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Repulsive step potential: A model for a liquid-liquid phase transition
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In the framework of the perturbation theory for fluids we study the model with the isotropic repulsive step
potential which in addition to the hard core has a repulsive soft core of a larger radius. It is shown that this
purely repulsive potential is sufficient to explain a liquid-liquid phase transition and liquid anomalies.
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It has been known for many years that a system of hard It is widely believed(see, for example, Reff7,8]) that a
spheres experiences the only phase transition at a high deftaid-fluid transition should be related to the attractive part of
sity, wheno=~1 , where o is the hard sphere diametdr, the potential. In the present paper we show that the purely
=(VIN)3is the average interparticle distandé i the sys-  repulsive step potentidll) is sufficient to explain a liquid-
tem volume,N is the number of particles This transition liquid phase transition and anomalous behaviors of the ther-
corresponds to the ordering of the centers of gravity of themal expansion coefficient.
particles and may be called an order-disorder transition or We apply to the problem the second-order thermodynamic
crystallization. In the case of hard particles of differentperturbation theory for fluids. The soft core of the potential
shapes such as hard rods, ellipses, discs, etc., a number (@ is treated as perturbation with respect to the hard sphere
orientational phase transitions may occur in accordance witpotential. In this case the free energy of the system may be
a hierarchy of characteristic lengths, which are defined bywritten in the form[9,10]
particle shapes. A new situation arises when an extra inter-
action of finite amplitudes is added to a system of hard F-Fps 1 1,
particles. As it is known from van der Waals theory, a nega- N7 EPIBJ Us(r)gus(r)dr—7pp
tive value ofe inevitably causes an instability of the system
in a certain range of density and generally leads to a first-
order phase transition with no symmetry charitiee order Xf [us(r)]?gus(r)dr, ()
parameter, characterizing this transition is simply the density

difference of the coexisting phasesp=p;—p,). This situ- wherep=VI/N is the mean number densifg= 1kgT, uy(r)
ation is almost universal and doesnot depend on the interags he perturbation part of the potentialy(r)=d(r)

tion length. —dyg(r), ®yg(r) is the hard sphere singular potential,

Much less is known about a case when the interactiony  y'is the hard sphere radial distribution function, which
parametere has a positive value. The simplest exampleiS taken in the Percus-Yevick approximatipnl]. In the

of that kind of interaction is the so-called repulsive stepgame approximation the compressibility can be written in the

aP

J
kBT( —p)
0

potential form [10]
®, Irso ) ([?_p) _ (1_7])4 (3)
d(r)={ e, o<r<o (1) ®NoP) (1+2m)2
0, I’>0’1.

To calculateF g, one can use, for example, the approxi-
Thereafter we will call a system of particles interacting viamate equatiofi10]
the potential(1): a system of “collapsing” hard spher¢s].
This kind of system is studied in connection with anomalous Fus 4n—375°
melting curves, isostructural phase transitions, transforma- ng INX—1+Inp+ -
tions in colloid systems, et¢see, for example, Reff2—6]). B (1=7)
A general conclusion derived from numerous studies of the
system is that the repulsive interaction of finite amplitudeHerex=h/(2rmkgT)*?and n=mpa’6. N
and length results in the melting curve anomaly and the iso- Further in this paper we use the dimensionless quantities:
structural solid-solid phase transition. The latter is a first-P=Po%/e, V=V/No=1]p, T=kgT/e, omitting the tilde
order phase transition and may end in the critical point, sincenarks. Results of the calculations are demonstrated in Figs. 1
there is no symmetry change across the phase transition linend 2. In Fig. 1 a family of pressure isotherms is shown for
The existence of that kind of a phase transition is a directhe system witho; /o=1.5. The van der Waals loops in the
consequence of the form of the interparticle interaction andsotherms at low temperatures are clearly seen, this indicates
we do not see any particular reason why it cannot occur in ¢he existence of the first-order liquid-liquid phase transition.
fluid phase. A critical point is found afT;~0.21V.~1.015.
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V/N FIG. 3. Phase diagram of the liquid-liquid phase transition for

FIG. 1. Compression isotherms of the collapsing sphere systerdifferent values ofo, /o (dimensionless unijs
at various temperaturggimensionless unifs

One can see from Fig. 3 thét) the critical temperature
decreases when the ratiq / o increases an?) the slope of
the transition curves changes drastically with changes in the
atio oy /o and temperature. Decrease of the critical tem-
erature may suggest that the transition ceases to exist at
igh values of the ratier,/o. It is not surprising since at

is shown as a function of temperature for two values of Spe%cr)]ng-rangef_mltderactlon _per';yrba?or:hgnergy ct?]n be ttre:;tetq n
cific volumesV;=0.85 andV,=1.25, corresponding to the € mean field approximation. 1n tis case the perturbation
energy is a positive monotonic function of volumeéH

high-density and low-density liquids, respectively. One can N d id d for th . f
see that in the case of the low-density liquid there is a rangé’ ), an cannot provide any ground for the existence of a
hase transition. The change of the slope of the transition

of negative values o&p below the critical temperature. P

Using the Maxwell construction we were able to calculate“_ne means in accordance with the Clausius-Clapeyron equa-

the equilibrium lines of the liquid-liquid phase transitions attion dT/dP:AV/AS.(.AV and AS are chgnge of volume
different values ofr; /o (Fig. 3. We cannot extend the tran- 2Nd €ntropy at transitigrthat the entropy jump at the tran-

sition lines down to zero temperature because of limitation ofition changes Sign for d!fferent values of the ratio/o and
the perturbation approach. temperature. This behavior of the entropy change can be pos-

sibly understood in the terms of the entropy of mixing,
meaning that two states of the particles of the system may be

An interesting and unusual feature of the isotherms in Fig
1 is their intersection in the low-density region. This kind of
behavior means negative value of the thermal expansion cd
efficient in the certain region of density and temperature. |
Fig. 2 the thermal expansion coefficiemp=V"1(V/dT)p

o T T T T T T ] considered as two different species.
0.9 G /o=1.5 ] To elucidate the nature of the transition it is instructive to
g': ] A k estimate the coefficient of surface tension between two liquid
0:6 a v =0.85 1 phasesy(T). In the case of a liquid-liquid transition it is
os [ 1 V<V <V 1 convenient to use the simple equation which is the generali-
04l /“ Te-el - 1 e 2 ] zation of the well-known equations obtained by Fowler,
o 93F “’ Sl Kirkwood, and Buff[12-14:

¥ oz2f ! . e
o1t ; Y= | “drrta i), ®
otf ! v,s=125 .
02 . where
03[ ,l .
:g': Fe T p2(1)=(p1,\OI,(N) = p1,\/91,(1)?, (6)

01 02 03 04 05 06 07 08 09 10 1.1 ) . ) . .
pi, andg,i(r) are the density and the radial distribution func-

T tion of theith phasg15].

FIG. 2. The thermal expansion coefficiemp as a function of In the approximation corresponding fo the second-order
temperature for two values of specific volumés=0.85 andV, perturbation theory?2), the radial distribution functiog, (r)
=1.25,V;<V <V, (dimensionless unijs can be written in the formp10]
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0.6 B

It should be noted that Ed7) gives qualitatively correct Py I
description of two-peak structure of the radial distribution \&' 05|
&~

function of the system with the potentiél). . -
04

Approximations(5)—(7) are rather crude, but we believe [ 7
that they at least qualitatively correctly describe the behavior 03l 4
of surface tension as a function of temperature and pressure. -

Using Eqg.(1) we rewrite Eq.(5) in the form 0.2 - ]

01

T ~ ~ 4~
y(T)= §[048Pz((r)—kBT04pz(U)—01SPz(01)]- 8

pol— 1t 0 v N,
0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.13 0.20 0.22

From Eq.(8) one can see that in the case of hard sphere T
potential surface tension coefficiep{T) is always negative,
however, it may become positive for the potentiBl due to FIG. 4. Dimensionless surface tension coefficiefil) as a

the first term in the right-hand side of E(). It should be  function of dimensionless temperatufefor two ratioso; /o=1.5
noted that it is the last term of Ed8) that explains the ando;/oc=1.6.
decrease of critical temperature of liquid-liquid transition

with increasingo; (see Fig. 3 stable liquid state, like it was discovered in the supercooled

In Fig. 4 we show the dimensionless surface tension COwater[lG,lﬂ. Though "? SOme cases the liquid-liquid transi-
L~ 2 . . . tion may be observed in stable liquifis3,19.

efficient y(T) = yo*/e as a function of dimensionless tem- "\ ,t0 that one would expect to get second phase transition,

perature T=kgT/e for two ratios oy/0=1.5 andoi/o  corresponding to the liquid-gas transformation, when an at-

= 1.6 (the tilde marks are omitted’hese curves are calcu- tractive tail is appended to the repulsive step potential, as it

lated along the corresponding curves in Fig. 3. From Fig. 4yas seen in the molecular dynamic calculatif28,21]. We

one can see that the coefficient of surface tension is pOSitiVBerform Corresponding calculations using the second-order

and tends to zero as temperature approadhesSo that the perturbation scheme with the core-softened potential pro-

liquid-liquid phase transition in the system with purely repul- posed by Stanley and co-authd20,21] and found second

sive step potential is a true first-order phase transition an@hase transition and second critical point. That may be

occurs through nucleation and growth of the new phase. viewed as some sort of justification of our approach to phase
We would like to emphasize that we do not claim that thetransformations in liquids.

second-order perturbation scheme, which was used in the Finally, we found essential evidences for a first-order

present paper, gives high precision quantitative results, howphase transition in the liquid state of a system of collapsing

ever, it seems reliable enough to give correct qualitative dehard spheres.

scription of the liquid-liquid transition in the system with the

potential(1). It should be noted that the first-order perturba- We thank V. V. Brazhkin, A. G. Lyapin, and E. E.

tion theory gives qualitatively the same results. Tareyeva for stimulating discussions. The work was sup-
The liquid-liquid transition line found lies most probably ported by the Russian Foundation for Basic Reseé&rant

below the melting curve and may be observed only in metaNo. 02-02-16622

[1] S. M. Stishov, JETP5, 64 (2002. [9] J.A. Barker and D. Henderson, J. Chem. Ph¥g, 2856
[2] P.C. Hemmer and G. Stell, Phys. Rev. L&, 1284 (1970); (1967).
G. Stell and P.C. Hemmer, J. Chem. Phy8, 4274(1972. [10] J.A. Barker and D. Henderson, Rev. Mod. Phy8 587
[3] J.M. Kincaid, G. Stell, and E. Goldmark, J. Chem. PH§5. (1976.
2172(1976. [11] W.R. Smith and W. Henderson, Mol. Phyi9, 411(1970.
[4] D.A. Young and B.J. Alder, Phys. Rev. Le&8, 1213(1977); [12] R.H. Fowler, Proc. R. Soc. London, Ser.1A9 229 (1937.
J. Chem. Physr0, 473(1979. [13] J. Kirkwood and F. Buff, J. Chem. Phy%7, 338(1949.
[5] P. Bolhuis and D. Frenkel, J. Phys.: Condens. Ma%e881 [14] 1. Z. Fisher,Statistical Theory of LiquidgFizmatgiz, Moscow,
(1999. 1961).

[6] A.R. Denton and H. Lowen, J. Phys.: Condens. Magek1 [15] In the spirit of the paperEl2,13 we suppose that in the vicin-
(1997). ity of interphase surface pair distribution functi@a(rq,r»)
[7] E.A. Jagla, J. Chem. Phy%11, 8980(1999. =p(z1)p(z5)9(r1—r5,21,2,) is approximated in the follow-

[8] E.A. Jagla, Phys. Rev. B3, 061501(2001). ing way:

010201-3



VALENTIN N. RYZHOV AND SERGEI M. STISHOV

>0, 2,>0,
palf1,12)=pf 01, (1),
z,<0, z,<0,
Pz(rl,rz):Pﬁglz(r),
z,>0, 2z,<0 or z;<0, z,>0,

P2(r1,r2)=p1,p1,\ 91, (1)g,(r).
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