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Intramolecular coupling as a mechanism for a liquid-liquid phase transition
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We study a model for water with a tunable intramolecular interacfign using mean-field theory and
off-lattice Monte Carlo simulations. For al|,=0, the model displays a temperature of maximum density. For
a finite intramolecular interactiod, >0, our calculations support the presence of a liquid-liquid phase tran-
sition with a possible liquid-liquid critical point for water, likely preempted by inevitable freezing.JFor
=0, the liquid-liquid critical point disappears at=0.

DOI: 10.1103/PhysRevE.67.011103 PACS nunier64.70.Ja, 05.10.Ln, 05.70.Ce

I. INTRODUCTION mation and an off-lattice Monte Carl®IC) simulation. Our
results show that a nonzero intramolecular interaction gives
Water has an anomalous density decrease for isobaritse to a HDL-LDL phase transition, with a possible critical
cooling below a temperature of maximum densiyMD) point [23], with the liquid-liquid critical temperature de-
[1]. Other thermodynamic anomalies—such as the rapid increasing to zero and vanishing with the intramolecular inter-
crease of the response functions—can be fit by power lawaction. Therefore, at least for this model, the singularity-free
with apparent singularity well below the freezing tempera-scenario is obtained only in the particular case of a zero
ture [1]. Several interpretations for this behavior have beerintramolecular interaction, while for a finite intramolecular
proposed, but it is unclear which describes water or if any ofnteraction the HDL-LDL phase transition is predicted. Gen-
them describes other anomalous liquids including, among theral considerations suggest that the liquid-liquid phase tran-
others, S, Se, Te, Cs, Si, Ge, |, C, P, §i@nd Bek [2—-18]. sition for water could occur below the glass temperature, i.e.,
One of the interpretations, thetability-limit conjecture outside the accessible experimental range.
[19], assumes that the limits of stability of the superheated, The paper is organized as follows. In Sec. II, we define
supercooled, and stretched liquid form a single retracinghe model defined on a lattice. In Sec. lll, we describe the
spinodal line in the pressure-temperaturReT) plane. This ~equation of state approach in the mean-field approximation,
scenario predicts a divergence of the response functions and present the mean-field results. In Sec. IV we introduce
the supercooled liquid-to-liquid spinodgg0]. the off-lattice model, describe the MC approach, and show
The singularity-freeinterpretation[21,27 envisages that the simulation results. In Sec. V, we discuss our results and
the experimental data represent apparent singularities, due @ve the conclusions.
anticorrelated fluctuations of volume and entropy. In this sce-
nario, these fluctuations are responsible for the TMD line. Il. THE LATTICE MODEL
The liquid-liquid phase transitionhypothesis[23] pro- o o
poses the presence of a first-order line of phase transitions 'Ne fluid is represented by partitioning the system iNto
separating two liquid phases differing in density, the high-_Ce"S of equal size. Avarlablai is as_somated_ with each cell
density liquid (HDL) and the low-density liquidLDL). In  i=1,....N, with nj=1 if the cell is occupied by a mol-
this scenario the HDL-LDL phase transition, possibly endingecule.nj=0 otherwise. _
in a liquid-liquid critical point, is responsible for the anoma-  The intermolecular interactiof22]
lies.
AIthpugh Refs.[8,9], .by tuning pararr_u_aters of the corre- =S ninj_Jz nné, ., (1)
sponding models, predict smooth transitions from the differ- ' '
ent scenarios, to help elucidate which is the most reasonable
description for water, we consider a model fluid wither- ~ has a first term describing the van der Waals attraction be-
molecular and intramolecular interactions. This model, in tween molecules, where>0 is the energy gain for two
the particular case of a zero intramolecular interaction, renearest neighbainn) occupied cells and the sum is over all
covers the model introduced by Sasétyal.[22], which pre-  the possible nn cells.
dicts the singularity-free scenario. Our aim is to understand The second term in Eql) accounts for the dynamic net-
how the presence of an intramolecular interaction changeaork of hydrogen bond§HBs) formed by liquid water, with
this prediction. each molecule typically bonded to four other molecules at
We perform analytic calculations in a mean-field approxi-low T [1], with an energy gaild>0 per HB. We consider
cells with size of a water molecule and with foarms one
per possible HB. For the molecule in the celthe orienta-
*Present address: SMC-INFM, Dipartimento di Fisica, Universitation of the arm facing the celjl is represented by a Potts
“La Sapienza,” P.le A. Moro 2, 1-00185 Roma, Italy. variable oj;=1, ... g, with a finite numberq of possible
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orientations. Two molecules in nn cells form a HB only if is the effective attraction energy, depending Brand the
they are correctly orientefil], i.e., by assumptiof22], if local arm configuration,
o ,ojizl (8ap=1 if a=b and 5, ,=0 otherwisg.

The experimental oxygen-oxygen correlation function
shows that a HB is formed if and only if the intermolecular
distance is within a characteristic rangg. Hence, we as-
sume that the formation of a HB leads to a local volume

J'(P)=J—Puyg 9

is the effective HB interaction energy due to the HB volume
increase, and

expansior 22] 2
M',(U)EM+JU 50 O (10)
VEV0+ NHBUHB' (2) ! (krl)i ki
whereV, is the volume of the liquid with no HBs; is the effective local chemical potential depending on the

local arm configuration.

Nug=2 ninid, 3
He (i) | A. The mean-field approximation
The mean-field approximation consists in assuming a lin-

is the total number of HBs in the system, a is the . ; o
y ods ear relation between the number density of liquid cells,

specific volume per HB.
Experiments show that the relative orientations of the 1

arms of a water molecule are correlated, with the average nE—Z n, (17

H-O-H angle equal to 104.45° in an isolated molecule, N

104.474° in the gas, and 106° in the highkquid [24], and the density order parameters [ —1,1], and between

suggesting anntramolecularinteraction between the arms. the number density of arms in th ropriate state for a HB
This interaction must be finite, because the angle changege umber density of arms € appropriate state for a Hb,

with T, consistent withab initio calculations[25] and mo-

lecular dynamics simulationi26]. Hence, we introduce the n,=>, Sy 1, (12
intramolecular(IM) term[27,2§ @iy Y
and the orientational order parametege[0,1], i.e.,
HlME_‘JUZ n; ; 50—ik'0il’ (4)
b kD _1+m _1+(g—-1m, 13

where for each of thé'C,=6 different pairs k,l); of the =72 M= q :
arms of a moleculei, with the appropriate orientation _ _
(5"ik"’iI:1)’ there is an energy gaj]'lr>0. Hence, the molar densmyEnN/V IS

For J,=0, we recover the model of Ref22], which 14m
predicts the singularity-free scenario, and where the HBs are (14)

L9 ; . L Iy
uncorrelated, inhibiting the orientational long-range order. Vo T 4UnsPHB
We study the general case with finitg, by using(i) a mean

_ 2 . . _
field approximation andii) MC simulations. Herev=V,/N, andp,s=n"p, is the probability of form

ing a HB between two nn molecules, wheréis the prob-
ability of finding two nn molecules, and
IIl. THE EQUATION OF STATE APPROACH y 9

The equation of state of our system is implicitly given by

1—ng)2_ 1+(q—1)m?

g1 q 9

pUEniﬂq—l)(
U-TS+ PV_’“Z i ®) is the probability of having the facing arms of the two mol-
ecules in the appropriate orientational state for a HB.
where For T—» we expectm,—0, hencep,—1/q. For T
—0, the finite values ok, J, andJ, allow us to assume a
U=H+Hy (6) cooperative effecand an orientational long-range order in a

is the total internal energy and is the chemical potential. preferred state, witim,— 1, hencep,—1.

From Egs.(1)—(4), we rewrite the equation of state as
B. The cooperative effect

TS-PVy=—2, Gi'j(p,g)ninj_E wi(on,. (7) To include the cooperative effect, we consider that each
(. i arm gy; interacts with a mean field generated by the other
three arms on the same molecule, in addition to the effective
Here interactionJ’ (P) with the facing armo; on a nn molecule.

, _ , Since the energy is minimized when the arms are in the same
€j(P,o)=€+J (P)é"'ij i (8) orientational state, the system breaks the symmetry ordering
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in the preferred Potts state. Hence, we chdopeoportional
ton,, toJ,, and to the number of arms generatimg.e.,

h=3J,n,. (16)

Our results do not depend on this choice fprand are re-
covered using higher-order approximations for

We assume
pa':<5a'ij ,a'ji>h ’ (17)

i.e., we assume thab, [Eqg. (15)], for two nn molecules

interacting with the surrounding, coincides with the probabil-

ity (35, .0, 0. for the facing arms ;; ;) of two isolated

nn molecules, of being in the same orientational state under i

the action of the fieldh. By definition,

1
<§"ii ’Uii>h=§h aij Tji 5"” 7ji exp{[J (P)é"ij Tji

+ h(5gij,1+ 50'ji,l)]/(kBT)}

2wm0+ q—2

-1
=|1+(g—1) )] , (18

w(w? +gq—1

where the rightmost side is the explicit calculation of the left

side with partition functionz,,. Here the sum is over all the
configurations of the two variables; , oj; , and the symbols

are
F{J’(P)}
W=eX ,

kgT
Wi, = exp[

J(P) 50_” i + h(5,,ij 1T 5{7”,1)
kgT

3J0[1+m0(q_1)]

qkgT ’ 19

|

with the Boltzmann constardz chosen as unitary hereafter.
As expected fopp,,, also<5,,ij ,Uji)h—>1/q for T—o and

(50” ﬁji>h_’1 for T—0. Numerically we find that the solu-
tion of Eq. (17) is mi(T,P)=0 for P>P,,,(T), and
m*(T,P)>0 for P<P,,(T), wherem*(T,P)=0 corre-
sponds to the lack of orientational order amd (T,P)>0

Z= 2 exr{

Tij Tji

corresponds to the orientational long-range order. In thi

mean-field approximatior?,,,,{(T) turns out to be well de-
scribed by a decreasing linear functionTof

C. The Gibbs free energy

PHYSICAL REVIEW E 67, 011103 (2003

u
nN

u —2[en+(IN+3J3,)p,] (21

is the molar energy as derived by Eq$)—(4) and Eq.(6),
with the mean-field approximations

> ninj=n2,

()

E ninjélf-- 0'-~:n2p0'! (22)
{0 wel
2 niE 5aik,oi|:npo;
(k,D;
v=1/p is the molar volume derived by EqL4);
_SwtS,
s=—X (23
is the molar entropy,
— ——=nInn+(1-n)in(1-n), (24

keN

1-n} |
a-1/"

are the standard mean-field expressions for the entropy of
variables ;) and for the entropy of AN ¢state Potts vari-
ables for the arms, respectively, amifl is the number density
n, of H-bonded arm¢$Eqg. (13)] evaluated imm’ (T,P).

o

4kgnN

1—n’;)

—n* * _
=nj Inn} +(q 1)( -1

D. The mean-field results

By numerically minimizingg(T,P) with respect tan and
m* with the constraint tham® is solution of Eq.(17), we
find the equilibrium values ofm(T,P) and m*(T,P). By
using Eq.(14), we find p(T,P) at equilibrium(Fig. ).

At high P, the mean-field theory predicts thafT) in-
creases wheil decreasesFig. 1). At low P, for decreasing
T, the theory predicté) a discontinuity inp(T), correspond-
ing to the liquid-gas first-order phase transition ending in the
liquid-gas critical pointC (Fig. 2); (ii) decreasing TMD with
increasingP; and (iii) a discontinuity inp(T) at low T, dis-
appearing at loweP.

The first two predictions are consistent with either the
singularity-free scenario or the liquid-liquid phase transition
hypothesis, while the third prediction is consistent only with
the HDL-LDL first-order phase transition hypothesized in the
latter scenario. In particular, the smooth disappearing of the
discontinuity at lowerP is consistent with a phase transition
line, with a negative slope in the-T phase diagram, ending

Next, we write a mean-field expression for the molarin a HDL-LDL critical point C’ (Fig. 2).

Gibbs free energy
g=u—-Ts+Pv=pu (20

as a function of the two order parameterandm? , where

IV. THE OFF-LATTICE MODEL

To show that our mean-field predictions are robust, we
now use a completely different approach based on an off-
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FIG. 1. The mean-field isobaric molar densitys function ofT FIG. 2. TheP-T phase diagram for the model with the param-

for (top to bottom Pvo/e=1.6, 1.4, 1.3, 1.275, 1.0, 0.9, 0.8, 0.7, gters in Fig. 1. The squares and the circles are estimated from the
06, 0.5,0.4, 0.3, 0.25,0.2, 0.15, 0.1, 0, for the model with paramyiscontinuities and the maxima in Fig. 1, respectively. Since the
etersq=6, J/e=0.5, J,/e=0.05, andvyg/vo=0.5. (@) For 0.1 gymmetry between the two phases separated by a critical point must
=Puv,/e=0.25, by decreasing, p has a discontinuity at hig e preserved, the high-discontinuity shows a gas-liquid phase
[from a low value(in the gas phaseto a high value(in the liquid  yapsition, while the lowF discontinuity shows the HDL-LDL
phasg], thenp has a maximum followed by a smooth saturation t0 y,,ce transition. The lines are guides for the eyes. The liquid-gas
the finite valuepyg=0.5, corresponding to the full-H-bonded ,,56 transition line ends in the critical poidt The HDL-LDL
liquid. For 0.3=Pv,/e=<0.4, by decreasing, there is no discon-  phase transition line, with negative slope, ends in the critical point

tinuity in p, but there is a maximum ip and the saturation toyg . C’. The dashed line corresponds to the TMD line.
For 0.5sPuvy/e=<1.2, by decreasind, p has a maximum and then

a discontinuity topyg . For 1.25<Pv,/e<1.6, p has only a maxi-
mum, and for higheP, p regularly increases by decreasig(b)
Blowup of the lowT region. Both discontinuities reported show a
first-order phase transition, each ending in a critical p@ng. 2).

whereR,= v, is the hard-core diameter of each molecule.
In analogy with the Eq(1), we consider this off-lattice van
der Waals energy independent of the HB expansion, so in
Uw(r), we use

lattice (OL) model representing a system with a homoge- I ol iren
neous distribution of molecules in the available volume r=vVo /N. @7
which we divide inN equivalent cells of volum&//N.

As a consequence of the homogeneity of the system, for The Monte Carlo simulation
each cell, theN degrges of occupancy freedomX'are ;et to We perform MC simulations, in two dimensiofiad], at
n;=1. In analogy with Eq(2), the total volumeV is defined constan, P, andT, and variable/ (N-P-T ensemblgwith
as Ne[10%10']. The MC dynamics consists in updating the

variableso; and the variable/oo", accepting the new state

with probability exp—(AUy+PAV/KsT)] if AU+PAV>0,

or with probability 1 if AU+PAV<0. HereAU=A(Uyy
d +H,u), andAV are the changes of total internal energy and
total volume, Eq.(25), respectively, after the update. Our
results for the average densip/'“=N/V, averaged over
6x 10° MC steps after 1.2 10° MC steps of thermalization
at eachT, are qualitatively consistent with the mean-field
prediction(Fig. 3).

By MC simulations, we find(i) for J,=0, no liquid-

V=V "+ Nysvys . (25)

HereNyg andovyg are defined as in Eg$2) and (3), but,
different from the lattice case, the volunv§"- associate
with the total volume of the cells without HBs is a continu-
ous variable with the constraing)“=Nuv,, wherev, is the
hard-core volume of a molecule.

Also, following the lattice model, the molecules have four
arms described by foug-state variablesr;;, with the HB

!nteractlon defl_ned by_the second term " ) a_nd the liquid phase transition and the TMD line, consistent with
intramolecular interaction by Edq4). These interactions are mean-field in Ref[22]: (ii) for J>J. for anyP in the liquid
both independent of the distance among first-neighbor mol- k o y q

? . phase, afl below the TMD line, a discontinuity in density,
ecules, and depend only on the arms orientatign suggesting a first-order phase transition along a line with a
In this off-lattice model, the average distance between twg 99 9 P 9

. . . - _hegative slope in thé>-T phase diagram, consistent with
tme?rIT?(i:rl]JIEz(r()ll)sva;it(;]ontlnuous variable, so we replace the fIrStmean field ford, — [27.28; (i) for 0<J_ <J. a phase

transition line ending in a critical poin€’ (Fig. 4), and

© for r<R, occurring at increasing® and decreasing for decreasing

ERt

N
(26) To verify that the jumps found in the MC density are
marking a first-order phase transition, instead of a narrow

Uw(r)=

€ for r>Ry,
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) increases linearly With the nu_mber of particlsat a first-
order phase transitiof80], while at a second order phase

transitionKT#* is proportional to bottN and the fluctuation

of the ordering parameter, scaling as a powerNof31].

e Therefore, the finite size scaling analysiskf*{(N) allows

N\ 074 ¢ us to discriminate between a continuous and a discontinuous

0.84 r

3 phase transition.

To estimate the maximum with a great precision, we use a
continuousT algorithm, the histogram reweighting method
[32]. By checking the minimumT and the maximumP
where the behavior d{T'*{N) fails to be linear, we estimate
the critical point atTc//e=0.045-0.005 and Pcivgle
=0.841+0.042 forN— (inset of Fig. 4.

Next, we obtain the coexisting lines by extrapolating to

MC

o
kY
T e

% Vog4 | |

Density p

o
N
T

o054 |

0 ; 144 L i N— o the valuesP(T,N) corresponding t&T#{(N) at fixed
0 1 2 0 0.1 02 T, both forT<T. andT<T¢, . Furthermore, our results are
Temperature T/e Temperature T/e consistent with the necessary condition thatki§&X(T) line

FIG. 3. MC isobaric densitpM°(T) for N=10"* molecules, for emanates from the critical poif22,33, both forT>Tc: and
' for T>Tc (Fig. 4.

the off-lattice model with parameters as in Fig. 1. We show only the
isobars for(bottom to top Pv,/e=0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,
0.9,0.95,0.975,1,1.1a) The qualitative behavior is as described in V. DISCUSSION AND CONCLUSIONS

Fig. 1. (b) Blowup of the lowT region. The mean-field and the MC results for our waterlike fluid

model for a finite intramolecular interactiah, show quali-
mt'atively the same phase diagram. In both approaches the
TMD line decreases with increasirigy consistent with the
1 ( &V) experiments[4]. In particular, both approaches predict a
T

continuous phase transition, we study the isothermal co
pressibility

Ki=— v (28  first-order phase transition in the liquid phase, occurring at
low T and at a pressut@,,T) decreasing for increasing
For J,<J, we find that the first-order phase transition line
ends in a critical point, separatirfgy necessitytwo phases
with the same symmetry, in this case two liquighDL and
LDL) being the critical point in the liquid phase. Three con-
2 2 siderations are in order here.
(0°K1dV?)|1>0, (29 The first considerationis related to the comparison with
the result of Ref[22], here recovered fak,=0. The Sastry
et al. model[22], upon HB formation, accounts fdr) inter-
molecular orientational correlatiqiq. (1)]; (ii) local expan-
sion with lowering temperaturfeq. (2)]; (i) anticorrelation
14 . 075 ‘ betweenV and S because the formation of HBs decreases
EC 0 Temperature T/e 0.05 the number of possible orientational configurations for the
- system, hence the entroj$/decreases for increasindyg,
i.e., for increasingV. This is expected in a system with a
density anomaly, because&\(/dT)p<0 implies @S/dV)+
<0. Finally, the Sastryet al. model assumes the arms of a
0 ‘ . molecule completely independent, (=0), and predicts the
0 1 2 singularity-free scenario.
Temperature T/e We tested, by preliminary MC calculations, that fiy
—0 the HDL-LDL critical pointC" moves to loweiT and to

JP

Its maximumKT'®*, where

(0K1/dV)|+=0,

[

o
©
o

15 |

g

Pressure Pv,/c

Pressure Pv /e

FIG. 4. P-T phase diagram calculated by MC simulations, for - . - .
the off-lattice model as in Fig. 3. Squares are bhe -~ estimates Pma{T=0). In particular, the phase transition disappears at

for the points on the coexisting lines. Full circles are the criticaIT:O_for‘th:O' while t_he e_ffeCt of the decreasitg on the
points C and C’. Points on the TMD lingopen circles are esti- Iocat_lon of the TMD Im_e is weak. Although these results
mated from theN— extrapolation of the maxima gf"(T,N). require a longer analysis, beyond the scope of the present
Dashed lines indicate the position Kf"® emanating fromC and ~ WOrK, they show that the predictions of R22] are recov-

C’. Full lines are guides for the eyes. Where not shown, errors aré€d in the limitJ,= 0, confirming the validity of our MC
smaller than the symbol size. Inset: blowup of the HDL-LDL phase@pproact34]. We, therefore, conclude that in this model the
transition region. The full line is given by the empirical expressionpresence of a finitd,, is responsible for the appearance of
Pmax=Po—[a/(To—T)], wherePyo/e=1.087,av,/e?=0.006, the first-order phase transition, with a possible HDL-LDL
andT,/e=0.07. critical pointC’.
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TABLE I. Characteristic temperatures and pressures for real water and for the present model, for the gas-liquid criticB peit (
the TMD at ambient pressurd@t,P*), and the glass temperatlfg at ambient pressure. The ratiB$/P¢ andT,/T¢ are not available for
the model. We assume that the correspondin@® Kalues are valid also for the model, and we use these values to esBihatedT,,
respectively, for the model. Temperatures are measured in K f@r &hd ine for the model. Pressures are measured in MPa @ &nd
in e/v, for the model.

Pc Te p* P*/Pc T* T/ Te T, Ty/Te
H,O 22.064 647.14  0.1013Ref.[35]) 4.6x10°% 277 (Ref.[35) 0.428 136(Ref.[36])  0.21
Model  0.650.1 2.0+0.2 ~2.76x107% 0.7+0.1 0.35-0.06 ~0.42

The second consideratiois related to the possibility that model is representative of the thermodynamic properties of
this low-T HDL-LDL phase transition is preempted by inevi- the real system. This result is analogous to what has been
table freezing in real water. Recent analysis of the realistigroposed for silic@15], another liquid with density anomaly,
model for water Stillinger-2(ST2 [15] suggests that the suggesting that the present model could provide a general
HDL-LDL critical point may occur above the glass tempera_theoretice_ll frameyvork for _anomalous molecular liquids.
ture T4, though as yet still outside the easily accessible ex- The third considerationis about the role of the tetrahe-
perimental range. drality in determining the properties of anomalous liquids.

We compare our MC results with data for real water.For the present model we do not consider a tetrahedral ge-
From the location of the liquid-gas critical poinT§,Pc) ~ ©ometry in the two-dimensional MC approach, and the geom-
and the TMD line at ambient pressurE*(P*) (Table ), we  etry is not explicitly defined in th_e mear!—ﬂeld approgch.
find the ratiosP*/P. andT*/T. in real water. By assuming Nevertheless, our results are consistent with the experimen-

that the sam®* /P holds in our MC case, we calculate the tally accessible phase diagram of real water, suggesting that
correspondingP* ~ (2.76x 10™4)(elvy) in our model, and  the tetrahedral network is not an essential feature for the

then we estimate th&* corresponding t®* from the TMD ~ @nomalous behavior of waterlike liquids.
line in the MC phase diagrafiFig. 4). In this way, we find a This conclusion is consistent with what has been observed
ratio T*/T¢ from the MC results, which is consistent with PY Angell in Ref.[7], and is well described by a general
the real water data, suggesting the validity of our assumptiofOOPerative model6] with a generic drive to phase separate
on P*/Pe. the excitations into distinct regions of spa@iustering. In
Therefore, we use the same kind of assumption also t§4" model the drive is given by the intramolecular interaction
estimate the glass temperatdFg for our phase diagram. In that mimics the geometrical drive in tetrahedral liquids even
particular, from real water data we obtain the rafig/ T at if it is not nec_:essanly I|m|Fed to the tetrahedra}l case.
ambient pressure and, assuming that it holds also for our '" conclusion, we studied the effect of an intramolecular
model, we estimatd,/e~0.42 atPvy/e~2.76x 104 for  InteractionJ, in a model for anomalous molecular liquids

the MC phase diagram. Hence, for our model with the paWith & mean-field approach, valid faf,>0, and with an
rameters chosen in this paper, T§>Tc, i.e., the HDL- off-lattice M(.:.S|mulalt|on. Fod,>0 we found.a HDL-LDL
LDL critical temperature aPc =0.841/v, is below the Phase transition while our MC results confirm that fiy
glass temperature a@®* ~(2.76x 10 %)(e/v,). From the _=0 the smgularlty-free scenario hol@d2]. Hence, f[he tw_o
study of the phase diagram of real waldt, it is reasonable m_terpretatlons orlglnate from_ the same me_chanlsn_"n with a
to expect thafT,(P) decreases for increasirgy therefore dlffergnt hypothess on the mtramo'lec'ular. interaction; the
our analysis does not exclude tHg: is aboveT,(Pc). latter is strictly valid only forJ_U=0. W|th|r_1 this framework,
However, by considering a very large,, such that the the most rea_s_onable scenario for water mcludes a HDL-ITDL
HDL-LDL critical pressure is~(2.76x 10" %) (elv,), we phase transition, probably hindered by me_vnqble freezmg.
can compardc, andT, at the same pressuRe*. Our pre- Our results also suggest that the tetrghedrallty is not _essgnnal
liminary results show that the HDL-LDL critical temperature to understand the anomalous behavior in waterlike liquids.
is in this case very close 0 .

As a consequence of this analysis, our model supports the
possibility that the HDL-LDL critical point is located deep ~ We thank C. A. Angell, M. Barbosa, A. Scala, F. Scior-
into the supercooled region, below or close to the glass temtino, and M. Yamada for valuable discussions and the NSF
perature, depending on the value &f. Therefore, the (Grant No. CHE009689Xor support. M. |. Marqus thanks
liquid-liquid phase transition could be preempted if ourthe financial support of the Spanish Ministry of Education.
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