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Mechanical model of normal and anomalous diffusion
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The overdamped dynamics of a charged particle driven by an uniform electric field through a random
sequence of scatterers in one dimension is investigated. Analytic expressions of the mean velocity and of the
velocity power spectrum are presented. These show that above a threshold value of the field normal diffusion
is superimposed to ballistic motion. The diffusion constant can be given explicitly. At the threshold field, the
transition between conduction and localization is accompanied by an anomalous diffusion. Our results exem-
plify that, even in the absence of time-dependent stochastic forces, a purely mechanical model equipped with
a quenched disorder can exhibit normal as well as anomalous diffusion, the latter emerging as a critical
property. Via another interpretation, as the motion of a particle on an inclined rough surface, our results are
relevant for the problem of segregation by flow.
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[. INTRODUCTION unpredictable dynamics. Another example of diffusion cre-
ated by a deterministic dynamics, that of a one-dimensional
Many physical phenomena like tracers dynamics in flowsBrownian particle subject to elastic collisions with “light”
and granular materials, transport in plasma physics, elegarticles was given in Ref8]. Depending on the asymptotic
tronic and heat conduction in disordered media, exhibitscaling of the mass ratio between the test particle and the
anomalous diffusion. These findings have also motivateather particles, the asymptotic process was shown to be ei-
many theoretical efforts in the direction of understandingther Ornstein-Uhlenbeck or Wiener.
more about the possible general mechanism responsible for In this paper, we consider the purely mechanical problem
anomalous diffusion. In most of the cases, this problem haef an overdamped charged particle moving along a line and
been formulated in terms of stochastic dynamical models asubmitted to an electric field and to a random potential cre-
in the celebrated paper by Ya. G. Sinai, describing a randorated by a set of quenched random scatterers. At variance with
walk in a one-dimensiondflD) random potential1]. More  similar models that have been recently investigdi@dO],
generally, the dynamics is either given by a master equatiornwe do not include any random time-dependent force of the
with random hopping rates, describing the effect of a randontangevin type.
environment, or, in the continuous version, by a Langevin It is worth stressing that this simple mechanical model
equation with a time-dependent random force, usually asean be exactly solved, thus, providing a completely analytic
sumed as Gaussian. The literature in this field is so huge thapproach to the investigation of the relation between normal
here, we limit ourselves to mention the excellent review ar-and anomalous diffusion, the latter emerging as a sort of
ticle by Bouchaud and Georgg2]. “critical” behavior of the former. In fact, we show that if the
Anomalous as well as normal diffusion have been tacklectlectric field is larger than a critical value, a current is cre-
also in the framework of deterministic dynamics. A well- ated and the particle exhibits, on top of the ballistic motion,
known example is given by the standard ni@&p], where a diffusive behavior. The diffusion constant can be explicitly
normal diffusion is observed when the phase space is repreomputed. It is a function of the average distance between
sented by a chaotic sea with sparse stability islghé]. scatterers and of the mean value and the variance of the
Conversely, when many stability islands coexist finite timepassage time through a scatterer, and it vanishes, as ex-
trapping of chaotic orbits around them induces correlationpected, with vanishing randomness. Below the critical value
yielding anomalous diffusion5]. Strong anomalous diffu- of the electric field also the current vanishes. The transition
sion has been observed in other deterministic systems: herigpm an insulator to a conductor induced by the electric field
we just mention two models of 1D intermittent maps intro- can be described by analogy with phase transitions as being
duced by Geisett al.[6] and by Pikovsky 7]. In the former  first or second order. In the former case, the current and the
example, the complex scenario of normal and anomalous difdiffusion constant do not vanish and remain finite at the
fusion emerging from a chaotic dynamics was pointed out. Irthreshold, whereas in the latter case the current vanishes and
the latter example, it has been shown that one can pass frothe diffusion constant diverges according to a power-law be-
normal to anomalous diffusion while varying the polynomial havior. The critical properties can be characterized by a scal-
behavior at the unstable fixed point of the intermittent maping law for the power spectrum of the current. Our study
It is worth observing that all the above-mentioned exampleshows that quenched disorder is sufficient to create normal
of deterministic dynamics exhibiting anomalous as well addiffusion and also anomalous diffusion, at least for the criti-
normal diffusion concern chaotic maps, i.e., time discretecal value of the electric field.
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In the following section, we derive the general formulas tj_<tj+<tj_+1y (6)
which will be used in Sec. Ill for solving two particular
models. In the first model, that we call a gas, the scattererthat is, the particle moves steadily from left to right, “above”
are distributed uniformly in an interval. In the second modelthe barriers. This imposes a condition on the external field,
which can be considered as a special case of the first onaamely,
and called a crystal, they follow each other at equal dis-
tances. In Sec. IV, we discuss the transition between conduc- E>¢j(x) forall j and x. (7
tion and localization through a specific example. The deriva-
tion of a scaling function for the velocity power spectrum The particle starts &t=0 in x(0)=ro<r; and fort<t, it
and some concluding remarks are contained in Sec. V. moves with a constant speed- E, so that

There is another problem which can be effectively de-
scribed by our model. Consider a massive particle submitted X(t)=ro+Et. (8
to strong friction, sitting or sliding on a rough surface, in- ) i
clined with a certain angler with respect to the ground. If By solving for t, we obtain
we model the roughness of the surface by a lattice of random P
harmonic traps, we have a two-dimensional version of our t; = 1 0 (9)
model, the component of the gravity force parallel to the E
surface playing the role of the driving field. In the Appendix, . B N . .
we show how the long-time dynamics is described by thdf tj <t<tj,ie..ry <x<r;, the equation of motion reads
one-dimensional models discussed in this paper. It is a con-
sequence of our (esults that Wherpalsses'a_ certain critica_l g(x—r-):E— b (X—T1), (10)
value the particle is able to fall down indefinitely and then its dt ! ! !
motion is diffusive. For harmonic traps, the average velocity o
and the diffusion constant take a nonzero and finite value a/hose solution is
the critical angle. Other potential traps can lead to anomalous rd
diffusion at the critical value of the angle. It is worth noting t—t‘—f '—"::ﬂ.(x_r.) (11)
that this type of problem is important in understanding the —a E=9¢/(p) ! J
phenomenon of segregation by flow. A stochastic model has
been recently proposed and investigated numeri¢ally, in ~ In particular, the passage time above jtie scatterer is
order to account for some interesting experimental studies on
this topic[12]. Our model can provide a theoretical interpre- S S N ja dz

; . X =t —t. =39(a)= —. (12
tation of this phenomenon based on an analytic approach. e ! ~aE—¢{(7n)

Il. GENERAL SETUP The solution between successive bunn§3<x<rj’+1, ie.,
+ — . .
The equation of motion of an overdamped patrticle in atJ' <t<tj., again corresponds to the free caseE, so that
constant external fiel&>0 is - et
=t (13)
. S —tr=
x=E—V'(x). (1) S E

Throughout the paper, we assume the potential to be a supdrinally, for t>ty we are again in the free case and integra-
position of disjoint scatterers, tion yields

N _ x=ry+E(t—t)). (14)
V()= ¢i(x=1)), $()=0 if [x[>a (2)
=1 For the running solutions that we are looking for, the overall

with centersr; in an interval[Lo,L,], subject to the con- €duation of motion can be put in the form

straints
X=E~— Ix()=rilxq- t), 15
(T =0=2a, @ 2 A{XO=1]xe () (15
This also impliesd ;—Ly=(N—1)c. We introduce the defi- where y denotes the characteristic function. The Laplace
nitions transform of this equation reads
r-=ri+a (4) . E & (i
b f x(t)e Mdt=—— >, t_’ef“ttﬁj'[x(t)—fj]dt-
and 0 Mo j=1
(16)
o x(t)=r/, (5) L - .
Substituting¢; (x—r;) from Eq. (10) and using the defini-
and assume tions (11), (12), and
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a
aj(p)= J e #i0dy, (17)
—a
we obtain
N
@, E - E
j x(t)e*“‘dt=—+2 e M aj— —(1—e #7)|,
0 Moo=l 5
(18
or, with
Ci(n)=paj(pn)—E(1—e #7), (19
ee] N —
“f x(te Mdt=E+ >, e i Cj(u). (20)
0 j=1

Time average of the velocity will be obtained by sending first

N to infinity and theru to zero in the last equation. Since the
distance freely run over by the particle up to timeis r;
—ro—a—(j—1)2a, we obtain

(2j—1)a+trg

E (21)

We can take; random or not: if they are random the condi-
tion (3) must be fulfilled. Alsog; can be random or not: if

they are random we suppose they are identically distributed

and independent, and also independent of ;allBy averag-
ing Eq. (20) over disorder and noticing that *4 is inde-
pendent ofC;(u), andC;(u) are identically distributed, we
obtain

o —

N
“J X(t)e “dt=E+C(n) >, e “i =E+By(u).
0 i=1

(22

In what follows, we drop the subscript of averaged quantities
whenever the average is independent of the subscript. B

using Eq.(21), we can write

e M = gWE@I-Datidp( )i~Tg M E D(u)=g P,

(23

The average factorizes and becomes a power becgused
hence,e™#7 are independent and identically distributed.
A relevant quantity we are looking for is the time-

autocorrelation function of the velocity. The average of the
Laplace transform of this quantity can be inferred from Eqgs.

(20) and(22) and reads

,LLM’ fxfooeilﬂfﬂrtr[x(t)x(t/)_X(t)x(t/)]dtdt,
0JO

N —
= E [efﬂtjiefl—’v’tjr
ii’=1

CJ(M)CJ/(,U«')

—e M C(u)e ' Clu')
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N —
=C(p)C(n') X, e wrry
j=1

FA(u,p" )+ A (' 1) = Bn(p)Ba(u'). (24
Here,
A )= 2 e ™ #5Cu)Cip')
1<j<j’'=N
=C(u') e *"C(u)
X > ewBI@i-atrg]
1<j<j’=N
x e(w'IB)(2)" ~D)a+rol g= (urj+u'rj)/E
XD(ptp ) D) I (25)

I1l. MODELS
A. A gas of scatterers

In the first model, we are going to consider the scatterers
are uniformly distributed in the interv@ly,L 1], but respect
the constraintg3). We introduce a set of random variables
{x;} through

rj=L0+(j—1)0'+X]-, (26)

The joint probability density okq, ... Xy is chosen to be

N
P(Xq, - .. ,xN)=m[[0 (X1~ X)), (27)

wherex,=0 andXy,,=L:=L;—Ly—(N—1)o. Thenp is
two valued and nonzero if and only ifOx;<X,<.-- <Xy
=<L.

To compute the average oves, ... Xy it is useful to

gr,nroduce
— Nt X (L—x)NTd
p;(X)==6(x—xj)=m(j_1)_, e (28)
and forj<j’
p“-,(X,X'):=5(X—Xj)5(x'—XJ-/)
CNE X (x —x)}" I (L=x)NTT
CLNGED (=)= (N=j)!
(29)

First, we calculate the mean asymptotic velocity. From Egs.
(23) and (26), we obtain

N
= L
E efl/«tj :e7#C/Ef dxe7/4X/E2 pj(x)efﬂ(ﬂ)(jfl),
=1 0 i
(30

wherec=Lgy—a—ry and
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e—B(M)Ee—(,u/E)(tr—Za)D(M)_ (31)

We can choosey=Ly—a, and thusc=0, without restrict-
ing generality. Summation ovércan be performed by the
use of the binomial formula. It yields

N—-1

N

~ N (L X
> e =—f dx e “E{1— —(1-e P)
< L Jo L

(32

We sendN andL;— L, to infinity so that the mean distance
¢ exists and¢=Ilim(L;—Lg)/N>o. This yields limN/L
=(—o) tand

e -1
> e = g(e—o)Jrl—e‘ﬁ(“) (33
i=1
With Eq. (22) and the notation
— -1
B(/L)=|imBN(M)=C(M)[E(€—U)+1—6““")}
(34
we can write
“f x(t)e T M=E+B(u). (35)
0
When u goes to zero, we asymptotically find
C(u)=p[2a—E7],
- (36)
B(pn)=ul7+(oc—2a)/E],
and the limit of Eq.(35) is, therefore,
() = (37
X(®)= ————.
{+E7—2a

This is the time average of the velocity over an infinite run,

that is,

x()= lim (39)

T—oo

HOTX(t)dt=T|ian w.

Remarkably, this is different from the averagexgk) over
an infinite distance,

——— 1 [To*r ,
v(xX)=lim ?f [E-V'(x)]dx=E,

r—o o

(39
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Notice that the resul{37) could have been obtained without

any computationx(«) is the average velocity over any in-
terval of length¢ containing(the support of a single scat-
terer.

Before going further, let us make a comment on the order
of averaging, we have chosen to compute the mean velocity.
The integral on the left-hand side of EQO) corresponds to

a Cesaro time average ®ft) over a finite-time interval
for a given realization of the potential. To perfoffirst the
finite-time average was essential to obtain the representation
in the form of a sum on the right-hand side of the same
equation. Then, we could take the ensemble average and,
finally, with « going to zero, extend time average to infinite
time. In Eq.(20), we could stop at a finit®l because every
term depended only on the randomness of the preceding
terms. In Eq.(20), we could equally have extended the sum-
mation to the full sequence. Indeed, under some weak hy-
pothesis on the distribution ab; the sequence; is sepa-
rated from zero for every realization, and therefore, there
exists some>0 such that; =cj. SinceCj(u)<2au, the
infinite sum is absolutely convergent and, thus, ensemble av-
erage commutes with infinite summation. It may also be that
this latter is self-averaging, but we do not discuss this ques-
tion here.

To compute the time-autocorrelation function of the ve-
locity, we need to evaluat& (u,u’). We first rewrite it as

A(p,pn')=C(u")e #'C(p)

>

1<j<j’=N

L L
x e~ (' E)(e—2a)(j’ —1)[ dxf dx’
0 X

X e (WE)(e—2a)(j—1)

! !
Xp” ,(X’X/)e—,u,/EXe—,u /EX

XD(pu+p ) ID(u ) I (40
With Eq. (31),
—_— ’ L
Ap,p')=C(u')e # 7C(n)e” ’E)(”_Za’J dx
0
L ’ !
XJ’ dx’e” #Exg=n'/Ex E pij(x,x")
X 1<j<j’'=N
x e Blutu)i-1)g=BAk)(" -i-1), (41)

Insertingp;;, from Eq.(29) and using the trinomial formula

M!
o=1Sm=m II(M=D!I(M—m)!

a'b™'cM M=(a+b+c)M,

(42

which is the same as in the absence of the random potential.

The reason is that the work of each scatterer exerted on tH’éith I=]

particle is vanishing,

¢i(r{+0)— ¢;(r; —0)=0.

~1,m=j'-2, M=N-2,
a=e Aty p=e P (x'—x), c=L—x,

we get
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N(N-1)
A(p,p')=

L2 C(Mr)ef,u,'rc(lul)ef(,u'/E)(U*Za)

L L L 1
XJ dxf dx'e MExe=w/EXY 4
0 X L

N—-2
><[e'B(’”"')x+eB(“')(x’—x)—x’]] :
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A(pop')=(€=0) 2C(u' e # C(u)e” (+O7~2

© 0 , 1
=f dxf dx'e MEX-RrIEX gyn
0 X {—o

X[e Al r )y + e‘B("“/)(x’—x)—x’]] :

(44)
(43
In the limit of N andL going to infinity this yields Evaluating the integral, we finally arrive at
C(,u,’)e‘”/TC(M)e_("'/E)("_Z"")
Alp,p')==— L
B oe— e Bwn || BT e Butu)
E(f o)+l-e ({—o)+1—e
=e (WD 2e 17 C(p)/Cu+ ) IB(1)B(u+ ). (45
|
For two random processéét) andg(t), we introduce the E 1
notation =——— ] [Clio)|?
Y {—A »?
Kiglpes')= | | dtdves s w g~ T0(]
(46) C(—iw)e“B=AC(jw)
+2R ,
provided the double integral exists. From E84) and the e
subsequent computation, we find in the limit dfgoing to 1— e/ (@B)=A) _j E(f—ﬂ)
infinity
(48)
Blutp) — 0
K pop') = [C(rIC(u)+e (/B2 where
wp' Clu+u') A=2a—Er. (49

><e*,u'TC(IuJ)B(MI)+e7(,u/E)((772a)
B(u)B(u')

!

7y

Xe #C(u')B(p)]— (47)

Set nowu=e€/2+iw and u'=pu*. The velocity power
spectrum is

Sy @) = lim €K, 1*)

e—0

~ lim e|fme*#t[>'<(t)—>'<(t)]dt|2
e—0 0

+2Rg el /B o2 (—ju)e' C(iw)]}

We recall thatC(u) was defined through Eqgl9), (17), and
(11), and in the last line of Eq48) the bar stands for aver-
aging over the remainingsingle-scatter¢r randomness.
Equation(48) is the main result of our paper. Far real,
Syx(w) is a real, even and nonnegative functionElH>E;
=sugvx¢j’(x), the passage times; are distributed on a
bounded support, the velocity correlations decay exponen-
tially and S;;(w) is also analytic aw=0. In this case, the
asymptotic displacement of the particle is a drift with a su-
perimposed normal diffusion. Indeed, the diffusion constant
D is given by

2D =lim ezfme’“[x(t)—x(t)]zdt
€0 0

=lim f
€0 0

eK-xyanHy),g(l—iy) 0y
7=S<\>'<(0)-

1+y?
(50
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Notice that eK;;; in the integrand has a uniform upper
bound. By using Eqg22), (23), (31), (33), and(36), a some-
what tedious computation yields

[€2(AZ—A2)+ (¢ —0)2A?].
(52)

2D=Sx(0)=

(€—A)°

PHYSICAL REVIEW E 67, 011102 (2003

IV. FROM CONDUCTION TO LOCALIZATION

When E varies continuously and passes the vakge
=sugvx¢j’(x), it switches between a conducting state for
E>E; and an isolating, or localizing, state f&<E.. At
E=E. there may be localization, if=~ [see Eq(37)], and
there may also be conduction i remains finite. In both
cases there may still occur a large variety of different situa-

Thus,D depends on the randomness through the averages tions, characterized by different critical exponents and nor-

7, and 2. We conclude that in our example of a determin-
istic dynamics, with a uniformly distributed set of quenched

random scatterers, there is normal diffusion. E
=suq,xq§j’(x), we can loose normal diffusion. We will dis-
cuss this phenomenon later on.

B. A crystal of scatterers

Here, we choose;=Ly+(j—1)o, that is, the scatterers
are placed equidistantly. Because now ,—r;=o, in the
limit when N goes to infinity we also obtaifi= ¢. This can
directly be substituted in Eq$37), (48), and(51) to obtain

()= ——2 (52
X(0)= ——
( o+Er—2a’
E 1 /(\—
Syx(w)=——=— |C(iw)|?
oc—A w
{C(—iw) @B (T-AC(j ) ]
+2R —_— , (53
1— g (@E)(o—A)
and
Zﬁ—ﬂz
1 (0)=E —. 54
Sx\x( ) o (O'_A)3 (54)

We note that substitution of =¢ in Egs. (47) and (48)
eliminates, at least asymptotically, the randomness fstill
admitting xy=o0(L)]. If we also drop averaging over the

potentials¢;, all randomness is lifted, and by the general

definition (46), Ky and S, must identically vanish. It can
be easily verified that formulagl7) and (48) or (53), and
also(51), indeed show this property.

mal or anomalous diffusion. The transition between conduc-
tion and localization bears a resemblence with phase
transitions. For instancé; can be considered as the analog

of the temperaturd, the regionE>E_ that of T<T., and

X(°) may correspond, e.g., to the spontaneous magnetization
and the diffusion constant to the static zero-field magnetic
susceptibility. We may have first- and second-order transi-
tions and varying exponents depending on the form of prob-
ability distribution of the passage time

Let us discuss a simple example which illustrates the dif-
ferent possibilities. We consider

di(x)=f;X(|x|—a), |x|=a, (55

so thate| (x)==f;. Then
_ 1 1 56
Tj—a ETfJ‘FETfI ( )

Suppose that the common probability density of the random
forcesf; has a bounded suppdth,c], wherec>0 and|b|

<c. Boundedness is needed to have a transition, and with
the above choic& =c. Let us consider on this support a
one-parameter family of probability densities

(y+D(c-u)?

W= S (57)
with y>—1. ForE>c,
(y+D)a" (c-b 1 n
n_ v——
T (c—b)7+1f0 v E+C—U+U+8 dv, (58)

where we have introduced the short-hand notattoaE
—c. As ¢ goes to zero, asymptotically

[ (y+pa" e [ 1 "
W . v 20_04‘; dv+o(l), n<y+1
| orvartt -
M= o b In . +0(1), n=y+1 (59)
+1 an 87n+y+l
(y+1) +0(e "*2) . n>y+1.
| (c—b)yr*tn—y-1

In particular,
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[ (1 fc_b y B P
(c—b)**1Jo “l2c=v "] o), v
= AP o -0 60
={ i +0(1), 9= (60
(1-|yDha

|’)/|(C_W87M+O(Sli‘yl), v<0,
\

and
( (y+1)a2Jcb J 1 . 2d ol -
e prilo Vlzemy Ty PTOD Y
7 GG C_b+0(1) 1 61)
= n— , =
") o2 e 7

(y+1)a? e 1"
( (c—b)r*t 1=y

+0(e?), y<l.

If we are interested in quantities depending on the random Let us emphasize that the probability dengityis purely

$ 2 o\ continuous and, thus, the probability tHat=E_ for a given
j is zero. The probability theft;=E for any jis still zero. So
with probability 1 the particle will never be stopped, and

i X()=0 means only that, with probability x(t)=o0(t),
E|E.;. As a consequence(«) is positive andS;;(0) is  i.e., x(t) increases slower than Itis in this way that we can
finite atE=E. and their value is given, respectively, by Egs. understand the different possibilities of diffusion in the third
(37) and(51): there is conduction with normal diffusion. So case.

potentials only vi&, 7, and7?, asx () andS;;;(0), we can
distinguish the following cases.

() y>1. In this caser and 72 have a finite limit as

when E increases and goes throudh., both x() and
Six(0) change discontinuously from 0 to a positive value V. SCALING AT CRITICALITY

and then vary continuously. This is analogous with a first-  \\hen E>E,., Syx(w) is a meromorphic function of

order phase transition. - with no pole in a neighborhood of the origin. Analyticity at
(2) 0<y=1. From the point of view ok(«) the transi- =0 will be lost asE attains its critical valuee;. In this
tion is still of first order, but the divergence O, section, we derive a scaling law describing the behavior of

S x(w;E) whenw—0 andE|E. simultaneously in such a
3,5 2 way thatz=e/w=(E—E;)/w is kept fixed. More specifi-
D~ E(°r (62) cally, we expect that in this limit
2(6—A)%
r(z)
Syx(w;E)~ o (64)

with the divergingr® whenE | E. resembles the divergence
of the susceptibility aff, in second-order magnetic phase Below we prove the above form and find the scaling function
transitions. Thus, in this case we have conduction accompa{z). The model that we use for explicit computations is the
nied with an anomalous diffusion. same as in Sec. IV, given by Eq85) and(57), although the
(3) —1<y=0. Both r and 7 diverge whenE|E., so  conclusions certainly hold more generally. First, we would
like to give an argument why one can expect the asymptotic

X(e) tends to zero and form (64). If £>0, the correlation function
€272 1 E(t,t)=x(t)x(t") —X(t)x(t") (65
D~—xe Y, (63
27 decays exponentially witht—t’|, and the correlation time

can be approximated with,,=2aE/e(E+E_), the maxi-
with an additional factofine| ™2 if y=0. SoD diverges if ~mum passage time through a scattdise Eq.(56)]. This
y>—1/2, tends to zero if-1<y<-—1/2 and to a finite allows one to write down at least two different, qualitatively
nonzero limit if y=—1/2. reasonable, approximations £6t,t'), namely,
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and &(t,t')=ge I !lm,
(66)

E1(tt) =00 (Tp—[t—t'])

with O (y) being the Heaviside function. Both lead to a form

like Eq. (64). From &,, we obtain

2& 26, . a
S(xllz(w;E)mjosmwrm~TosmE, (67)
while &, yields
280t 2 alz
S ()~ —0Tm 20 5. (69
it w 1l+(alz)

In derivingr(z), we will consider only negative values of
v, S0 that 6<e=—y<1, chooseb=0 for the sake of sim-

plicity and use the notation
P(Y)=p,(Ec—y)=py *, (69)
cf. Eq. (57). We note that only

sugy“P(y)<ee and limy“P(y)=p, (70

y—0

wherep is defined by the normalization, will be used below,
so instead of Eq(69) we can take any(y) with the prop-

erties(70). Notice thatfgcdy(P(y)/y) =, Accordingly, we

obtain

__ [E
e"”zf dyP(y)ex;{iwa
0

and

|LUT 1
lim (1—)—pf dss ¢
w

w—0

1 1
_l’_
ety e+2E.—y
(71

a
ex
S+Z

Furthermore, from the third line of E¢60), we have

1} :=0(2).
(72)

=10 “+0(e' %) (73)

as e—0.
terms have to be computed, like
1—e Blio)=1 o TWE0-A~ _ yl-ag(z). (74)

Next, we need the average of
a
C(M):Mf dye #?WM—E(1—e »7), (75
—a

For the potential55)

d
ﬁ<y>=JfaE > (a*y)

E+f

y
o(-y) =

a
+®(y)m+ E

(76)
Inserting Eq.(76) in Eq. (75),

In order to compute the current spectrum other

PHYSICAL REVIEW E 67, 011102 (2003

Clu)=fl1-2 ra
(m)=fll-2exg — ¢
1 1 ;
so that
C —fE°d P(y)(E 1-2 pa
(w)= ] dyP(Y)(Ecy) O T i 2E.y
na na
+eXF<_s+y_s+2EC—y } (78

and

Ma+ pa
ety e+2E.,—y

(79

_ [E
e”TC(M)=fO dyP(y)(Ec—y)| ex

a
—2exp< ®
E—

Accordingly, in the limit of vanishingo

. a _ *
exy{ﬂm)—l =E.0*(2)

+1].

w“ilC(iw)Hpch dss ¢
0

(80)
and
w* ! "'”C(lw)—>pEj dss ¢ ex 2 -1
S+Z
=Ec9(2). (81)
Moreover, one hagtaking € = ¢ for simplicity)
B(—iw)— C(—iw)
() T Bl
- 0* 1C(iw) *
o Hl-exd —Blio)]}
E.g*(2)|"
_Eg*(2) g, 2
9*(2)
Similar expressions have to be obtained for
ﬁ—fad P(Y) (Ec—Y)?| 1~ 2 exp| —i ——oe—
[Cliw)[*= | ~dyP(Y)(Ec—y) e 1 ey
wa  owa 2 83
rexp i i e oy )| (83

so that
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- % a 2
a—1 f 2 2 —a i _
0 Y C(iw)| —>pEcj0 dss exr( [ 1
=E2u(z). (84)
By substituting into Eq(48), we finally obtain
etE; —
()= —{|C(iw)|?
S )= o et erEg o)
+2Rde'“B(—iw)e'“C(iw)]}
+E
~ ¢ Eu(2)
0’0 e —2a+ (e +E.) 7oe ¢]
—2Reg(2)]. (85
Accordingly, in the limit of smalle one obtains
2
atl_ -« EC
0 e S;<\'x(w)—>T—O[U(Z)—2Reg(Z)]

EZ (=
:_Cpf dtt*a[ll_e*i(a/t+2)|2
TO 0

-2 Rqei(a/t+z)_ 1)]

AE?2 fwd o4 a
p o tt co iz

70

(86)
Finally,

4E2 ”jmdtt_“ 1-cod
CZ 0 co t+z
lim S (w;Ec+ wz)=

w0 aJ dtt~(1+t) "L
0

=r(2). 87

It is worth pointing out the relevance of this resultwa *

component emerges naturally at criticality in the spectral

properties of a purely mechanical model with disorder.

VI. CONCLUSION

PHYSICAL REVIEW E 67, 011102 (2003

pending on the probability density associated with the ran-
dom potential of the scatterers.

The conclusion that normal and anomalous diffusive be-
havior can be obtained from a purely mechanical description,
by means of the randomness of the potential, and not by
introducing any stochastic or periodic time-dependent forc-
ing is the main conceptual virtue of this model.

In a physical perspective, there are different ways in
which it can be interpreted. For instance, in order to avoid a
too formal mathematical treatment from the very beginning
we have presented the model as describing the motion of an
overdamped charged particle subject to a constant electric
field. Since below the critical value of the electric field the
current vanishes, the model can be interpreted as a classical
representation of the transition from an insulator to a con-
ductor state, controlled by the electric field. By analogy with
the theory of phase transitions, we have shown that this tran-
sition can be first or second order and the corresponding
critical properties are determined by the scaling law charac-
terizing the power spectrum of the current. As discussed in
the Appendix, another interpretation of our model corre-
sponds to the motion of a massive particle submitted to
strong friction, sitting or sliding on a rough surface, inclined
with respect to the ground. In the two-dimensional version of
this model the roughness of the surface can be modeled by a
lattice of random harmonic traps and the component of the
gravity force parallel to the surface plays the role of the
driving field. We have shown that this dynamics is asymp-
totically described by the one-dimensional model introduced
in this paper. Accordingly, all the above described scenario is
recovered. In particular, anomalous diffusion properties are
found to characterize the dynamics at the critical value of the
inclination angle. This is quite important for the understand-
ing of the the phenomenon of segregation by flow, that has
been recently analyzed by numeri¢all] and experimental
studies[12].

As a final remark, it is worth mentioning that a real limi-
tation of our studies is that we have completely neglected
inertial effects. For what concerns the one-dimensional mod-
els studied in this paper it appears possible to extend our
studies to the case of a dynamics described by Newton equa-
tions. Nonetheless, this seems a much more challenging goal
or the two-dimensional problem of the particle sliding on
the rough, inclined surface.
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We have found that above a critical value of the external
field the asymptotic motion of the particle is a drift with a
superimposed normal diffusion. The diffusion constant can
be also calculated explicitly. Moreover, at the critical field, Let us consider a square lattice of disks of radauand
we have found different kinds of anomalous diffusion, de-lattice constant. A particle submitted to a very strong fric-

APPENDIX: A PARTICLE ON AN INCLINED PLANE
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tion force moves in this lattice. Outside the disks it feels a X/
constant positive forc€ in the x direction. Once it enters a
disk, it is submitted, besidE, to a harmonic potential con-
centric with the disk and of a frequeney depending on the
disk. The frequencies are identically distributed independeqts W

random variables.
The dynamics is described by the equations

PHYSICAL REVIEW E 67, 011102 (2003

I
n~Tn=é€n _ Yn

N EEE— . A8
Xn=Ihn= €y Yn (A8)

If y,=0 theny,=0 and we use EqA6) to determinex;, . It
orth recalling that the following relation holds

(Xp— rn)2+Y§=(Xﬁ—fn)z+(yrﬁ)2= 1.

After timet;,, the particle reachex{.1,Yn+1), Where

ymr=F— >, VV,(r—dn), (A1)
nez? ,
Yn+1=Yn- (A9)
Vo (r)= Emwﬁ[(x—dnx)%—(y—dny)z—az] Note that|y,|<|y,|, so that the particle will necessarily go
2 along the row. Equation§A8) and (A9) give
X @ (a—|r—dn|), (A2)
Ya(en—1) Yn(en—1)

where® is the Heaviside function. In an electric interpreta- y”+1:€2+ 1—2e (X —r ): 2 [1_v2
tion F=(qE,0), E being the electric field and the charge of 3 = rn) 41426 V1-y;

the particle. If we interprete the constant force as the result of (AL0)

the gravitational force on the particle, moving in the planepecausex,—r, must be negative if the crossing takes place.
inclined with an anglex with respect to the horizontal then | gt () = maxw, <~ andF.=maQ?2. If F<F,,
F=(mgsina,0).

We can suppose that initially the particle is located at
some point between the disks. Two possibilities arise. The
trivial first one is that the particle does not hit the disks: its
motion is a straight line in th& direction. The second pos- gpq
sibility is that it hits first a disk at its right. Then, we can
easily see that it moves only along the row of disks at the
right of the first one and, therefore, its motion is restricted to
this row. We select the row passing through the origin.det Therefore, if F<F., with probability 1 the particle is

JFima
PrOt{en>1}=j p(w)dw=p<1
0

Prolat least onee,<1}=1.

andy ! be the unit of length and time, respectively. Tita
disk of the row is centered &t,,=(d+2)n,0]. Inside it the
dynamics is given by

. wn)?
x=—(7) (X—ry+ yzma’ (A3)
__Fﬁf Ad)
y= Y y
If
6n:mawﬁ<l' (A5)

once the particle enters this disk, it stays in it forever and

reaches the equilibrium point (+ €,,0) in infinite time. If,

trapped. IfF=F_, then

Prode,=1}=1,

(Al11)
e2—1
Yn+15Yn .
ent1
If w,>w>0, then
F N
En<maw2=€.
Thus,
-1 -1
7 =~ - —o<1 (A12)
e+l e+1

and yy=<Y,6"N—0. Thus, asymptotically the dynamics be-

on the other handg,>1, it goes across the disk and, if it comes purely one-dimensional, i.e., restricted md, there-

entered the disk in timg, at the point &,,,y,), it leaves it in
timet, at (x;,,y;), Where

Xi—T = €n=(Xg—Tp— €)@ (/N - (ap)
yé:yne—(wnlmt,’]—rn), (A7)

so that the trajectory is a straight line

fore, to our mechanical model of diffusion. For a harmonic
trap of frequencyw (and settingn=1) the passage timeis
given by

1 E+ow?a

7=—In .
w? E—wla

Now becaus&.=?%a, r and? remain finite aE=E_ and,
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hence, the transition is of first order. ated by the friction force while the parallel one may increase

An interesting extension of the model is obtained by ad-globally linearly if F>F. If 9/ is irrational, the positions
mitting the force F to be in an arbitrary directione  of the traps met by the particle form a quasiperiodic se-
= (cosd,sin). Decomposing in parallel and perpendicular quence. Even without the randomness of the frequency this
components, the perpendicular component is always attenuray have interesting effects on the diffusion.
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