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Mechanical model of normal and anomalous diffusion
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The overdamped dynamics of a charged particle driven by an uniform electric field through a random
sequence of scatterers in one dimension is investigated. Analytic expressions of the mean velocity and of the
velocity power spectrum are presented. These show that above a threshold value of the field normal diffusion
is superimposed to ballistic motion. The diffusion constant can be given explicitly. At the threshold field, the
transition between conduction and localization is accompanied by an anomalous diffusion. Our results exem-
plify that, even in the absence of time-dependent stochastic forces, a purely mechanical model equipped with
a quenched disorder can exhibit normal as well as anomalous diffusion, the latter emerging as a critical
property. Via another interpretation, as the motion of a particle on an inclined rough surface, our results are
relevant for the problem of segregation by flow.
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I. INTRODUCTION

Many physical phenomena like tracers dynamics in flo
and granular materials, transport in plasma physics, e
tronic and heat conduction in disordered media, exh
anomalous diffusion. These findings have also motiva
many theoretical efforts in the direction of understand
more about the possible general mechanism responsible
anomalous diffusion. In most of the cases, this problem
been formulated in terms of stochastic dynamical models
in the celebrated paper by Ya. G. Sinai, describing a rand
walk in a one-dimensional~1D! random potential@1#. More
generally, the dynamics is either given by a master equat
with random hopping rates, describing the effect of a rand
environment, or, in the continuous version, by a Lange
equation with a time-dependent random force, usually
sumed as Gaussian. The literature in this field is so huge
here, we limit ourselves to mention the excellent review
ticle by Bouchaud and Georges@2#.

Anomalous as well as normal diffusion have been tack
also in the framework of deterministic dynamics. A we
known example is given by the standard map@3,4#, where
normal diffusion is observed when the phase space is re
sented by a chaotic sea with sparse stability island@4,5#.
Conversely, when many stability islands coexist finite tim
trapping of chaotic orbits around them induces correlati
yielding anomalous diffusion@5#. Strong anomalous diffu-
sion has been observed in other deterministic systems: h
we just mention two models of 1D intermittent maps intr
duced by Geiselet al. @6# and by Pikovsky@7#. In the former
example, the complex scenario of normal and anomalous
fusion emerging from a chaotic dynamics was pointed out
the latter example, it has been shown that one can pass
normal to anomalous diffusion while varying the polynom
behavior at the unstable fixed point of the intermittent m
It is worth observing that all the above-mentioned examp
of deterministic dynamics exhibiting anomalous as well
normal diffusion concern chaotic maps, i.e., time discr
1063-651X/2003/67~1!/011102~11!/$20.00 67 0111
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unpredictable dynamics. Another example of diffusion c
ated by a deterministic dynamics, that of a one-dimensio
Brownian particle subject to elastic collisions with ‘‘light
particles was given in Ref.@8#. Depending on the asymptoti
scaling of the mass ratio between the test particle and
other particles, the asymptotic process was shown to be
ther Ornstein-Uhlenbeck or Wiener.

In this paper, we consider the purely mechanical probl
of an overdamped charged particle moving along a line
submitted to an electric field and to a random potential c
ated by a set of quenched random scatterers. At variance
similar models that have been recently investigated@9,10#,
we do not include any random time-dependent force of
Langevin type.

It is worth stressing that this simple mechanical mod
can be exactly solved, thus, providing a completely analy
approach to the investigation of the relation between nor
and anomalous diffusion, the latter emerging as a sor
‘‘critical’’ behavior of the former. In fact, we show that if the
electric field is larger than a critical value, a current is c
ated and the particle exhibits, on top of the ballistic motio
a diffusive behavior. The diffusion constant can be explici
computed. It is a function of the average distance betw
scatterers and of the mean value and the variance of
passage time through a scatterer, and it vanishes, as
pected, with vanishing randomness. Below the critical va
of the electric field also the current vanishes. The transit
from an insulator to a conductor induced by the electric fi
can be described by analogy with phase transitions as b
first or second order. In the former case, the current and
diffusion constant do not vanish and remain finite at t
threshold, whereas in the latter case the current vanishes
the diffusion constant diverges according to a power-law
havior. The critical properties can be characterized by a s
ing law for the power spectrum of the current. Our stu
shows that quenched disorder is sufficient to create nor
diffusion and also anomalous diffusion, at least for the cr
cal value of the electric field.
©2003 The American Physical Society02-1
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In the following section, we derive the general formul
which will be used in Sec. III for solving two particula
models. In the first model, that we call a gas, the scatte
are distributed uniformly in an interval. In the second mod
which can be considered as a special case of the first
and called a crystal, they follow each other at equal d
tances. In Sec. IV, we discuss the transition between con
tion and localization through a specific example. The deri
tion of a scaling function for the velocity power spectru
and some concluding remarks are contained in Sec. V.

There is another problem which can be effectively d
scribed by our model. Consider a massive particle submi
to strong friction, sitting or sliding on a rough surface, i
clined with a certain anglea with respect to the ground. I
we model the roughness of the surface by a lattice of rand
harmonic traps, we have a two-dimensional version of
model, the component of the gravity force parallel to t
surface playing the role of the driving field. In the Append
we show how the long-time dynamics is described by
one-dimensional models discussed in this paper. It is a c
sequence of our results that whena passes a certain critica
value the particle is able to fall down indefinitely and then
motion is diffusive. For harmonic traps, the average veloc
and the diffusion constant take a nonzero and finite valu
the critical angle. Other potential traps can lead to anoma
diffusion at the critical value of the angle. It is worth notin
that this type of problem is important in understanding
phenomenon of segregation by flow. A stochastic model
been recently proposed and investigated numerically@11#, in
order to account for some interesting experimental studie
this topic@12#. Our model can provide a theoretical interpr
tation of this phenomenon based on an analytic approac

II. GENERAL SETUP

The equation of motion of an overdamped particle in
constant external fieldE.0 is

ẋ5E2V8~x!. ~1!

Throughout the paper, we assume the potential to be a su
position of disjoint scatterers,

V~x!5(
j 51

N

f j~x2r j !, f j~x!50 if uxu.a, ~2!

with centersr j in an interval@L0 ,L1#, subject to the con-
straints

r j 112r j>s>2a. ~3!

This also impliesL12L0>(N21)s. We introduce the defi-
nitions

r j
65r j6a ~4!

and

t j
6 : x~ t j

6!5r j
6 , ~5!

and assume
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t j
2,t j

1,t j 11
2 , ~6!

that is, the particle moves steadily from left to right, ‘‘above
the barriers. This imposes a condition on the external fie
namely,

E.f j8~x! for all j and x. ~7!

The particle starts att50 in x(0)5r 0,r 1
2 and for t,t1

2 it

moves with a constant speedẋ5E, so that

x~ t !5r 01Et. ~8!

By solving for t, we obtain

t1
25

r 1
22r 0

E
. ~9!

If t j
2,t,t j

1 , i.e., r j
2,x,r j

1 , the equation of motion read

d

dt
~x2r j !5E2f j8~x2r j !, ~10!

whose solution is

t2t j
25E

2a

x2r j dh

E2f j8~h!
5:q j~x2r j !. ~11!

In particular, the passage time above thej th scatterer is

t jªt j
12t j

25q j~a!5E
2a

a dh

E2f j8~h!
. ~12!

The solution between successive bumpsr j
1,x,r j 11

2 , i.e.,

t j
1,t,t j 11

2 again corresponds to the free caseẋ5E, so that

t j 11
2 2t j

15
r j 11

2 2r j
1

E
. ~13!

Finally, for t.tN
1 we are again in the free case and integ

tion yields

x5r N
11E~ t2tN

1!. ~14!

For the running solutions that we are looking for, the over
equation of motion can be put in the form

ẋ5E2( f j8@x~ t !2r j #x (t
j
2 ,t

j
1)~ t !, ~15!

where x denotes the characteristic function. The Lapla
transform of this equation reads

E
0

`

ẋ~ t !e2mtdt5
E

m
2(

j 51

N E
t j
2

t j
1

e2mtf j8@x~ t !2r j #dt.

~16!

Substitutingf j8(x2r j ) from Eq. ~10! and using the defini-
tions ~11!, ~12!, and
2-2
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a j~m!5E
2a

a

e2mq j (y)dy, ~17!

we obtain

E
0

`

ẋ~ t !e2mtdt5
E

m
1(

j 51

N

e2mt j
2Fa j2

E

m
~12e2mt j !G ,

~18!

or, with

Cj~m!5ma j~m!2E~12e2mt j !, ~19!

mE
0

`

ẋ~ t !e2mtdt5E1(
j 51

N

e2mt j
2

Cj~m!. ~20!

Time average of the velocity will be obtained by sending fi
N to infinity and thenm to zero in the last equation. Since th
distance freely run over by the particle up to timet j

2 is r j

2r 02a2( j 21)2a, we obtain

t j
25 (

k51

j 21

tk1
r j

E
2

~2 j 21!a1r 0

E
. ~21!

We can taker j random or not: if they are random the cond
tion ~3! must be fulfilled. Alsof j can be random or not: i
they are random we suppose they are identically distribu
and independent, and also independent of allr i . By averag-

ing Eq. ~20! over disorder and noticing thate2mt j
2

is inde-
pendent ofCj (m), andCj (m) are identically distributed, we
obtain

mE
0

`

ẋ~ t !̄e2mtdt5E1C~m! (
j 51

N

e2mt j
2

[E1BN~m!.

~22!

In what follows, we drop the subscript of averaged quantit
whenever the average is independent of the subscript.
using Eq.~21!, we can write

e2mt j
2̄

5e(m/E)[(2 j 21)a1r 0]D~m! j 21e2mr j /E, D~m!5e2mt.
~23!

The average factorizes and becomes a power becausetk and
hence,e2mtk are independent and identically distributed.

A relevant quantity we are looking for is the time
autocorrelation function of the velocity. The average of t
Laplace transform of this quantity can be inferred from E
~20! and ~22! and reads

mm8E
0

`E
0

`

e2mt2m8t8@ ẋ~ t !ẋ~ t8!2 ẋ~ t !ẋ~ t8!#dtdt8

5 (
j , j 851

N

@e2mt j
2

e2m8t
j 8
2

Cj~m!Cj 8~m8!

2e2mt j
2

C~m!e2m8t
j 8
2

C~m8!
01110
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5C~m!C~m8!(
j 51

N

e2(m1m8)t j
2

1L~m,m8!1L~m8,m!2BN~m!BN~m8!. ~24!

Here,

L~m,m8!5 (
1< j , j 8<N

e2mt j
2

2m8t
j 8
2

Cj~m!Cj 8~m8!

5C~m8! e2m8tC~m!

3 (
1< j , j 8<N

e(m/E)[(2 j 21)a1r 0]

3e(m8/E)[(2 j 821)a1r 0]e2(mr j 1m8r j 8)/E

3D~m1m8! j 21D~m8! j 82 j 21. ~25!

III. MODELS

A. A gas of scatterers

In the first model, we are going to consider the scatter
are uniformly distributed in the interval@L0 ,L1#, but respect
the constraints~3!. We introduce a set of random variable
$xj% through

r j5L01~ j 21!s1xj , ~26!

The joint probability density ofx1 , . . . ,xN is chosen to be

p~x1 , . . . ,xN!5
N!

LN )
j 50

N

u~xj 112xj !, ~27!

wherex050 andxN115LªL12L02(N21)s. Then p is
two valued and nonzero if and only if 0<x1<x2<•••<xN
<L.

To compute the average overx1 , . . . ,xN it is useful to
introduce

r j~x!ªd~x2xj !̄5
N!

LN

xj 21

~ j 21!!

~L2x!N2 j

~N2 j !!
, ~28!

and for j , j 8

r j j 8~x,x8!ªd~x2xj !d~x82xj 8!

5
N!

LN

xj 21

~ j 21!!

~x82x! j 82 j 21

~ j 82 j 21!!

~L2x8!N2 j 8

~N2 j 8!!
,

~29!

First, we calculate the mean asymptotic velocity. From E
~23! and ~26!, we obtain

(
j 51

N

e2mt j
2

5e2mc/EE
0

L

dxe2mx/E(
j

r j~x!e2b(m)( j 21),

~30!

wherec5L02a2r 0 and
2-3
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e2b(m)[e2(m/E)(s22a)D~m!. ~31!

We can chooser 05L02a, and thusc50, without restrict-
ing generality. Summation overj can be performed by the
use of the binomial formula. It yields

(
j 51

N

e2mt j
2

5
N

L E
0

L

dx e2m/ExF12
x

L
~12e2b!GN21

.

~32!

We sendN andL12L0 to infinity so that the mean distanc
, exists and,5 lim(L12L0)/N.s. This yields limN/L
5(,2s)21 and

(
j 51

`

e2mt j
2

5FmE ~,2s!112e2b(m)G21

. ~33!

With Eq. ~22! and the notation

B~m!5 limBN~m!5C~m!FmE ~,2s!112e2b(m)G21

,

~34!

we can write

mE
0

`

ẋ~ t !
¯

e2mt5E1B~m!. ~35!

Whenm goes to zero, we asymptotically find

C~m!5m@2a2Et̄ #,
~36!

b~m!5m@t̄1~s22a!/E#,

and the limit of Eq.~35! is, therefore,

ẋ~`!
¯

5
E,

,1Et̄22a
. ~37!

This is the time average of the velocity over an infinite ru
that is,

ẋ~`!
¯

5 lim
T→`

1

TE0

T

ẋ~ t !dt5 lim
T→`

x~T!2x~0!

T
. ~38!

Remarkably, this is different from the average ofẋ(x) over
an infinite distance,

v~x!̄[ lim
r→`

1

r Er 0

r 01r

@E2V8~x!#dx5E, ~39!

which is the same as in the absence of the random poten
The reason is that the work of each scatterer exerted on
particle is vanishing,

f j~r j
110!2f j~r j

220!50.
01110
,

al.
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Notice that the result~37! could have been obtained withou

any computation:ẋ(`)
¯

is the average velocity over any in
terval of length, containing~the support of! a single scat-
terer.

Before going further, let us make a comment on the or
of averaging, we have chosen to compute the mean velo
The integral on the left-hand side of Eq.~20! corresponds to
a Cesaro time average ofẋ(t) over a finite-time interval 1/m
for a given realization of the potential. To performfirst the
finite-time average was essential to obtain the representa
in the form of a sum on the right-hand side of the sa
equation. Then, we could take the ensemble average
finally, with m going to zero, extend time average to infini
time. In Eq.~20!, we could stop at a finiteN because every
term depended only on the randomness of the prece
terms. In Eq.~20!, we could equally have extended the sum
mation to the full sequence. Indeed, under some weak
pothesis on the distribution off j the sequencet j is sepa-
rated from zero for every realization, and therefore, th
exists somec.0 such thatt j

2>c j . SinceCj (m)<2am, the
infinite sum is absolutely convergent and, thus, ensemble
erage commutes with infinite summation. It may also be t
this latter is self-averaging, but we do not discuss this qu
tion here.

To compute the time-autocorrelation function of the v
locity, we need to evaluateL(m,m8). We first rewrite it as

L~m,m8!5C~m8!e2m8tC~m!

3 (
1< j , j 8<N

e2(m/E)(s22a)( j 21)

3e2(m8/E)(s22a)( j 821)E
0

L

dxE
x

L

dx8

3r j j 8~x,x8!e2m/Exe2m8/Ex8

3D~m1m8! j 21D~m8! j 82 j 21. ~40!

With Eq. ~31!,

L~m,m8!5C~m8!e2m8tC~m!e2(m8/E)(s22a)E
0

L

dx

3E
x

L

dx8e2m/Exe2m8/Ex8 (
1< j , j 8<N

r j j 8~x,x8!

3e2b(m1m8)( j 21)e2b(m8)( j 82 j 21). ~41!

Insertingr j j 8 from Eq. ~29! and using the trinomial formula

(
0< l<m<M

M !

l ! ~m2 l !! ~M2m!!
albm2 lcM2m5~a1b1c!M,

~42!

with l 5 j 21, m5 j 822, M5N22,

a5e2b(m1m8)x, b5e2b(m8)~x82x!, c5L2x8,

we get
2-4
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L~m,m8!5
N~N21!

L2
C~m8!e2m8tC~m!e2(m8/E)(s22a)

3E
0

L

dxE
x

L

dx8e2m/Exe2m8/Ex8H 11
1

L

3@e2b(m1m8)x1e2b(m8)~x82x!2x8#J N22

.

~43!

In the limit of N andL going to infinity this yields
01110
L~m,m8!5~,2s!22C~m8!e2m8tC~m!e2(m8/E)(s22a)

5E
0

`

dxE
x

`

dx8e2m/Ex2m8/Ex8 expH 1

,2s

3@e2b(m1m8)x1e2b(m8)~x82x!2x8#J .

~44!

Evaluating the integral, we finally arrive at
L~m,m8!5
C~m8!e2m8tC~m!e2(m8/E)(s22a)

Fm8

E
~,2s!112e2b(m8)GFm1m8

E
~,2s!112e2b(m1m8)G

5e2(m8/E)(s22a)@e2m8tC~m!/C~m1m8!#B~m8!B~m1m8!. ~45!
-

en-

u-
ant
For two random processesf (t) andg(t), we introduce the
notation

K f ug~m,m8!5E
0

`E
0

`

dtdt8e2mt2m8t8@ f ~ t !g~ t8!2 f ~ t !g~ t8!#

~46!

provided the double integral exists. From Eq.~24! and the
subsequent computation, we find in the limit ofN going to
infinity

Kẋuẋ~m,m8!5
B~m1m8!

mm8C~m1m8!
@C~m!C~m8!1e2(m8/E)(s22a)

3e2m8tC~m!B~m8!1e2(m/E)(s22a)

3e2mtC~m8!B~m!#2
B~m!B~m8!

mm8
. ~47!

Set nowm5e/21 iv and m85m* . The velocity power
spectrum is

Sẋuẋ~v!5 lim
e→0

eKẋuẋ~m,m* !

5 lim
e→0

eu E
0

`

e2mt@ ẋ~ t !2 ẋ~ t !̄ #dtu2

5S lim
e→0

eB~e!

C~e!
D 1

v2
$uC~ iv!u2

12Re@e( iv/E)(s22a)B~2 iv!eivtC~ iv!#%
5
E

,2Ā

1

v2 H uC~ iv!u2

12ReF C~2 iv!ei (v/E)(s2A)C~ iv!

12ei (v/E)(s2A)2 i
v

E
~,2s!

G J ,

~48!

where

A52a2Et. ~49!

We recall thatC(m) was defined through Eqs.~19!, ~17!, and
~11!, and in the last line of Eq.~48! the bar stands for aver
aging over the remaining~single-scatterer! randomness.
Equation~48! is the main result of our paper. Forv real,
Sẋuẋ(v) is a real, even and nonnegative function. IfE.Ec
5supj ,xf j8(x), the passage timest j are distributed on a
bounded support, the velocity correlations decay expon
tially and Sẋuẋ(v) is also analytic atv50. In this case, the
asymptotic displacement of the particle is a drift with a s
perimposed normal diffusion. Indeed, the diffusion const
D is given by

2D5 lim
e↓0

e2E
0

`

e2et@x~ t !2x~ t !̄ #2dt

5 lim
e↓0

E
0

`
eKẋuẋF e

2
~11 iy !,

e

2
~12 iy !G

11y2

dy

p
5Sẋuẋ~0!.

~50!
2-5
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Notice that eKẋuẋ in the integrand has a uniform uppe
bound. By using Eqs.~22!, ~23!, ~31!, ~33!, and~36!, a some-
what tedious computation yields

2D5Sẋuẋ~0!5
E

~,2Ā!3
@,2~A2̄2Ā2!1~,2s!2Ā2#.

~51!

Thus,D depends on the randomness through the average,,

t̄, andt 2̄. We conclude that in our example of a determ
istic dynamics, with a uniformly distributed set of quench
random scatterers, there is normal diffusion. IfE
5supj ,xf j8(x), we can loose normal diffusion. We will dis
cuss this phenomenon later on.

B. A crystal of scatterers

Here, we chooser j5L01( j 21)s, that is, the scatterer
are placed equidistantly. Because nowr j 112r j[s, in the
limit when N goes to infinity we also obtain,5s. This can
directly be substituted in Eqs.~37!, ~48!, and~51! to obtain

ẋ~` !̄5
Es

s1Et̄22a
, ~52!

Sẋuẋ~v!5
E

s2Ā

1

v2 H uC~ iv!u2

12ReFC~2 iv! ei (v/E)(s2A)C~ iv!

12ei (v/E)(s2A) G J , ~53!

and

Sẋuẋ~0!5Es2
A22A2

~s2Ā!3
. ~54!

We note that substitution of,5s in Eqs. ~47! and ~48!
eliminates, at least asymptotically, the randomness ofr j @still
admitting xN5o(L)]. If we also drop averaging over th
potentialsf j , all randomness is lifted, and by the gene
definition ~46!, Kẋuẋ andSẋuẋ must identically vanish. It can
be easily verified that formulas~47! and ~48! or ~53!, and
also ~51!, indeed show this property.
01110
-

l

IV. FROM CONDUCTION TO LOCALIZATION

When E varies continuously and passes the valueEc

5supj ,xf j8(x), it switches between a conducting state f
E.Ec and an isolating, or localizing, state forE,Ec . At
E5Ec there may be localization, ift̄5` @see Eq.~37!#, and
there may also be conduction ift̄ remains finite. In both
cases there may still occur a large variety of different sit
tions, characterized by different critical exponents and n
mal or anomalous diffusion. The transition between cond
tion and localization bears a resemblence with ph
transitions. For instance,E can be considered as the anal
of the temperatureT, the regionE.Ec that of T,Tc , and

ẋ(`) may correspond, e.g., to the spontaneous magnetiza
and the diffusion constant to the static zero-field magne
susceptibility. We may have first- and second-order tran
tions and varying exponents depending on the form of pr
ability distribution of the passage timet.

Let us discuss a simple example which illustrates the
ferent possibilities. We consider

f j~x!5 f j3~ uxu2a!, uxu<a, ~55!

so thatf j8(x)56 f j . Then

t j5aS 1

E2 f j
1

1

E1 f j
D . ~56!

Suppose that the common probability density of the rand
forces f j has a bounded support@b,c#, wherec.0 andubu
,c. Boundedness is needed to have a transition, and
the above choiceEc5c. Let us consider on this support
one-parameter family of probability densities

pg~u!5
~g11!~c2u!g

~c2b!g11
, ~57!

with g.21. ForE.c,

t n̄5
~g11!an

~c2b!g11E0

c2b

vgF 1

E1c2v
1

1

v1«Gn

dv, ~58!

where we have introduced the short-hand notation«5E
2c. As « goes to zero, asymptotically
tn55
~g11!an

~c2b!g11E0

c2b

vgF 1

2c2v
1

1

vGn

dv1o~1!, n,g11

~g11!ag11

~c2b!g11
ln

c2b

«
1O~1!, n5g11

~g11!an

~c2b!g11

«2n1g11

n2g21
1O~«2n1g12!, n.g11.

~59!

In particular,
2-6



t̄5

~g11!a

~c2b!g11E0

c2b

vgF 1

2c2v
1

1

vGdv1o~1!, g.0

a

c2b
ln

c2b

«
1O~1!, g50 ~60!
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5 ~12ugu!a

ugu~c2b!12ugu
«2ugu1O~«12ugu!, g,0,

and

t 2̄55
~g11!a2

~c2b!g11E0

c2b

vgF 1

2c2v
1

1

vG2

dv1o~1!, g.1

~2a2

~c2b!2
ln

c2b

«
1O~1!, g51

~g11!a2

~c2b!g11

«211g

12g
1O~«g!, g,1.

~61!
o

s
o

ue
st

e
e
p

d
¯

rd

t

of

ion
he

ld
otic

ly
If we are interested in quantities depending on the rand

potentials only via,, t̄, andt 2̄, asẋ(` )̄ andSẋuẋ(0), we can
distinguish the following cases.

~1! g.1. In this caset̄ and t 2̄ have a finite limit as

E↓Ec . As a consequence,ẋ(` )̄ is positive andSẋuẋ(0) is
finite atE5Ec and their value is given, respectively, by Eq
~37! and ~51!: there is conduction with normal diffusion. S

when E increases and goes throughEc , both ẋ(` )̄ and
Sẋuẋ(0) change discontinuously from 0 to a positive val
and then vary continuously. This is analogous with a fir
order phase transition.

~2! 0,g<1. From the point of view ofẋ(` )̄ the transi-
tion is still of first order, but the divergence ofD,

D'
E3,2t 2̄

2~,2Ā!3
, ~62!

with the divergingt 2̄ whenE↓Ec resembles the divergenc
of the susceptibility atTc in second-order magnetic phas
transitions. Thus, in this case we have conduction accom
nied with an anomalous diffusion.

~3! 21,g<0. Both t̄ and t2 diverge whenE↓Ec , so

ẋ(` )̄ tends to zero and

D'
,2t 2̄

2t̄3
}«2122g, ~63!

with an additional factoru ln «u23 if g50. SoD diverges if
g.21/2, tends to zero if21,g,21/2 and to a finite
nonzero limit if g521/2.
01110
m

.

-
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Let us emphasize that the probability densitypg is purely
continuous and, thus, the probability thatf j5Ec for a given
j is zero. The probability thatf j5Ec for any j is still zero. So
with probability 1 the particle will never be stopped, an

ẋ(`)50 means only that, with probability 1,x(t)5o(t),
i.e.,x(t) increases slower thant . It is in this way that we can
understand the different possibilities of diffusion in the thi
case.

V. SCALING AT CRITICALITY

When E.Ec , Sẋuẋ(v) is a meromorphic function ofv
with no pole in a neighborhood of the origin. Analyticity a
v50 will be lost asE attains its critical valueEc . In this
section, we derive a scaling law describing the behavior
Sẋuẋ(v;E) when v→0 andE↓Ec simultaneously in such a
way that z5«/v[(E2Ec)/v is kept fixed. More specifi-
cally, we expect that in this limit

Sẋuẋ~v;E!'
r ~z!

v
. ~64!

Below we prove the above form and find the scaling funct
r (z). The model that we use for explicit computations is t
same as in Sec. IV, given by Eqs.~55! and~57!, although the
conclusions certainly hold more generally. First, we wou
like to give an argument why one can expect the asympt
form ~64!. If «.0, the correlation function

j~ t,t8!5 ẋ~ t !ẋ~ t8 !̄2 ẋ~ t !̄ẋ~ t8 !̄ ~65!

decays exponentially withut2t8u, and the correlation time
can be approximated withtm52aE/«(E1Ec), the maxi-
mum passage time through a scatterer@see Eq.~56!#. This
allows one to write down at least two different, qualitative
reasonable, approximations toj(t,t8), namely,
2-7



m

f

w,

e
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j1~ t,t8!5j0Q~tm2ut2t8u! and j2~ t,t8!5j0e2ut2t8u/tm,
~66!

with Q(y) being the Heaviside function. Both lead to a for
like Eq. ~64!. From j1, we obtain

Sẋuẋ
(1)

~v;E!'
2j0

v
sinvtm'

2j0

v
sin

a

z
, ~67!

while j2 yields

Sẋuẋ
(2)

~v;E!'
2j0tm

21

tm
221v2

'
2j0

v

a/z

11~a/z!2 . ~68!

In deriving r (z), we will consider only negative values o
g, so that 0,a[2g,1, chooseb50 for the sake of sim-
plicity and use the notation

P~y!5pg~Ec2y!5py2a, ~69!

cf. Eq. ~57!. We note that only

supyy
aP~y!,` and lim

y→0
yaP~y!5p, ~70!

wherep is defined by the normalization, will be used belo
so instead of Eq.~69! we can take anyP(y) with the prop-
erties~70!. Notice that*0

Ecdy(P(y)/y)5`. Accordingly, we
obtain

eivt̄5E
0

Ec
dyP~y!expF ivaS 1

«1y
1

1

«12Ec2yD G
~71!

and

lim
v→0

~eivt21!

v12a
5pE

0

`

dss2aFexpS i
a

s1zD21Gªg~z!.

~72!

Furthermore, from the third line of Eq.~60!, we have

t̄5t0«2a1O~«12a! ~73!

as «→0. In order to compute the current spectrum oth
terms have to be computed, like

12e2b( iv)512e2 i (v/E)(s2A)'2v12ag~z!̄. ~74!

Next, we need the average of

C~m!5mE
2a

a

dye2mq(y)2E~12e2mt!. ~75!

For the potential~55!

q~y!5E
2a

y ds

E2 f
5Q~2y!

~a1y!

E1 f
1Q~y!

a

E1 f
1

y

E2 f
.

~76!

Inserting Eq.~76! in Eq. ~75!,
01110
r

C~m!5 f F122 expS 2
ma

E1 f D
1expH 2maS 1

E1 f
1

1

E2 f D J G , ~77!

so that

C~m!5E
0

Ec
dyP~y!~Ec2y!F122 expS 2

ma

«12Ec2yD
1expS 2

ma

«1y
2

ma

«12Ec2yD G ~78!

and

emtC~m!5E
0

Ec
dyP~y!~Ec2y!FexpS ma

«1y
1

ma

«12Ec2yD
22 expS ma

«2yD11G . ~79!

Accordingly, in the limit of vanishingv

va21C~ iv!̄→pEcE
0

`

dss2aFexpS 2 i
a

s1zD21G5Ecg* ~z!

~80!

and

va21eivtC~ iv!→pEcE
0

`

dss2aFexpS i
a

s1zD21G
5Ecg~z!. ~81!

Moreover, one has~taking ,5s for simplicity!

B~2 iv!5
C~2 iv!

12exp@2b~ iv!#

5F2
va21C~ iv!

va21$12exp@2b~ iv!#%
G*

→F2
Ecg* ~z!

g* ~z!
G*

52Ec . ~82!

Similar expressions have to be obtained for

uC~ iv!u25E
0

Ec
dyP~y!~Ec2y!2U122 expS 2 i

va

«12Ec2yD
1expS 2 i

va

«1y
2 i

va

«12Ec2yD U2

, ~83!

so that
2-8
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va21uC~ iv!u2→pEc
2E

0

`

dss2aUexpS 2 i
a

s1zD21U2

5Ec
2u~z!. ~84!

By substituting into Eq.~48!, we finally obtain

Sẋuẋ~v!5
«1Ec

v2@,22a1~«1Ec!t̄ #
$uC~ iv!u2

12Re@eivdB~2 iv!eivtC~ iv!#%

'
«1Ec

v2va21@,22a1~«1Ec!t0«2a#
Ec

2@u~z!

22Reg~z!#. ~85!

Accordingly, in the limit of small« one obtains

va11«2aSẋuẋ~v!→
Ec

2

t0
@u~z!22Reg~z!#

5
Ec

2

t0
pE

0

`

dtt2a@ u12e2 i (a/t1z)u2

22 Re~ei (a/t1z)21!#

5
4Ec

2

t0
pE

0

`

dtt2aF12cosS a

t1zD G .
~86!

Finally,

lim
v→0

vSẋuẋ~v;Ec1vz!5

4Ec
2zaE

0

`

dtt2aF12cosS a

t1zD G
aE

0

`

dtt2a~11t !21

[r ~z!. ~87!

It is worth pointing out the relevance of this result: av21

component emerges naturally at criticality in the spec
properties of a purely mechanical model with disorder.

VI. CONCLUSION

In this paper, we have studied the motion of an ov
damped particle along a line under the influence of a c
stant external field and a random sequence of scatterers

This simple mechanical model has several virtues. T
first one is mainly pedagogical, since it can be solved
actly: analytic formulas have been obtained for the time
erage of the velocity and for the Fourier transform of
time-autocorrelation function—the velocity power spectru
We have found that above a critical value of the exter
field the asymptotic motion of the particle is a drift with
superimposed normal diffusion. The diffusion constant c
be also calculated explicitly. Moreover, at the critical fie
we have found different kinds of anomalous diffusion, d
01110
l

-
-

e
-
-

.
l

n
,
-

pending on the probability density associated with the r
dom potential of the scatterers.

The conclusion that normal and anomalous diffusive
havior can be obtained from a purely mechanical descript
by means of the randomness of the potential, and not
introducing any stochastic or periodic time-dependent fo
ing is the main conceptual virtue of this model.

In a physical perspective, there are different ways
which it can be interpreted. For instance, in order to avoi
too formal mathematical treatment from the very beginn
we have presented the model as describing the motion o
overdamped charged particle subject to a constant ele
field. Since below the critical value of the electric field th
current vanishes, the model can be interpreted as a clas
representation of the transition from an insulator to a c
ductor state, controlled by the electric field. By analogy w
the theory of phase transitions, we have shown that this t
sition can be first or second order and the correspond
critical properties are determined by the scaling law char
terizing the power spectrum of the current. As discussed
the Appendix, another interpretation of our model cor
sponds to the motion of a massive particle submitted
strong friction, sitting or sliding on a rough surface, incline
with respect to the ground. In the two-dimensional version
this model the roughness of the surface can be modeled
lattice of random harmonic traps and the component of
gravity force parallel to the surface plays the role of t
driving field. We have shown that this dynamics is asym
totically described by the one-dimensional model introduc
in this paper. Accordingly, all the above described scenari
recovered. In particular, anomalous diffusion properties
found to characterize the dynamics at the critical value of
inclination angle. This is quite important for the understan
ing of the the phenomenon of segregation by flow, that
been recently analyzed by numerical@11# and experimental
studies@12#.

As a final remark, it is worth mentioning that a real lim
tation of our studies is that we have completely neglec
inertial effects. For what concerns the one-dimensional m
els studied in this paper it appears possible to extend
studies to the case of a dynamics described by Newton e
tions. Nonetheless, this seems a much more challenging
for the two-dimensional problem of the particle sliding o
the rough, inclined surface.
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APPENDIX: A PARTICLE ON AN INCLINED PLANE

Let us consider a square lattice of disks of radiusa and
lattice constantd. A particle submitted to a very strong fric
2-9
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tion force moves in this lattice. Outside the disks it feels
constant positive forceF in the x direction. Once it enters a
disk, it is submitted, besideF, to a harmonic potential con
centric with the disk and of a frequencyv depending on the
disk. The frequencies are identically distributed independ
random variables.

The dynamics is described by the equations

gmṙ5F2 (
nPZ2

“Vn~r 2dn!, ~A1!

Vn~r !5
1

2
mvn

2@~x2dnx!
21~y2dny!22a2#

3Q~a2ur2dnu!, ~A2!

whereQ is the Heaviside function. In an electric interpret
tion F5(qE,0), E being the electric field andq the charge of
the particle. If we interprete the constant force as the resu
the gravitational force on the particle, moving in the pla
inclined with an anglea with respect to the horizontal the
F5(mgsina,0).

We can suppose that initially the particle is located
some point between the disks. Two possibilities arise. T
trivial first one is that the particle does not hit the disks:
motion is a straight line in thex direction. The second pos
sibility is that it hits first a disk at its right. Then, we ca
easily see that it moves only along the row of disks at
right of the first one and, therefore, its motion is restricted
this row. We select the row passing through the origin. Lea
andg21 be the unit of length and time, respectively. Thenth
disk of the row is centered at@r n5(d12)n,0#. Inside it the
dynamics is given by

ẋ52S vn

g D 2

~x2r n!1
F

g2ma
, ~A3!

ẏ52S vn

g D 2

y. ~A4!

If

en5
F

mavn
2,1, ~A5!

once the particle enters this disk, it stays in it forever a
reaches the equilibrium point (r n1en,0) in infinite time. If,
on the other hand,en.1, it goes across the disk and, if
entered the disk in timetn at the point (xn ,yn), it leaves it in
time tn8 at (xn8 ,yn8), where

xn82r n2en5~xn2r n2e!e2(vn /g)2(tn82tn) , ~A6!

yn85yne2(vn /g)2(tn82tn), ~A7!

so that the trajectory is a straight line
01110
a

nt

of

t
e

e
o

d

xn82r n2en

xn2r n2en
5

yn8

yn
. ~A8!

If yn50 thenyn850 and we use Eq.~A6! to determinexn8 . It
is worth recalling that the following relation holds

~xn2r n!21yn
25~xn82r n!21~yn8!251.

After time tn8 , the particle reaches (xn11 ,yn11), where

yn115yn8 . ~A9!

Note thatuyn8u,uynu, so that the particle will necessarily g
along the row. Equations~A8! and ~A9! give

yn115
yn~en

221!

en
21122en~xn2r n!

5
yn~en

221!

en
21112enA12yn

2
,

~A10!

becausexn2r n must be negative if the crossing takes plac
Let V5maxvn,` andFc5maV2. If F,Fc ,

Prob$en.1%5E
0

AF/ma
r~v!dv5p,1

and

Prob$at least oneen,1%51.

Therefore, if F,Fc , with probability 1 the particle is
trapped. IfF>Fc , then

Prob$en>1%51,
~A11!

yn11<yn

en
221

en
211

.

If vn.v.0, then

en,
F

mav2 5 ê.

Thus,

en
221

en
211

<
ê221

ê211
5d,1 ~A12!

and yN<y0dN→0. Thus, asymptotically the dynamics b
comes purely one-dimensional, i.e., restricted tox and, there-
fore, to our mechanical model of diffusion. For a harmon
trap of frequencyv ~and settingm51) the passage timet is
given by

t5
1

v2
ln

E1v2a

E2v2a
.

Now becauseEc5V2a, t̄ andt 2̄ remain finite atE5Ec and,
2-10
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hence, the transition is of first order.
An interesting extension of the model is obtained by a

mitting the force F to be in an arbitrary directione
5(cosq,sinq). Decomposingr in parallel and perpendicula
components, the perpendicular component is always att
r.

01110
-

u-

ated by the friction force while the parallel one may increa
globally linearly if F.Fc . If q/p is irrational, the positions
of the traps met by the particle form a quasiperiodic
quence. Even without the randomness of the frequency
may have interesting effects on the diffusion.
.

@1# Ya.G. Sinai, Theor. Probab. Appl.27, 247 ~1982!.
@2# J.P. Bouchaud and A. Georges, Phys. Rep.195, 127 ~1990!.
@3# E. Ott, Chaos in Dynamical Systems~Cambridge University

Press, Cambridge, 1993!.
@4# A.J. Lichtenberg and M.A. Liebermann, Physica D33, 211

~1988!.
@5# R. Ishizaki, T. Horita, T. Kobayashi, and H. Mori, Prog. Theo

Phys.85, 1013~1991!.
@6# T. Geisel, J. Nierwetberg, and A. Zacherl, Phys. Rev. Lett.54,

616 ~1985!.
@7# A.S. Pikovsky, Phys. Rev. A43, 3146~1991!.
@8# D. Szász and B. To´th, Commun. Math. Phys.104, 445~1986!;

ibid. 111, 41 ~1987!; J. Stat. Phys.47, 681 ~1987!.
@9# S.I. Denisov and W. Horsthemke, Phys. Rev. E62, 3311
~2000!.

@10# G. Kaniadakis and G. Lapenta, Phys. Rev. E62, 3246~2000!.
@11# S. Dippel, L. Samson, and G.G. Batrouni, inWorkshop on

Traffic and Granular Flow Ju¨lich, 1995, edited by D.E. Wolff
et al. ~World Scientific, Singapore, 1996!.

@12# F.-X. Riguidel, M. Ammi, D. Bideau, A. Hansen, and J.-C
Messager, inPowders and Grains 93, edited by C. Thornton
~Balkema, Rotterdam, 1993!; F.-X. Riguidel, A. Hansen, and
D. Bideau, Europhys. Lett.28, 13 ~1994!; F.-X. Riguidel, R.
Jullien, G. Ristow, A. Hansen, and D. Bideau, J. Phys. I4, 261
~1994!.
2-11


