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Intramolecular coupling as a mechanism for a liquid-liquid phase transition
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We study a model for water with a tunable intramolecular interactionJs , using mean-field theory and
off-lattice Monte Carlo simulations. For allJs>0, the model displays a temperature of maximum density. For
a finite intramolecular interactionJs.0, our calculations support the presence of a liquid-liquid phase tran-
sition with a possible liquid-liquid critical point for water, likely preempted by inevitable freezing. ForJ
50, the liquid-liquid critical point disappears atT50.
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I. INTRODUCTION

Water has an anomalous density decrease for isob
cooling below a temperature of maximum density~TMD!
@1#. Other thermodynamic anomalies—such as the rapid
crease of the response functions—can be fit by power l
with apparent singularity well below the freezing tempe
ture @1#. Several interpretations for this behavior have be
proposed, but it is unclear which describes water or if any
them describes other anomalous liquids including, among
others, S, Se, Te, Cs, Si, Ge, I, C, P, SiO2, and BeF2 @2–18#.

One of the interpretations, thestability-limit conjecture
@19#, assumes that the limits of stability of the superheat
supercooled, and stretched liquid form a single retrac
spinodal line in the pressure-temperature (P-T) plane. This
scenario predicts a divergence of the response function
the supercooled liquid-to-liquid spinodal@20#.

The singularity-freeinterpretation@21,22# envisages tha
the experimental data represent apparent singularities, du
anticorrelated fluctuations of volume and entropy. In this s
nario, these fluctuations are responsible for the TMD line

The liquid-liquid phase transitionhypothesis@23# pro-
poses the presence of a first-order line of phase transit
separating two liquid phases differing in density, the hig
density liquid ~HDL! and the low-density liquid~LDL !. In
this scenario the HDL-LDL phase transition, possibly end
in a liquid-liquid critical point, is responsible for the anom
lies.

Although Refs.@8,9#, by tuning parameters of the corre
sponding models, predict smooth transitions from the diff
ent scenarios, to help elucidate which is the most reason
description for water, we consider a model fluid withinter-
molecular and intramolecular interactions. This model, in
the particular case of a zero intramolecular interaction,
covers the model introduced by Sastryet al. @22#, which pre-
dicts the singularity-free scenario. Our aim is to understa
how the presence of an intramolecular interaction chan
this prediction.

We perform analytic calculations in a mean-field appro

*Present address: SMC-INFM, Dipartimento di Fisica, Univers`
‘‘La Sapienza,’’ P.le A. Moro 2, I-00185 Roma, Italy.
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mation and an off-lattice Monte Carlo~MC! simulation. Our
results show that a nonzero intramolecular interaction gi
rise to a HDL-LDL phase transition, with a possible critic
point @23#, with the liquid-liquid critical temperature de
creasing to zero and vanishing with the intramolecular int
action. Therefore, at least for this model, the singularity-fr
scenario is obtained only in the particular case of a z
intramolecular interaction, while for a finite intramolecul
interaction the HDL-LDL phase transition is predicted. Ge
eral considerations suggest that the liquid-liquid phase tr
sition for water could occur below the glass temperature,
outside the accessible experimental range.

The paper is organized as follows. In Sec. II, we defi
the model defined on a lattice. In Sec. III, we describe
equation of state approach in the mean-field approximat
and present the mean-field results. In Sec. IV we introd
the off-lattice model, describe the MC approach, and sh
the simulation results. In Sec. V, we discuss our results
give the conclusions.

II. THE LATTICE MODEL

The fluid is represented by partitioning the system intoN
cells of equal size. A variableni is associated with each ce
i 51, . . . ,N, with ni51 if the cell is occupied by a mol-
ecule,ni50 otherwise.

The intermolecular interaction@22#

H[2e(
^ i , j &

ninj2J(
^ i , j &

ninjds i j ,s j i
~1!

has a first term describing the van der Waals attraction
tween molecules, wheree.0 is the energy gain for two
nearest neighbor~nn! occupied cells and the sum is over a
the possible nn cells.

The second term in Eq.~1! accounts for the dynamic net
work of hydrogen bonds~HBs! formed by liquid water, with
each molecule typically bonded to four other molecules
low T @1#, with an energy gainJ.0 per HB. We consider
cells with size of a water molecule and with fourarms, one
per possible HB. For the molecule in the celli, the orienta-
tion of the arm facing the cellj is represented by a Pott
variable s i j 51, . . . ,q, with a finite numberq of possible

a

©2003 The American Physical Society03-1



if

on
ar

e

th
ag
le

.
g

a
e

by

.

e

the

lin-

B,

l-

a

ch
r
tive

ame
ring
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orientations. Two molecules in nn cells form a HB only
they are correctly oriented@1#, i.e., by assumption@22#, if
ds i j ,s j i

51 (da,b51 if a5b andda,b50 otherwise!.
The experimental oxygen-oxygen correlation functi

shows that a HB is formed if and only if the intermolecul
distance is within a characteristic range@1#. Hence, we as-
sume that the formation of a HB leads to a local volum
expansion@22#

V[V01NHBvHB , ~2!

whereV0 is the volume of the liquid with no HBs;

NHB[(
^ i , j &

ninjds
i j

,s
j i

~3!

is the total number of HBs in the system, andvHB is the
specific volume per HB.

Experiments show that the relative orientations of
arms of a water molecule are correlated, with the aver
H-O-H angle equal to 104.45° in an isolated molecu
104.474° in the gas, and 106° in the high-T liquid @24#,
suggesting anintramolecular interaction between the arms
This interaction must be finite, because the angle chan
with T, consistent withab initio calculations@25# and mo-
lecular dynamics simulations@26#. Hence, we introduce the
intramolecular~IM ! term @27,28#

HIM [2Js(
i

ni (
(k,l ) i

ds ik ,s i l
, ~4!

where for each of the4C256 different pairs (k,l ) i of the
arms of a moleculei, with the appropriate orientation
(ds ik ,s i l

51), there is an energy gainJs.0.

For Js50, we recover the model of Ref.@22#, which
predicts the singularity-free scenario, and where the HBs
uncorrelated, inhibiting the orientational long-range ord
We study the general case with finiteJs , by using~i! a mean
field approximation and~ii ! MC simulations.

III. THE EQUATION OF STATE APPROACH

The equation of state of our system is implicitly given

U2TS1PV5m(
i

ni , ~5!

where

U[H1HIM ~6!

is the total internal energy andm is the chemical potential
From Eqs.~1!–~4!, we rewrite the equation of state as

TS2PV052(
^ i , j &

e i j8 ~P,s!ninj2(
i

m i8~s!ni . ~7!

Here

e i j8 ~P,s![e1J8~P!ds i j ,s j i
~8!
01110
e
e
,

es

re
r.

is the effective attraction energy, depending onP and the
local arm configuration,

J8~P![J2PvHB ~9!

is the effective HB interaction energy due to the HB volum
increase, and

m i8~s![m1Js (
(k,l ) i

dski ,s l i
~10!

is the effective local chemical potential depending on
local arm configuration.

A. The mean-field approximation

The mean-field approximation consists in assuming a
ear relation between the number density of liquid cells,

n[
1

N(
i

ni , ~11!

and the density order parametermP@21,1#, and between
the number density of arms in the appropriate state for a H

ns[(
^ i , j &

ds
i j

,1 , ~12!

and the orientational order parametermsP@0,1#, i.e.,

n5
11m

2
, ns5

11~q21!ms

q
. ~13!

Hence, the molar densityr[nN/V is

r5
11m

2v014vHBpHB
. ~14!

Herev0[V0 /N, andpHB[n2ps is the probability of form-
ing a HB between two nn molecules, wheren2 is the prob-
ability of finding two nn molecules, and

ps[ns
21~q21!S 12ns

q21 D 2

5
11~q21!ms

2

q
~15!

is the probability of having the facing arms of the two mo
ecules in the appropriate orientational state for a HB.

For T→` we expectms→0, henceps→1/q. For T
→0, the finite values ofe, J, andJs allow us to assume a
cooperative effectand an orientational long-range order in
preferred state, withms→1, henceps→1.

B. The cooperative effect

To include the cooperative effect, we consider that ea
arm s i j interacts with a mean fieldh generated by the othe
three arms on the same molecule, in addition to the effec
interactionJ8(P) with the facing arms j i on a nn molecule.
Since the energy is minimized when the arms are in the s
orientational state, the system breaks the symmetry orde
3-2
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in the preferred Potts state. Hence, we chooseh proportional
to ns , to Js , and to the number of arms generatingh, i.e.,

h[3Jsns . ~16!

Our results do not depend on this choice forh, and are re-
covered using higher-order approximations forh.

We assume

ps5^ds i j ,s j i
&h , ~17!

i.e., we assume thatps @Eq. ~15!#, for two nn molecules
interacting with the surrounding, coincides with the probab
ity ^ds i j ,s j i

&h , for the facing arms (s i j ,s j i ) of two isolated

nn molecules, of being in the same orientational state un
the action of the fieldh. By definition,

^ds i j ,s j i
&h[

1

Zh
(

s i j ,s j i

ds i j ,s j i
exp$@J8~P!ds i j ,s j i

1h~ds i j ,1
1ds j i ,1

!#/~kBT!%

5F 11~q21!
2wms

1q22

w~wms

2 1q21!
G21

, ~18!

where the rightmost side is the explicit calculation of the l
side with partition functionZh . Here the sum is over all the
configurations of the two variabless i j , s j i , and the symbols
are

w[expFJ8~P!

kBT G ,
wms

[expH 3Js@11ms~q21!#

qkBT J , ~19!

Zh[ (
s i j ,s j i

expFJ8~P!ds i j ,s j i
1h~ds i j ,1

1ds j i ,1
!

kBT
G ,

with the Boltzmann constantkB chosen as unitary hereafte
As expected forps , also^ds i j ,s j i

&h→1/q for T→` and

^ds i j ,s j i
&h→1 for T→0. Numerically we find that the solu

tion of Eq. ~17! is ms* (T,P)50 for P.Pmax(T), and
ms* (T,P).0 for P<Pmax(T), where ms* (T,P)50 corre-
sponds to the lack of orientational order andms* (T,P).0
corresponds to the orientational long-range order. In
mean-field approximation,Pmax(T) turns out to be well de-
scribed by a decreasing linear function ofT.

C. The Gibbs free energy

Next, we write a mean-field expression for the mo
Gibbs free energy

g[u2Ts1Pv5m ~20!

as a function of the two order parametersm andms* , where
01110
-
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u[
U

nN
522@en1~Jn13Js!ps# ~21!

is the molar energy as derived by Eqs.~1!–~4! and Eq.~6!,
with the mean-field approximations

(
^ i , j &

ninj5n2,

(
^ i , j &

ninjds i j ,s j i
5n2ps , ~22!

(
i

ni (
(k,l ) i

ds ik ,s i l
5nps ;

v[1/r is the molar volume derived by Eq.~14!;

s[
SW1Ss

nN
~23!

is the molar entropy,

2
SW

kBN
5n ln n1~12n!ln~12n!, ~24!

2
Ss

4kBnN
5ns* ln ns* 1~q21!S 12ns*

q21 D lnS 12ns*

q21 D
are the standard mean-field expressions for the entropyN
variables (ni) and for the entropy of 4nN q-state Potts vari-
ables for the arms, respectively, andns* is the number density
ns of H-bonded arms@Eq. ~13!# evaluated inms* (T,P).

D. The mean-field results

By numerically minimizingg(T,P) with respect tom and
ms* with the constraint thatms* is solution of Eq.~17!, we
find the equilibrium values ofm(T,P) and ms* (T,P). By
using Eq.~14!, we findr(T,P) at equilibrium~Fig. 1!.

At high P, the mean-field theory predicts thatr(T) in-
creases whenT decreases~Fig. 1!. At low P, for decreasing
T, the theory predicts~i! a discontinuity inr(T), correspond-
ing to the liquid-gas first-order phase transition ending in
liquid-gas critical pointC ~Fig. 2!; ~ii ! decreasing TMD with
increasingP; and ~iii ! a discontinuity inr(T) at low T, dis-
appearing at lowerP.

The first two predictions are consistent with either t
singularity-free scenario or the liquid-liquid phase transiti
hypothesis, while the third prediction is consistent only w
the HDL-LDL first-order phase transition hypothesized in t
latter scenario. In particular, the smooth disappearing of
discontinuity at lowerP is consistent with a phase transitio
line, with a negative slope in theP-T phase diagram, ending
in a HDL-LDL critical point C8 ~Fig. 2!.

IV. THE OFF-LATTICE MODEL

To show that our mean-field predictions are robust,
now use a completely different approach based on an
3-3
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lattice ~OL! model representing a system with a homog
neous distribution of molecules in the available volumeV,
which we divide inN equivalent cells of volumeV/N.

As a consequence of the homogeneity of the system,
each cell, theN degrees of occupancy freedom (ni) are set to
ni51. In analogy with Eq.~2!, the total volumeV is defined
as

V[V0
OL1NHBvHB . ~25!

Here NHB and vHB are defined as in Eqs.~2! and ~3!, but,
different from the lattice case, the volumeV0

OL associated
with the total volume of the cells without HBs is a contin
ous variable with the constrainsV0

OL>Nv0, wherev0 is the
hard-core volume of a molecule.

Also, following the lattice model, the molecules have fo
arms described by fourq-state variabless i j , with the HB
interaction defined by the second term in Eq.~1! and the
intramolecular interaction by Eq.~4!. These interactions ar
both independent of the distance among first-neighbor m
ecules, and depend only on the arms orientations i j .

In this off-lattice model, the average distance between
molecules~r! is a continuous variable, so we replace the fi
term in Eq.~1! with

UW~r ![H ` for r<R0

eF S R0

r D 12

2S R0

r D 6G for r .R0 ,
~26!

FIG. 1. The mean-field isobaric molar densityr as function ofT
for ~top to bottom! Pv0 /e51.6, 1.4, 1.3, 1.275, 1.0, 0.9, 0.8, 0.
0.6, 0.5, 0.4, 0.3, 0.25, 0.2, 0.15, 0.1, 0, for the model with para
etersq56, J/e50.5, Js /e50.05, andvHB /v050.5. ~a! For 0.1
&Pv0 /e&0.25, by decreasingT, r has a discontinuity at highT
@from a low value~in the gas phase! to a high value~in the liquid
phase!#, thenr has a maximum followed by a smooth saturation
the finite valuerHB50.5/v0 corresponding to the full-H-bonde
liquid. For 0.3&Pv0 /e&0.4, by decreasingT, there is no discon-
tinuity in r, but there is a maximum inr and the saturation torHB .
For 0.5&Pv0 /e&1.2, by decreasingT, r has a maximum and the
a discontinuity torHB . For 1.25&Pv0 /e&1.6, r has only a maxi-
mum, and for higherP, r regularly increases by decreasingT. ~b!
Blowup of the low-T region. Both discontinuities reported show
first-order phase transition, each ending in a critical point~Fig. 2!.
01110
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whereR0[Av0 is the hard-core diameter of each molecu
In analogy with the Eq.~1!, we consider this off-lattice van
der Waals energy independent of the HB expansion, so
UW(r ), we use

r[AV0
OL/N. ~27!

The Monte Carlo simulation

We perform MC simulations, in two dimensions@29#, at
constantN, P, andT, and variableV (N-P-T ensemble! with
NP@102,104#. The MC dynamics consists in updating th
variabless i j and the variableV0

OL , accepting the new stat
with probability exp@2(DUW1PDV/kBT)# if DU1PDV.0,
or with probability 1 if DU1PDV,0. HereDU[D(UW
1HIM ), andDV are the changes of total internal energy a
total volume, Eq.~25!, respectively, after the update. Ou
results for the average densityrMC[N/V, averaged over
63105 MC steps after 1.23105 MC steps of thermalization
at eachT, are qualitatively consistent with the mean-fie
prediction~Fig. 3!.

By MC simulations, we find~i! for Js50, no liquid-
liquid phase transition and the TMD line, consistent w
mean-field in Ref.@22#; ~ii ! for Js@J, for anyP in the liquid
phase, atT below the TMD line, a discontinuity in density
suggesting a first-order phase transition along a line wit
negative slope in theP-T phase diagram, consistent wit
mean field forJs→` @27,28#; ~iii ! for 0,Js,J, a phase
transition line ending in a critical pointC8 ~Fig. 4!, and
occurring at increasingP and decreasingT for decreasing
Js .

To verify that the jumps found in the MC density a
marking a first-order phase transition, instead of a narr

-

FIG. 2. TheP-T phase diagram for the model with the param
eters in Fig. 1. The squares and the circles are estimated from
discontinuities and the maxima in Fig. 1, respectively. Since
symmetry between the two phases separated by a critical point
be preserved, the high-T discontinuity shows a gas-liquid phas
transition, while the low-T discontinuity shows the HDL-LDL
phase transition. The lines are guides for the eyes. The liquid
phase transition line ends in the critical pointC. The HDL-LDL
phase transition line, with negative slope, ends in the critical po
C8. The dashed line corresponds to the TMD line.
3-4
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continuous phase transition, we study the isothermal c
pressibility

KT[2
1

V S ]V

]PD
T

. ~28!

Its maximumKT
max, where

~]KT /]V!uT50,

~]2KT /]V2!uT.0, ~29!

FIG. 3. MC isobaric densityrMC(T) for N5104 molecules, for
the off-lattice model with parameters as in Fig. 1. We show only
isobars for~bottom to top! Pv0 /e50.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8
0.9,0.95,0.975,1,1.1.~a! The qualitative behavior is as described
Fig. 1. ~b! Blowup of the low-T region.

FIG. 4. P-T phase diagram calculated by MC simulations, f
the off-lattice model as in Fig. 3. Squares are theN→` estimates
for the points on the coexisting lines. Full circles are the criti
points C and C8. Points on the TMD line~open circles! are esti-
mated from theN→` extrapolation of the maxima ofrMC(T,N).
Dashed lines indicate the position ofKT

max emanating fromC and
C8. Full lines are guides for the eyes. Where not shown, errors
smaller than the symbol size. Inset: blowup of the HDL-LDL pha
transition region. The full line is given by the empirical expressi
Pmax5P02@a/(T02T)#, whereP0v0 /e51.087, av0 /e250.006,
andT0 /e50.07.
01110
-

increases linearly with the number of particlesN at a first-
order phase transition@30#, while at a second order phas
transitionKT

max is proportional to bothN and the fluctuation
of the ordering parameter, scaling as a power ofN @31#.
Therefore, the finite size scaling analysis onKT

max(N) allows
us to discriminate between a continuous and a discontinu
phase transition.

To estimate the maximum with a great precision, we us
continuousT algorithm, the histogram reweighting metho
@32#. By checking the minimumT and the maximumP
where the behavior ofKT

max(N) fails to be linear, we estimate
the critical point at TC8 /e50.04560.005 and PC8v0 /e
50.84160.042 forN→` ~inset of Fig. 4!.

Next, we obtain the coexisting lines by extrapolating
N→` the valuesP(T,N) corresponding toKT

max(N) at fixed
T, both forT<TC andT<TC8 . Furthermore, our results ar
consistent with the necessary condition that theKT

max(T) line
emanates from the critical point@22,33#, both forT.TC8 and
for T.TC ~Fig. 4!.

V. DISCUSSION AND CONCLUSIONS

The mean-field and the MC results for our waterlike flu
model for a finite intramolecular interactionJs show quali-
tatively the same phase diagram. In both approaches
TMD line decreases with increasingP, consistent with the
experiments@4#. In particular, both approaches predict
first-order phase transition in the liquid phase, occurring
low T and at a pressurePmax(T) decreasing for increasingT.
For Js,J, we find that the first-order phase transition lin
ends in a critical point, separating~by necessity! two phases
with the same symmetry, in this case two liquids~HDL and
LDL ! being the critical point in the liquid phase. Three co
siderations are in order here.

The first considerationis related to the comparison wit
the result of Ref.@22#, here recovered forJs50. The Sastry
et al. model@22#, upon HB formation, accounts for~i! inter-
molecular orientational correlation@Eq. ~1!#; ~ii ! local expan-
sion with lowering temperature@Eq. ~2!#; ~iii ! anticorrelation
betweenV and S, because the formation of HBs decreas
the number of possible orientational configurations for
system, hence the entropyS decreases for increasingNHB ,
i.e., for increasingV. This is expected in a system with
density anomaly, because (]V/]T)P,0 implies (]S/]V)T
,0. Finally, the Sastryet al. model assumes the arms of
molecule completely independent (Js50), and predicts the
singularity-free scenario.

We tested, by preliminary MC calculations, that forJs

→0 the HDL-LDL critical pointC8 moves to lowerT and to
Pmax(T50). In particular, the phase transition disappears
T50 for Js50, while the effect of the decreasingJs on the
location of the TMD line is weak. Although these resu
require a longer analysis, beyond the scope of the pre
work, they show that the predictions of Ref.@22# are recov-
ered in the limitJs50, confirming the validity of our MC
approach@34#. We, therefore, conclude that in this model th
presence of a finiteJs is responsible for the appearance
the first-order phase transition, with a possible HDL-LD
critical point C8.
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TABLE I. Characteristic temperatures and pressures for real water and for the present model, for the gas-liquid critical point (TC ,PC),
the TMD at ambient pressure (T* ,P* ), and the glass temperatureTg at ambient pressure. The ratiosP* /PC andTg /TC are not available for
the model. We assume that the corresponding H2O values are valid also for the model, and we use these values to estimateP* andTg ,
respectively, for the model. Temperatures are measured in K for H2O and ine for the model. Pressures are measured in MPa for H2O and
in e/v0 for the model.

PC TC P* P* /PC T* T* /TC Tg Tg /TC

H2O 22.064 647.14 0.10133~Ref. @35#! 4.631024 277 ~Ref. @35#! 0.428 136~Ref. @36#! 0.21
Model 0.660.1 2.060.2 ;2.7631024 0.760.1 0.3560.06 ;0.42
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The second considerationis related to the possibility tha
this low-T HDL-LDL phase transition is preempted by inev
table freezing in real water. Recent analysis of the reali
model for water Stillinger-2~ST2! @15# suggests that the
HDL-LDL critical point may occur above the glass temper
ture Tg , though as yet still outside the easily accessible
perimental range.

We compare our MC results with data for real wat
From the location of the liquid-gas critical point (TC ,PC)
and the TMD line at ambient pressure (T* ,P* ) ~Table I!, we
find the ratiosP* /PC andT* /TC in real water. By assuming
that the sameP* /PC holds in our MC case, we calculate th
correspondingP* ;(2.7631024)(e/v0) in our model, and
then we estimate theT* corresponding toP* from the TMD
line in the MC phase diagram~Fig. 4!. In this way, we find a
ratio T* /TC from the MC results, which is consistent wit
the real water data, suggesting the validity of our assump
on P* /PC .

Therefore, we use the same kind of assumption also
estimate the glass temperatureTg for our phase diagram. In
particular, from real water data we obtain the ratioTg /TC at
ambient pressure and, assuming that it holds also for
model, we estimateTg /e;0.42 atPv0 /e;2.7631024 for
the MC phase diagram. Hence, for our model with the
rameters chosen in this paper, isTg.TC8 , i.e., the HDL-
LDL critical temperature atPC8.0.841e/v0 is below the
glass temperature atP* ;(2.7631024)(e/v0). From the
study of the phase diagram of real water@4#, it is reasonable
to expect thatTg(P) decreases for increasingP, therefore
our analysis does not exclude thatTC8 is aboveTg(PC8).
However, by considering a very largeJs , such that the
HDL-LDL critical pressure is;(2.7631024)(e/v0), we
can compareTC8 andTg at the same pressureP* . Our pre-
liminary results show that the HDL-LDL critical temperatu
is in this case very close toTg .

As a consequence of this analysis, our model supports
possibility that the HDL-LDL critical point is located dee
into the supercooled region, below or close to the glass t
perature, depending on the value ofJs . Therefore, the
liquid-liquid phase transition could be preempted if o
-
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he
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model is representative of the thermodynamic properties
the real system. This result is analogous to what has b
proposed for silica@15#, another liquid with density anomaly
suggesting that the present model could provide a gen
theoretical framework for anomalous molecular liquids.

The third considerationis about the role of the tetrahe
drality in determining the properties of anomalous liquid
For the present model we do not consider a tetrahedral
ometry in the two-dimensional MC approach, and the geo
etry is not explicitly defined in the mean-field approac
Nevertheless, our results are consistent with the experim
tally accessible phase diagram of real water, suggesting
the tetrahedral network is not an essential feature for
anomalous behavior of waterlike liquids.

This conclusion is consistent with what has been obser
by Angell in Ref. @7#, and is well described by a gener
cooperative model@6# with a generic drive to phase separa
the excitations into distinct regions of space~clustering!. In
our model the drive is given by the intramolecular interacti
that mimics the geometrical drive in tetrahedral liquids ev
if it is not necessarily limited to the tetrahedral case.

In conclusion, we studied the effect of an intramolecu
interactionJs in a model for anomalous molecular liquid
with a mean-field approach, valid forJs.0, and with an
off-lattice MC simulation. ForJs.0 we found a HDL-LDL
phase transition while our MC results confirm that forJs

50 the singularity-free scenario holds@22#. Hence, the two
interpretations originate from the same mechanism with
different hypothesis on the intramolecular interaction; t
latter is strictly valid only forJs50. Within this framework,
the most reasonable scenario for water includes a HDL-L
phase transition, probably hindered by inevitable freezi
Our results also suggest that the tetrahedrality is not esse
to understand the anomalous behavior in waterlike liquid
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