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We investigate the depinning transition for driven interfaces in the random-field Ising model for various
dimensions. We consider the order parameter as a function of the control paréainieteg field) and examine
the effect of thermal fluctuations. Although thermal fluctuations drive the system away from criticality the
order parameter obeys a certain scaling law for sufficiently low temperatures and the corresponding exponents
are determined. Our results suggest that the so-called upper critical dimension of the depinning transition is five
and that the system belongs to the universality class of the quenched Edward-Wilkinson equation.

DOI: 10.1103/PhysRevE.66.069901  PACS nuni®er64.60—i, 68.35.Rh, 75.10.Hk, 75.40.Mg, 99.10g

I. INTRODUCTION for h>0, where h denotes the reduced driving field
=H/H.—1.

Driven interfaces in quenched disordered systems display The depinning transition is destroyed in the presence of
with increasing driving force a transition from a pinned in- thermal fluctuations T>0) which may provide the energy
terface to a moving interfacésee, e.g.[1] and references needed to overcome local energy barriers. Although thermal
therein. This so-called depinning transition is caused by afluctuations drive the system away from criticality the order
competition of the driving force and the quenched disorderparameter obeys certain scaling laws and for sufficiently low

The first one tends to move the interface whereas the lattqemperatures the order parameter can be described as a gen-
one hinders the movement. Depinning transitions are obarajized homogenous functiga2]

served in a large variety of physical problems, such as fluid
invasion in porous materialsee, for instance, Sec. 6.2[i?] v(h, T)=Ao(N"YBh, N ¥T), 2)
and references thergindepinning of charge density waves
[3,4], impurity pinning of flux-line in type-ll superconduct- similar to usual equilibrium second order phase transitions.
ors[5], contact lineg6] as well as in field driven ferromag- Settingh ~Y#=1 one recovers Eq1) for zero temperature.
nets, where the interface separates regions of opposite maghoosing\ ~¥T=1 one gets for the interface velocity at the
netizationg 7]. critical field H,

A well established model to investigate the depinning
transition in disordered ferromagnets is the driven random- v(h=0T)~T". ©)
field Ising modellRFIM) (see for instancg7—11]). Here, the . . .
disorder induces some effective energy barriers which suplNiS Power-law behavior was observed in two- and three-
press the interface motion. A magnetic driving fieddre- d|m9n3|onal S|mulat.|ons of the.drlven RFI[\ZIZ,'ls] as.well
duces these energy barriers but they vanish only if the driv@S in charge density waves in computer simulations and
ing field exceeds the critical valug, . The transition from Mean-field calculationg4,14]. _
the pinned to the moving interface can be described as a Fprthermore, thermal f_Iu_ctua.tlonS cause a creep mlot|on of
continuous phase transition and its veloaitys interpreted "€ interface for small driving fieldsH<H.) characterized
as the order parameter. Without thermal fluctuatiohs ) ~ PY @n Arrhenius-like behavior of the velocifiL5,1§. Re-

the field dependence of the velocity obeys the power-law?€ntly. this creep motion was observed in experiments con-
behavior sidering magnetic domain wall motion in thin films com-

posed of Co and Pt layefd7], in renormalization group

v(h,T=0)~h? (0] calculationg 18,19 regarding the Edwards-Wilkinson equa-
tion with quenched disorddQEW), as well as in numerical
simulations of the RFIM 20].

*Electronic address: lars@thp.uni.duisburg.de In equilibrium physics a scaling ansatz according to Eqg.
Electronic address: sven@thp.uni.duisburg.de (2) usually describes the order parameter as a function of its
*Electronic address: usadel@thp.uni.duisburg.de control parameter and of its conjugated field. Although Eqg.
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(2) can be applied to the depinning transition, i.e., the tem=<0.2), isolated spin-flips are possible and occur. But we
perature is a relevant scaling fiellljs not conjugated to the observed that these spin-flips are unstable in our simulations,
order parameter. The conjugated field would support the ink.e., an isolated spin will flip back in the next update step.
terface motion independent of its strength. But strong therThus the originally induced interfaces is stable during the
mal fluctuations destroy the interface instead to support theimulations.
interface motion. Therefore, one has to interpret the value of The moving interface corresponds to a magnetizakibn
the thermal exponent carefully. For instance, it is not clear which increases in timeé (given in Monte Carlo step per
whether the obtained values gfare a characteristic feature spin. The interface velocity, which is the basic quantity in
of the whole universality class of the depinning transition orour investigations, is obtained from the time dependence of
just a characteristic feature of the particular consideredhe magnetizatiow =(dM/dt) where( ...) denotes an ap-
RFIM. This point could be important for the interpretation of propriate disorder average. Starting with a flat interface we
experiments which naturally take place at finite temperaperformed a sufficiently number of updates until the system
tures. reaches after a transient regime the steady state which is
In this paper we reinvestigate the interface dynamics otharacterized by a constant average interface velocity. As
the driven RFIM and focus our attention to higher dimen-pointed out in previous workfsl2,13 an appropriate choice
sionsd=3. In particular we consider the scaling behavior atof the interface orientation is needed in order to recover that
the critical point and determine the exponefitand . Our  the interface moves for arbitrarily small driving field in the
results suggest that the so-called upper critical dimension aibsence of disorder. An appropriate choice is to consider the
the depinning transition of the driven RFIMds=5. Above interface motion along the diagonal direction of a simple
this dimension the scaling behavior is characterized by theubic lattice. Fold=3 an alternative is to examine the inter-
mean-field exponents. We compare our results with thoséace motion along the-axis on a body-centered cubibco)
obtained from a renormalization group approach of thdattice. Since it is much more convenient to implement the
qguenched Edward-Wilkinson equation which is expected tdatter case in higher dimensions we consider in this work bcc
be in the same universality class as the driven RFIM. A sumiattices, the more as the lattice structure usually does not
mary is given at the end. affect the universal scaling behavior.

IIl. MODEL AND SIMULATIONS Ill. D=3

We consider the depinning transition RFIM on cubic lat- In the case of the three dimensional RFIM we consider
tices of linear sizeL in higher dimensions d=3). The bcc lattices of linear sizé <250. A snapshot of a moving
Hamiltonian of the RFIM is given by interface in the steady state is presented in Fig. 1. The ob-

] tained values of the interface velocities fb=0 are plotted
_ Y = _ < in Fig. 2. As one can see tends to zero in the vicinity of
H= 2 <.§}> S, HZ S E.: hiS, @ H~1.36. Assuming that the scaling behavior of the interface
motion is given by Eq(1) one variesH. until one gets a
where the first term characterizes the exchange interaction atraight line in a log-log plot. Convincing results are ob-
neighboring spins§= *1). The sum is taken over all pairs tained forH.=1.357+0.001 and the corresponding curve is
of neighbored spins. The spins are coupled to a homogenowhown in the inset of Fig. 2. For lower and greater values of
driving field H as well as to a quenched random-fig|dwith H. we observe significant curvatures in the log-log gt
(hi)=0 and(h;h;)=&;; . The random field is assumed to be shown. In this way we estimate the error-bars in the deter-
uniformly distributed, i.e., the probability that the random mination of the critical field. A regression analysis yields the

field at sitei takes some valub; is given by value of the order parameter exponedt 0.653+0.026.
This value agrees witlB=0.66+0.04 which was obtained
(2A)7* for  |hj|<A, from a similar investigatiofi12] where the interface moves

p(hi)= 0 otherwise. (5) along the diagonal direction of a simple cubic latticee

inset of Fig. 2. Furthermore, both results are in agreement

Using antiperiodic boundary conditions an interface is in-with 8=0.60+0.11[10,11], where ind=3 the influence of
duced into the system which can be driven by the fidld helicoidal boundary conditions in one direction and periodic
(see[12] for detail9. A Glauber dynamics with random se- ones in the other direction parallel to the interface was in-
quential update and heat-bath transition probabilities is apvestigated on a simple cubic lattice.
plied to simulate the interface motigsee for instancg21)). In order to determine the exponeittwe simulated the

Due to this algorithm not only spins adjacent to the inter-RFIM around the critical field forT=0.025 with n
face but throughout the whole system can flip with a finite {1,2,3,4,6,8. The obtained curves are shown in the inset
probability at temperaturéb>0. In general, this may cause of Fig. 3. According to Eq(2) the interface velocity scales as
nucleation which always starts with an isolated spin-flip. The
minimum energy required for an isolated spin-flip AE v(h, T)=TYWyo(hT Y8 1), (6)
=2(zJ-H—A) with z=2% nearest neighbors on a bcc lat-
tice. Although the corresponding spin-flip probabilitf 11/ Plottingv (h,T)T~ ¥ as a function ohT~YA¥ one varies,
+exp@AE/T)] is small for the considered temperaturés ( ¢, and H. until one gets a data collapse of the different
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FIG. 1. Snapshot of a moving interface B0 for L=128,
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10° |

A=1.7, andH=1.37 ind=3. In order to show the details we

stretched the interface in the vertical direction by a factor of 15.

curves. Convincing data collapses are observe3fe0.63
+0.06, ¢¥=2.33+0.2, andH.=1.360+0.01 and the corre-
sponding curves are shown in Fig. 3. The obtained values o
the order parameter exponent and of the critical field agre
within the error-bars with the values of tHie=0 analysis.
Furthermore our results are in agreement with similar inves-
tigations on a simple cubic latticeBE0.63+0.07 andy
=2.38+0.2, sed12)).

IV. D=4

0.0 20

4.0
h T'”ﬁ‘l‘

FIG. 3. Scaling plot of the interface velocity fdre=3. The data

are rescaled according to E¢(f). The inset shows the unscaled

velocities forT=0.025 with ne{1,2,3,4,6,8 (solid lineg in com-
parision to theT=0 data from Fig. 2dashed ling

gfriving field H. A regression analysis yield8=0.8+0.06
andH . =1.258+0.002.

To determine the exponent we simulated the RFIM in
the vicinity of the critical field forT=0.025, where again
ne{1,2,3,4,6,8 was choosen. Similar to the three dimen-

sional case one varies the exponents as well as the critical
field until one observes a data collapse. Good results are

obtained for 8=0.73+0.13, #=1.72+0.27,

and H,

=1.256+0.015. The corresponding data collapse is shown
In order to determine the order parameter exponent of thé Fig. 5. Again, the obtained values gfandH, confirm the

four dimensional driven RFIM we measured the interface@bove presented analysis for0.

velocity for bec lattices of linear sizds<140. The obtained

data forT=0 are shown in a log-log plot in Fig. 4. After a

transient regime which displays a finite curvature we observe In the case of the five-dimensional RFIM system sizes

an asymptotic power-law behavior for sufficiently small from L=10 up toL =30 are simulated. Analyzing the inter-

V. D=5
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FIG. 2. Dependence of the interface velocityon the driving
field H for a bcc and simple cubi¢so lattice, respectively. The
inset shows as a function of the reduced driving figid The dash-

H

dotted lines are fits according to Ed.).

FIG. 4. The interface velocity of the four-dimensional model at

5=0.8+0.06.
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T=0. For sufficiently small fields the data obey a power law ac-
cording to Eq.(1) (dot-dashed ling For the fit we use only those
data marked by filled symbols and we filktL,=1.258+0.05 and
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FIG. 5. Scaling plot of the interface velocity far=4 andd

=6, respectively(see inset The data are rescaled according to Eq.  FIG. 6. The effective exponeni8e; as a function of Irn for

(6). various dimensions. The figure shows that the five-dimensional ex-
ponent does not display as clear as a saturation as the exponents of

face motion atfT=0 we observe that the velocity-field de- the lower dimensions do. The data of the six-dimensional model

pendence can not be described by a pure power-law, i.e., Efjdicate that the expected saturation vaig=1 is reached sig-

(1) fails. In Fig. 6 we plotted the logarithmic derivation of hificantly faster as compared t=5 (see text The values of the

the velocity-field dependence two-dimensional system are obtained fron3].
alnv exponents below the upper critical dimension the above scal-
Beﬁ=m, (7) ing behavior does not rely on approximation schemesdike

or lh-expansiong25]. Within the renormalization group
heory it is an exact result in the limih—0 (see, e.g.,
22,26 and references therein for RG investigations and
[27,28 for measurements

The valueBye=1 is reported for depinning transitions
£1,29,30. Thus we analyze (h)/h as a function ofln h| and

which can be interpreted as an effective exponent. If th
asymptotic scaling behavior obeys Hd) the logarithmic
derivative tends to the value @f for H—H_. But as can be
seen from Fig. 6 no clear saturation takes placalfeb as it

is observed for the three and four dimensional model. Th . . :
lack of a clear saturation could be explained by a too largd!®t€ 2gain that E8) describes only the leading order of the

large distance from the critical point, but another reason i$¢@ling behavior, i.e., we expect that the asymptotic behavior
possible too. of interface velocity obeys

Significant deviations from a pure power law behavior [v(h)/h]¥B=constinh|. )
[Eq. (1)] occur for instance at the upper critical dimensional
d. where the scaling behavior is governed by the mean-field herefore, we varied in our analysis the logarithmic correc-
exponents modified by logarithmic corrections. The scalingion exponentB and the critical fieldH, until we get this
behavior aroundi. is well understood within the renormal- expected asymptotic behavior. The best results are obtained
ization group theorysee for instanc¢22—24)). Ford>d;  for B=0.40+0.09 andH.=1.14 235-0.001 and the corre-
the stable fix point of the corresponding renormalizationsponding scaling plot is shown in Fig. 7. The observed
equations is usually a trivial fix point with classical mean- asymptotic agreement with E(Q) corresponds to a logarith-
field exponents. This trivial fix point is unstable fdk<d, mically (1/Inh|) convergence ofes to Byr=1, which ex-
and a different stable fix point exists with nonclassical expoplains why no clear saturation of the effective exponent
nents. These exponents can be estimated by-@xpansion, could be observed fdn—0 in the five-dimensional model.
for instance. Fod=d, both fix points are identical and mar- Similar to theT=0 scaling behavior one has to modify
ginally stable. In this case the asymptotic form of the therfor T>0 the scaling ansatz since no data collapse could be
modynamic functions is given by the mean-field power-lawobtained by plotting the data according to 2). Motivated
behavior modified by logarithmic corrections. Applying this by recently performed investigations of the scaling behavior
approach to the depinning transition, the corresponding arsf an absorbing phase transition around the upper critical
satz reads dimension[31] we assume that the scaling behavior of the

order parameter obeys in leading order
v(h,T=0)~h?AwrInh|B, (8)
v(h,T)=TYnFInT| 70 (x,1), (10)

where B denotes an unknown correction exponent. It is
worth to mention that in contrast to the values of the criticalwhere the scaling argumenrtis given in leading order by
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FIG. 7. The rescaled interface velocity as a function of the driv-
ing field for d=5. In order to display the logarithmic corrections
we plot (v/h)Y® vs —Inh[see Eq(8)]. The solid line corresponds
to the expected asymptotic scaling behaviortes 0 [correspond-
ing to Inh—(—<)] according to Eq(9).

x=hT~YBurtne|In T|7 (11)
with Bye=1. In our analysis we use the valug,-=1.49
obtained from the analysis of the six dimensional RRBde
next section Therefore, we have to vary the exponents
and 7 in order to observe a data collapse according to Eq
(10),(11). Convincing results are obtained for=0.22
+0.16, 7=0.19+£0.12. The corresponding data collapse is
shown in Fig. 8.

VI. D=6
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FIG. 8. The scaling plot of the interface velocityfor the five-
dimensional model, i.e., at the upper critical dimension. The data
are rescaled according to Eq4.0),(11) using #=1.49, B=1, o
=0.22, andr=0.19.

which recovers Eq(12) for h—0. Fitting our data to this
ansatz we geH.=1.1537:0.003, v,=0.2546, andv,=
—0.0895. The corresponding curve fits the simulation data
quite well as one can see from Fig. 9. In the inset of Fig. 9
we plottedv (h)/h as a function of the reduced driving field
h. According to the above ansdizq. (13)] one gets a linear
behavior, i.e., the deviations from the pure mean-field behav-
ior [Eq. (12)] can really be described as quadratic correc-
tions. Thus we get that our numerical data are consistent with
the assumption that the six dimensional RFIM depinning
transition is characterized by the mean-field expon@nt

=1.

Above the upper critical dimension the scaling behavior is

characterized by the mean-field exponents, i.e., in leadin

order the interface velocity is given by
v(h, T=0)~h. (12

In Fig. 9 we plot the velocity as a function of the driving

field H obtained from simulations of system sides 14. As
one can see the velocity does not display the expected line

behavior. It seems that a linear behavior is only given for g
small velocities, i.e., our data do not display the pure

asymptotic behaviofEq. (12)]. This is confirmed by the be-
havior of the effective exponedEq. (7)] which increases
fast forh— 0 but the actual saturation ®=1 does not take
place for the considered valuestofsee Fig. 6. To observe

the asymptotic behavior one has to perform simulations

closer to the critical poinH, which requires to simulate

larger system sizes. Unfortunately, the limited CPU power

makes this impossible.
An alternative is to take the curvature of the function

¢ 012 . . . :
ol=6 ‘f/o d=6
OL=8 e
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AL=12 e
8 o [=14 ‘ 0.26 T T
ru 7 3
& 006 | o ozl Pa 1-
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A/’ S o022} B 1
O‘\
0.03 Y ol N
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0.00, £ : : :
141 1.3 1.5 1.7 1.9 2.1
H

FIG. 9. The interface velocity as a function of the driving field
for the six-dimensional model. The dashed line corresponds to a fit

v(h) into consideration and to assume that the leading coraccording to Eq(13). The inset displays(h)/h as a function of the

rections to the asymptotic behavior are of the form

v(h,T=0)=v,h+v,h?+O(h%), (13

reduced driving fielch. The resulting linear behavior confirms that
the deviations from the mean-field behavior can be described by
guadratic corrections.

069901-5



ERRATA PHYSICAL REVIEW E 66, 069901E) (2002

' T T ' T TABLE I. The exponents8 (obtained from simulations &t
10 — RG, [27] =0 andT >0, respectivelyandy of the depinning transition of the
Ofrom [12] RFIM for different dimensions. The values of the two-dimensional
] model are obtained fromil3]. The critical behavior at the upper
08 . critical dimensiond,. is additionally affected by logarithmic correc-
: : : tions.
@ 06 5 17 d Br=0 Br>0 U
4 T 2 0.35£0.04 0.33:0.02 5.06:0.3
04 3 1 1 3 0.653+-0.026 0.63:0.06 2.330.2
2 4 0.80+0.06 0.73:0.13 1.72£0.27
o2 | [ NP — d.=5 1 1 1.49
1 L L L L 6 1 1 1.49:0.15
2 3 4 4 6
d
0.0 2 3 4 d 6 where e denotes the distance from the upper critical dimen-
(4

d sion, i.e.,e=5—d (unfortunately, no error-bars can be esti-
mated from ane-expansioi The corresponding values of
FIG. 10. The critical exponent8 and ¢ as a function of the the exponents as a function of the dimension are plotted in
dimension. The solid line corresponds to the values o axpan-  Fig. 10. The numerically determined exponertsof the
sion[Eq. (14)]. driven RFIM (listed in Table } are in a fair agreement with
the values of thes-expansion.
For the QEW equation the temperature expongig not
Again we consider how thermal fluctuations affect theknown. Therefore, a direct comparison with the obtained val-
scaling behavior and analyze interface velocities obtained ajes of the driven RFIM is not possible.
different temperaturesT=0.025 with ne{1,2,3,4,6,38.
Similar to the situation below the upper critical dimension VIIl. CONCLUSIONS
we assume that the scaling behavior of the interface velocity
is given by Eq.(2) where the exponents are given by mean-
field values. A convincing data collapse is obtained g
=1.49+0.15 andH.=1.153+0.02 and is plotted in the inset
of Fig. 5.

We studied numerically a field driven interface in the
RFIM and determined the order parameter expon@rds

well as the temperature exponeft Below the upper critical
dimensiond.=5 the critical exponents depend on the dimen-
sion and the values of the exponents correspond to those of a
two-loop renormalization group approach of the Edwards-
VII. DISCUSSION Wilkinson equation[30]. This suggests that the depinning

A well established realization of interface pinning in a transition of the RFIM model belongs to the universality
disordered media is the so-called quenched Edwards:lass of the quenched Edward-Wilkinson equation. At the
Wilkinson (QEW) equation of motion which was intensively UPper critical dimensiord.=5 the scaling behavior is af-
investigated in the last decad@,18,19,29,30,3R It is ar- fgcted by logarithmical corrections. Above the_ upper critical
gued that the QEW equation as well as the driven RFIM aréilme_nsmn we observe that the scaling l_)ehawor |s_character-
characterized by the same critical exponents, i.e., both modé€d in leading order by the corresponding mean-field expo-
els belong to the same universality cl4gs10. Renormal- ~ Nents.
ization group analyses of the quenched QEW equation

[29,30 predict, in accordance witfi7], d.=5 and allow to ACKNOWLEDGMENTS
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