple liquid, the gel particles are gradually cross linked to each
other until the desired number of cross links have been attained. At a critical cross-link density, the largest gel
cluster percolates and an amorphous solid forms. This percolation process is different from ordinary lattice or
continuum percolation of a single species in the sense that the critical exponents are new. As the cross-link
densityp approaches its critical valyg, , the shear viscosity diverges(p)~(p.—p) ° with sa nonuniversal
concentration-dependent exponent.
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[. INTRODUCTION gel particles and clusters diffuse. Cross linking occurs in
stages: the equations of motion of all the particles are inte-
It is generally accepted that percolation is an essentiagrated forward for a fixed number of time steps between
aspect of gelation or vulcanization—it is doubtful that evencross-linking attempts and this process is continued until the
in a highly entangled melt of long polymers, a nonzero valuedesired number of cross links is attained. At a critical con-
of the static shear modulus could exist in the absence of agentration of cross linkg, (in the thermodynamic limjt the
infinite connected network. However, percolation has usuallyargest cluster percolates and an amorphous solid forms. For
been studied in rather special limits. Site and bond percolathis process, one can calculate the usual static or geometrical
tion of a single species on regular lattices are very well charquantities used to characterize percolating systems, e.g., the
acterized and off-lattice percolation seems to present no neffaction of particles on the “infinite cluster’P..(p)~(p
featureg 1], at least insofar as critical behavior is concerned.— P¢)?, the mean mass of finite clusteB§p)~|p—p.|~?,
More closely related to real gels are the so-called correlatethe fraction of samples percolatirigp), and the cluster size
percolation models where the distribution of cross links isdistribution n(m,p)=m~"¢(m|p—p./*"), wherem is the
drawn from a Boltzmann distribution appropriate for a near-mass of a cluster and the radius of gyratRg(m)~m*®,
est neighbor lattice ga]. Except at special points in the whereD is the fractal dimension of the clusters. For simple
phase diagram, these models are also in the universality clagercolation processes~2.18, 0~0.45, and these two ex-
of the simple percolation problem. In our previous work onponents determine the others through scaling relatjdhs
transport properties near the gel pdi8}, we have also used Here we find, at least for smat| that the cluster size distri-
a simple one-species percolation process to produce the itwtion, even ap., is not well described by a simple power
cipient gel. We found that the shear viscosity diverges as thi&aw. However, the other static quantities listed above do dis-
percolation concentratiop. is approached according to play power law behavior neg. and a standard finite-size
7(p)~(ps.— p) ~° with s~0.7. This value of the exponest  scaling analysis provides a very good collapse of our data.
is in excellent agreement with a prediction of de GennedVoreover, the hyperscaling relation8z- y=dv, whered
based on a superconductor—normal conductor analdyyy =3 is the dimensionality and the correlation length expo-
and with recent analytical work on a Rouse mofdgl It is  nent, is satisfied. This suggests that this percolation transition
also reasonably close to some experimental results f6f  is fundamentally describable in terms of a fixed point with
but quite different from that produced by another set of extwo (at least relevant scaling fields. As the percolation point
periments 1.&£s<1.3[7]. Thus, it seems reasonable to askis approached from below, the shear viscosity diverges ac-
if different versions of the cross-linking process might pro-cording to n(p)~(p.—p) > In contrast to our previous
duce significantly different cluster size distributions from work on a model without solvent, we find valuesih the
percolation and, consequently, different rheological properrange 0.3<s(c)<0.45 as compared wite=~0.7. These re-
ties. sults suggest that the critical behavior of transport coeffi-
Gelation often occurs in the presence of a solvent andients of systems close to the gel point is nonuniversal.
over some period of time rather than instantaneously, as in The structure of this article is as follows. In Sec. II, we
the usual percolation models. To simulate this feature, walescribe the present model and simulation procedures in
have considered a two-species model consisting of a fractiomore detail. The geometric properties of the system are dis-
c of f-functional particles that are eligible to bond irrevers-cussed in Sec. Ill and the data on the shear viscosity are
ibly to others of the same kind. The remaining particles argpresented in Sec. IV. We conclude with a brief summary and
inert and function as a background liquid, through which thediscussion in Sec. V.
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We consider a system & particles in three dimensions, 08 [
all of which interact with each other through the soft-sphere  f(p,L)
potential V(r ;) = e(oo/rij)* for r;;<1.50¢ [8]. We simu-
lated systems at a temperatlgl/e=1 and volume frac- i 1
tion CI)=770'(3)N/6V=O.4, which is well below the liquid- 04 [ 0 i
;olid cpexistenge density. In the absence of any other ' (o =0.2,v=1.05 o p =03,v=1.0 ]
interactions, this system would be a simple three- o2 [ % 8 £ gel b
dimensional liquid. We initially place the particles on a r &° Xﬁ 1
simple cubic lattice that fills the computational box. We then 0 bcon 0, N
randomly selectNge,=.c_N p_artlcles to be the gel formm_g 02 015 041 -005 O 005 0.1
component. After equilibration of the system with Brownian
dynamics, with periodic boundary conditions, for 10000 (p-pc)L
time steps, we begin the cross-linking process. At this point,
the calculation proceeds viznservativemolecular dynam-
ics (MD) so as t_o allow hydrodynamic modes to develOp'SsLSSZ. The values of the exponentused are 1.05 foc=0.2
Here, we use a time stefi=0.005/map/e. In the smallest 5,41 ¢ forc=0.3. ForL=8, we have simulated 20 000 indepen-
system, cross linking is carried out one bond at a time. Ayent cross linkings at eaqh for L=32 the data are derived from
single gel particle is randomly selected and all other gel pargpgp samples for eagh All quantities are dimensionless.
ticles within a distance of 1&, are identified. One of the
particles in this list is randomly selected and bonded irrevers- The adjustable parameters in our calculations are the gel
ibly to the central particle through the tethering potentialfractionc, the cross-link densitp, and the system size. Here,
Vonlri)) = 3k(rij—ro)?%  with k=5e/05 and o,  we report results foc=0.2, 0.3, and 1.0. Calculations for
= (m/6d)Y3s,. Each gel particle is allowed to bond to no other values ot are in progress and will be reported in a
more than six others and bonding between any pair of parfuture publication[12]. We parametrize the size of our sys-
ticles occurs at most once. The configuration of the entireem in terms of the dimensionless length N3, whereN is
system is then updated for 100 time steps and the entirthe total number of gel and solvent particles. Because the
bonding process is repeated untipi8,e; cross links have cross-linking process is itself quite time consuming, we are
been addef9]. The parametep is analogous to the occupa- able only to simulate systems up to size= 32 (32 768 par-
tion probability in a bond percolation process on the simpleticles) and this makes our estimates of critical exponents
cubic lattice. In larger systems, the number of cross linksather imprecise. A second factor contributing to the uncer-
added in the bonding steps is scaled by the system size tainty in critical exponents is that we need to determine the
order to keep the cross-linking rate per gel particle constantritical cross-link density, for each value ot, whereas for

The parameters in the potentials and the total volumédattice percolation, this number is known to a high accuracy.
fraction ® are the same as in our previous wdf{. The  We next discuss the statifgeometri¢ properties of our
differences are that in this earlier work, all particles weremodel.
considered to be gel particles and that the cross linking was
done instantaneously, &t 0, when the particles were on the . PERCOLATION
vertices of a cubic lattice and thus all structural properties
were those of percolation in three dimensions. The present The critical concentratiop., at which percolation occurs
model is similar in some ways to a model discussed byin the thermodynamic limit.— is accurately estimated
Gimel et al. [10] and Hasmy and Julliefl1] who studied from the intersection of curvel{p,L) as a function op for
percolation in the context of diffusion-limited cluster-cluster different values oL. Heref(p,L) is the fraction of samples
aggregation using Monte Carlo methods. Their model differercolating in a system of sizeat cross-link concentration
from ours in that it is a lattice model, in the details of the p. For the two cases of interest heces 0.3 andc=0.2, we
cross-linking process, in the lack of solvent, and in the naturdind p.=0.3165+0.0005 andp.=0.3735-0.001. Oncep,
of the cluster dynamics. In Monte Carlo simulations, one ishas been determined, the correlation length exponeran
forced to arbitrarily choose the mass-dependent diffusiofpe estimated from the collapse of the data for the function
constantD (m) whereas in our molecular dynamics calcula- when plotted as function ofp— p.)L**. We show this col-
tions, it is determined by the existing structure and the interfapse of the data for=0.2 and 0.3 in Fig. 1. For=0.3, the
particle forces. In the regime that is of interest here, i.e., highbest collapse of the data for<8 <32 is obtained fory
enough gel density that percolation is possible, these authors1.0, which should be compared to the three-dimensional
find the critical behavior of ordinary percolation. percolation resuli=0.88. Forc=0.2, finite-size effects are

In a separate set of runs, we calculate the stress-stressore pronounced and the data for 8 have been excluded.
autocorrelation function and, through the appropriate GreenFor this case, the best collapse of the data is obtained for
Kubo formula, the shear viscosity. Equilibration and cross=1.05. This method of estimating a critical exponent is not
linking are carried out as described above and the calculationery accurate but the three-dimensional percolation value
of the viscosity is again done with a conservative MD. =0.88 provides a significantly worse collapse of the data.
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FIG. 1. Fraction of samples percolating for 0.2 andc=0.3 as
a function of the scaled cross-link concentratioa(p— p.) L for
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FIG. 2. Scaled form of the mean mass of finite clusters® for separation of curves. The straight lines represent fitg1o”
L~"*S(p,L) for c=0.3 and 8<L<32. Here,y/v=1.815 andv with 7 dfeterm!ned by imposing hyperscalifgee text Both n and
=1.0. Here, the mass of a cluster refers to the number of particled) are dimensionless.
in the cluster.

=d(3—7)/(r—1), whered=3 is the dimensionality anet is

We next discuss the mean size of finite clusters because exponent characterizing the cluster size distributiop at
this data provides an unbiased estimate of the rati@a In =p_.. If we enforce this scaling relation, we obtain
the thermodynamic limitS(p) ~|p—pc| ~? with y=1.8 for ~ ~2.25 for bothc=0.2 andc=0.3. Usingo=(7—1)/dv,
d=23 percolation. For finitd, S(p,L) is peaked negp, with  we find o(c=0.3)=0.415 ando(c=0.2)=0.417. UsingD
a peak height that grows ds””. Therefore, rescaling the =1/(ov) for the fractal dimension results in the prediction
peak heights to the same value for differénprovides an D(c=0.3)=2.41 andD(c=0.2)=2.29 for the fractal di-
estimate ofy/ v that is not affected by errors in eithpg or  mensions of the clusters. As well, the hyperscaling relation
v. Of course, the overall collapse of the data to a universag/v=3— y/v yields 8/v=0.593 and 0.6 for=0.3 and
curve depends on accurate determination of these two quan:2, respectively. The accuracy of these scaling predictions is
tities but the peak height does not. In Figs. 2 and 3, we shouwested in Figs. 4—7.
the functionL™”"S(p,L) plotted as a function ok=(p In Fig. 4, we show the number of clustarém) of massm
—pc) LY for the previously determined values pf and v. at p~p. for c=0.2 and 0.3 folL =32 andm=400. For the
The collapse to a universal curve is quite respectable for botbasem=1, we have only counted the uncross-linked gel
c=0.3 and 0.2 fory/v=1.815 and 1.80, respectively. As particles. In neither case is the data well described by a
above, the data fdr =8 have been excluded fer=0.2. We  simple power law, in contrast to percolation on a lattice or in
note that in the case of three-dimensional percolation, théhe absence of solvent, where the exponent2.18 is al-
ratio y/v~2.05. Use of this value of/v in Fig. 2 would  ready obtained for  m=20. A fit to a power law over the
result in a 40% difference between the peak heightsLfor range 26sm=400 yieldsr=2.13 forc=0.2 andr=2.16 for

=32 andL=8. c=0.3. The straight lines in Fig. 4 are the best fits to the
In the scaling theory of percolatiofl], the ratio y/v
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” FIG. 5. Square of the radius of gyratldiig(m) divided by the
(P'PC)L square of the hard core diameteﬁ, as a function of cluster mass
m for p~p. andc=0.2 and 0.3. Straight lines are fits E%(m)
FIG. 3. Same as Fig. 2 in this case far=0.2 with =am?® with the fractal dimensions determined by requiring that
vlv=1.80. hyperscaling holdsee text
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FIG. 8. The dimensionless shear viscosi§m(L,p)/(mkgT) Y2
for c=0.3 timesL ~¥” plotted as a function af=(p— p.)L" with
s/v=0.425 andv=1.0. The straight line represents the function
x~97 (see text

FIG. 6. Plot of the scaled form of the order parame®éL,p)
for pg=0.3 and 8<sL=<32. The exponents arg/»=0.593 andv
=1.0. All quantities are dimensionless.

—_ —2.25 i . . . . . . . .
form n=Am"““ over the range 28m=400 and while the  ¢|ster size distributions are entirely consistent with ordinary

fit is not perfect, the data are not inconsistent with this beypree-dimensional percolation. This suggests that either there

havior in the limit of largem. _ _is a critical gel fraction[13], below which the geometric
2'” Fig. 5, we show the square of the radius of gyrationyoperties of the clusters are described by continuously vary-

Ry(m) as a function ofm for a system of siz& =32, t0-  jng exponents or that the apparent variation of the exponents

gether with curvesn”®(® with D(c=0.2)=2.29 andD(c  with c described above is a finite-size artifact. Only simula-
=0.3)=2.41 as determined above. The data again show conjons of larger systems can resolve this issue.

siderable curvature but the fit to the assumed functional form
is reasonable over the range2th=100.

Finally, in Figs. 6 and 7, we display the scaled form of
P(L,p), the probability that a gel particle is a part of the
percolating cluster using the predicted exponent rgébs  size L=20 as a function of the cross-link densipyfor c
=0.593 forc=0.3 andB/v=0.6 forc=0.2. These two fig- =0.3 and forL=12 forc=0.2. Systems are equilibrated as
ures present the least impressive collapse of data to a univest-liquid, cross linked as described above and then evolved by
sal curve, especially at the larger valuesPofOne can im-  constant energy MD for 40 000 or 80 000 time steps, depend-
prove the collapse by different choice @fv andv but atthe ing on the cross-link density. Here, we have typically used
expense of violating hyperscaling. We also note that the datB00—2000 different realizations of the cross links at each
for the two largest values df are reasonably close to each We calculate, as in Ref3], the stress-stress autocorrelation
other over the entire range &f function C ;)= %Ea<ﬂ<0aﬂ(t)(raﬁ(0)>, where

We have also carried out a limited number of simulations

IV. SHEAR VISCOSITY

We have calculated the shear viscosity for systems up to

for c=0.5 andc=1.0 with the cross-linking process de- Fialijs,
scribed above. In both cases, the critical exponents and the Ua[s:lEl mviavlﬁ_gj . V(1)
= i
' ' re are elements of the stress tensor. Here, the sum is over both
. 1 o L=12 . gel and solvent particles and' is the derivative of the pair
-l o L=20 potential between particlésand;j. The analysis of the stress-
= i o L=32 o ° stress correlation function has been described in [R¢and
a 08 | o . ; .
& I o is done in the same way here. As—p., C,, decays ex-
O . . f
- 2o tremely slowly and is fitted, at long times, to a stretched
06 | & i exponential. The static shear viscosity is then obtained from
- ot® the appropriate Green-Kubo formula4],
OOD
- @
04 —OW - — i 1 jtmaxc
I e 7]—t IriochBT 0 O'O'(t)'
015 01 -005 0 0.05 0.1 e
(e-p L™ The results foc=0.3 are shown in finite-size scaled form in
[

FIG. 7. Same as Fig. 6 but fax=0.2 andB/v=0.6 andv

=1.05.

Fig. 8, whereL ~"¥"#(L,p) is plotted as a function of the
scaled concentration[15]. In contrast to our previous result
for c=1 and instantaneous cross linking where we fosnd
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FIG. 9. The dimensionless shear viscosit§7(p)/(mksT)Y2
for L=12 andc=0.2 and 0.3 plotted as a function gi{—p). The
straight line represents the functiop.t p) ~° with s=0.425 for
¢=0.3 ands=0.3 forc=0.2.

~0.7, we find thats=0.425 provides an excellent collapse
of the data withv=1.0. We note that, outside the critical
region, consistency of the finite-size scaling ansatz requir

the scaled viscosity to vary as ¥”=x"%4?®and it is clear
that the data are consistent with this behavior.
We have also calculated the shear viscositycfer0.2 for

L=12. The raw data are displayed in Fig. 9 as a function o

p.—p, together with the corresponding results fo+0.3.

Fitting to a power law outside the critical region produces an
exponents~0.3 suggesting, as in the case of the static prop
erties, a variation of critical exponents wittand an absence

of universality.

V. DISCUSSION

PHYSICAL REVIEW E 67, 011401 (2003

from three-dimensional percolation. In particular, the fractal
dimension of the clusters seems to be smaller than those of
percolation clusters and this more spidery morphology may
be responsible for the slower divergence of the shear viscos-
ity as the gel point is approached. The change in the expo-
nents controlling the geometric properties is rather small and
further study of larger systems is certainly necessary to con-
firm this result. However, the exponestthat characterizes
the divergence of the shear viscosity at the gel point is re-
duced by almost a factor of 2 from its value in the absence of
solvent and it is unlikely that this can be attributed to finite-
size effects. In light of this result, it seems implausible that a
single universality class describes the behavior of transport
coefficients and, presumably, the moduli of the amorphous
phase near the gel point. The considerable dispersion found
in experimental values of the critical exponehi$] is an-
other indicator that this may be the case.
In future work, we intend to explore this different model

in greater detail. It will be interesting to investigate if the
exponents and the static exponents are tunable by varying
the concentration of the solvent and the solubility of the
esolute. We also intend to study diffusion constants as a func-
fion of cluster size and to investigate the existence of long
time tails. Finally, one of the original motivations for this
model is the existence of a body of experimental work that
pas yielded values in the range 1.1-1.3 for the viscosity
exponents. Clearly, we have moved further from this range
of values compared to our previous results. If the cluster size
distribution and cluster geometry is the determining factor in
the critical behavior of the transport coefficients then this
indicates that models that produce more compact rather than
more tenuous clusters than those arising from percolation
may be appropriate.
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