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Resonant interaction of modulational instability with a periodic soliton
in the Davey-Stewartson equation

Masayoshi Tajirtt Hiroyuki Miura,? and Takahito Ardi
lDepartment of Mathematical Sciences, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
’Department of Mechanical Engineering, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan

(Received 31 July 2002; published 19 December 2002

The time evolution of the Benjamin-Feir unstable mode in two dimensions is studied analytically when it
resonates with a periodic soliton. The condition for resonance is obtained from an exact solution to the
hyperbolic Davey-Stewartson equation. It is shown that a growing-and-decaying mode exists only in the
backward(or forward region of propagation of the periodic soliton if the resonant condition is exactly
satisfied. Under a quasiresonant condition, the mode grows at first on one side from the periodic soliton, but
decays with time. The wave field shifts to an intermediate state, where only a periodic soliton in a resonant
state appears. This intermediate state persists over a comparatively long time interval. Subsequently, the mode
begins to grow on the other side from the periodic soliton.
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I. INTRODUCTION

PACS nunider05.45.Yv

SIn?(¢/2) = (82— B?)/(2ru?),

A uniform train of weakly nonlinear deep water waves is @ndo and ¢ are arbitrary phase constants. We refer to this as
unstable to infinitesimal modulational perturbations, which is& growing-and-decaying mode solution. The solution is non-

known as the Benjamin-Feir instabilif{t]. The time evolu-

singular whenM is greater than unity for reab. This con-

tion of the unstable wave is governed by the nonlineadition coincides with the one for the Benjamin-Feir instabil-

Schralinger (NLS) equation[2,3,4]. Solving the NLS equa-
tion numerically with periodic boundary condition, Lake

et al. [5] found that the unstable wave train recovers its ini-
the so-called Fermi-Pasta-UlanThe solution(2) shows that an unstable mode grows expo-

tial state after modulation:

0<(8%—B?)<2rud. ©)

recurrence. This problem was solved analytically by Tajirinentially in its early stage. After reaching maximum modu-

and Watanabgg].

lation, it vanishes with time to reproduce the initial unmodu-

Weakly nonlinear waves having two-dimensional propertylated state.

were studied by several authol®,7,8. The motion of a
wave packet in a large scale of time was found to obey thd

Davey-StewartsoDS) equation[8]:

iU|+ PUyy+ Uyy+r|ul?u—2uv =0,

Uxx™ pvyy_r(|u|2)xxzoy

wherep=*1 andr is constant. Equatiofl) with p=1 or

D

The resonance of a line soliton and a growing-and-
ecaying mode was studied by Pelinov§kg]. Although the
growing-and-decaying mode virtually exists only in a finite
period of time, an infinite phase shift happens to the line
soliton. Its mechanism has been clarified recently by show-
ing that the mode develops only on a half plane divided by
the line soliton if the condition for resonance is exactly sat-
isfied[11]. The change of wave field with time is also inves-
tigated for this case under a quasiresonant condition. An un-
stable mode begins to grow only on one side from the

p=—1 are called the DS | and DS Il equations, respectivelys,jiton Their interaction results in a line soliton in a tran-

Tajiri and Arai[9] obtained the analytical solution to the
DS | equation for modulationally unstable mode as follows:

u=ueeé(g/f), v=—2(Inf),,
with
f=1—e 27 cosy+(M/4)e 22+20,
g:1_e—Qt+(r+i¢COS”+(M/4)e—ZQt+20’+2i¢,
where
{=kx+ly—ot, o=k*+12—ru},
n=PBx+y—yt+mn,, Q=(B>+5*)cot $/2),

vy=2kB+2l8, M= 2/(1+cosg),
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sient state. Subsequently, the mode develops on the other
side of the soliton, which decays finally.

In this paper, we investigate the interaction of the
growing-and-decaying mode with a periodic soliton. The
condition for resonance is obtained analytically and the in-
teractive development of the waves is discussed.

Il. QUASIRESONANCE BETWEEN PERIODIC SOLITON
AND GROWING-AND-DECAYING MODE

The interaction of a periodic soliton with a growing-and-
decaying mode is discussed on the basis of the DS | equa-
tion. Using theN-soliton solution of Satsuma and Ablowitz
[12], we can get a solution for the present problem as fol-

lows:
u=upe'é(g/f), v=-2(Inf ), (4)

with
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f=1 !
T LL,

1 1L2

+ Mze§2 COS( 771+ ‘Pl‘f' \Pz) +

1 . - My
=1— ——ef1" ¢ coq p;+idy) —ef2" 2 cosn,+ e
g L,L, g1 +idq) 72 4L2L§

1

X

My
—ef1t 141 cog 7, + W -
1L2

X{Lycod 7+ mot+icdhyi+ W)+ L,coq 7 —

M ¢ M, M
e‘1cosn; —ef2cosy,+ meng- 792'52— i Iy

1 My
L ef1782{; cog ny+ 7+ W) +Lycog py— o+ W)+
2

1‘1’2)"’ Mze§2+i¢2 COS{ 771+i¢1i+\1}1+ ’\Pz) +

Nytidi+ Vo) +
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L ef1cog g+ W, —W,)

1=2

2 Q2E1+ &)

®)

28142 4 &e%z*?“ﬁz_ Ee§1+§2+i(¢1r+¢2)
4 4

eéi™ Exti(dyrt o)

2L,L

1=2

(6)

Z'Z 261+ E)+20 (b1t d2)

where
§l=ax+ Ky_Qlt+ 01,

52: _ta+ 0o,
71= B1X+ 1Y — yit+ nao,
72= BoX+ 82Y = yot + 720,

'y1:2k181+2|51 [{(a+l,81)2+(K+I51)2}COt

¢1
2

b2
(32+ 52 5)Cot—- >

’}/2:2kﬁ2+ 2| 52,

1 (a+ip)®—(k+id;)? M
= > , 2| qin P 1 (21 P2 K2
2 2rug 2rug sln2 coshg;—(a“+ B7) + (k +5)
M —
52— B2 1 2 ;
ﬂ:z_'gz, 2ru? sinﬂ coS¢y, — (a?+ B2) + (k% + 52)
2 2rug 2
1= 2ka+ 21 k—Re| {(a+1 )2+ (x+i )7 cot oL Mo 2
1= a K {(a Iﬂl) (K | 1) }CO 2 ’ 2 1+COS¢2,
|
2ru§sin%sin%cos¢1 2 i{(a+iBy) Ba—(k+i8y) 55}
Lie™i= I, ’
2ru§sin713in7zco : —I{(a+|,81 Bo—(k+i81) 85}
2ru SIH%SIH%COS¢1 +i{(a+iB1)Ba— (k+idy) S5}
Loe'V2= b b e .
2ruosm7sm?2cos ! +i{(a+iB1)Br— (k+idy) S}

Here, 6, 6,, oq, o, are arbitrary real constants awg is
assumed real. When we consider the case)}, 0<a, 0
<k and 0<(),, the solution a long time before the growth
of the growing-and-decaying mode is approximately given

by

g

()

M M
f= T2e2g2 1—eficod m+ V¥, +V,)+ Tlezfl ,
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M : :
= —2e2(52+'¢2)[ 1—efttiducog g +igy+ WV, +W,)

+ &62(§1+i¢1r)] . (8)

On the other hand, the solution a long time after the interac-
tion is given by
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FIG. 1. The sequence of snap-
shots of the quasiresonant interac-
tion between periodic soliton and
growing-and-decaying mode. The
parameters are k(1)=(1.0,1.0),
(a,x)=(0.42,0.20), B1,61)
= (022,045), 62,62)
=(0.27,0.55), and ¢;,¢7)
=(1/4m,2/97). The time evolu-
tion is (@) t=—-7, (b) t=0.0, (c)
t=3.8, (d t=7.6, and (e) t
=13.0. In this figurex, y, andu
are all dimensionless.

M +i8,=i\/2rud sin(¢,/2)cosh
f=1_ ef1cosp, + 21262§1’ ©) k+id =iy rugsin( ¢,/2)coshéy,
LiL, 41212
Bo=1/2ruj sin( ¢,/2)sinhé,,
1 . M,
=1— §1tid i b 2(&1+ b1r) 7 .
9=1- [, & oot mtidu)t grapeth e 8= \2rug sin( g,12)coshé,,

(10 : :
Eq. (11) is rewritten as
Both formulas represent the structures of periodic soliton.
Comparing these solutions, we see that the phase of the _, 2. %1 _. ®2 _ _
periodic soliton shifts by the amount In(L,) [or D=2rugsin 2 N5 05 CosH(61~ 62)
—In(L;L,)] due to the interaction with the growing-and- (12
decaying mode. Thereforel, {L,)=c or 0 may be regarded N _ _
as the condition for resonance between periodic soliton andhus the condition for resonance is expressed in the form
growing-and-decaying mode. In this paper, we limit our dis-

b1 . Pa b1+ do

cussion to the case in whidhy, is infinitely large, namely G2= %201~ b1, 0= 01, (P1i/2). (13
b b b1+ Evaluating Egs(5) and (6) approximately, we can char-
D=2ru§sin—lsin—zcosg—i{(aﬂﬂl)ﬁ2 acterize the process of interaction separately in the five spe-
2 2 2 cific periods in time.
—(k+i8;)8,}=0. (12) (py) t—— (before the mode growsThe solution is

given by Eqgs.(7) and (8). Only a periodic soliton exists in
the wave field as shown in Fig(d).

(po) t~0,/Q,;[e” %272~ 0(1)]. In this case, the
functionsf andg take approximate forms

If we expressy, «, B1, 61, B2, andés, in terms of 4, @5,
61, and 6, as follows:

a+ipy=iv2rugsin(¢,/2)sinho; f=1—ef2cos7m,+(M,/4)e*e, (14)
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g=1-ef2"%2cos7,+ (M, /4)eX&tid2)  (15) f=1, g=1,
behind the periodic soliton and and
- 2(é1+ &)
f=(M1M,/16)e7 51752, (16) f= i’ I_zez 1(1 L,L,ef2coq n,+ W, —¥,)

g=(M;M,/16)e? E17 &) +2i(dy+ o) 17

M L L2
2 2 2§} (20)

ahead of the soliton. The solutions corresponding to Egs.
(14), (15), (16), and(17) denote the growing-and-decaying
mode and uniform state, respectively This indicates that the M,

TR

e2(&t '¢1r){1 L,L,ef2 %2 coq 7,+ ¥, —T,)

grow ahead in this stage[Fig. 1(b)]. (p3)t~02

+1/2In LiL,/Q,, [V L,e 272~ 0O(1)]. Approximate M,L3L3 .
forms of Eqs.(5) and (6) are given by + ———e?&tid) (21)
1 MM, respectively. Equation§20) and (21) denote th ing-
Y 261+ £ p y. Equation an enote the growing
f=1+ 2L2e srzcog W) ¥ e and-decaying mode. In this period, the mode is developed

(18) only in the forward region of the periodic soliton as shown in
Fig. 1(d). (ps)t— +<0. The solution is given by Eq$9) and
(10), which shows appearance of the periodic soliton after
the growth and decay of the mode as shown in Fig).TThe
periodic soliton has obtained the phase shift In(L,L,) as a
MM, Q261+ E9) 20 (dy,+ o) (19) result of interaction with the growing-and-decaying mode.

6 Similar asynchronous development of the growing-and-

decaying mode may occur whdn—0. The condition for
It follows from these expressions that only a periodic solitonresonance in this case is given by

in a resonant state forms in the wave field as shown in Fig.

1 .
g=1+ 5 0 cosmy + mtihy + W)

1(c). The mode which was produced in the backward region Do=F201i+ ¢y, O,= 01, = yi/2. (22
has already decayed. Tlkeandy components of wave num-
ber, frequency and phase of the soliton ar¢i(8,+ 82), lll. CONCLUSIONS

k+i(01+ 8,), Q1+Q,+i(y,+7y,) and ¢+ ¢,, respec-

) 2 . The nonlinear evolution of a modulational instability is
tively. From the conditior(11), we can obtain Y

described by a growing-and-decaying mode solution to the
b1t by [a+i(Bi+ Bo)P—[k+i(81+ 872 DS I equation. We have investigated the time evolution of the
= > , resonant interaction between periodic soliton and growing-

2 2rug and-decaying mode. Under a quasiresonant condition, the
mode develops first on one side from the periodic soliton.
After the wave attains the maximum modulation, it returns to

sir?

Q1+ Qo+i(y1+ 72)

—2k[a+i(Bi+ Bo) |+ 21[k+i(51+ &) the unmodulated initial state. Then, the wave field shifts to
an intermediate state affected by the growth and decay of the

) o b1t ¢2 mode. Only a periodic soliton in the resonant state forms.

“lati(Brt B "+ [k +i(81+ 8)]}COt—o—"  Thjs intermediate state persists over a comparatively long

time interval. Next, the mode starts to grow on the other side

These equations give the dispersion relation for the periodifrom the periodic soliton.
soliton in the resonant state. The existence of periodic soliton changes the evolution of
(Pt~ +InLiL,/Q5;(L,L,e52~0(1)). The solu-  the growing-and-decaying mode drastically as if the periodic
tions in the backward and forward regions of the periodicsoliton dominates the instability in whole region of the wave

soliton are given by field.
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