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From gene families and genera to incomes and internet file sizes:
Why power laws are so common in nature
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We present a simple explanation for the occurrence of power-law tails in statistical distributions by showing
that if stochastic processes with exponential growth in expectation are killed~or observed! randomly, the
distribution of the killed or observed state exhibits power-law behavior in one or both tails. This simple
mechanism can explain power-law tails in the distributions of the sizes of incomes, cities, internet files,
biological taxa, and in gene family and protein family frequencies.
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Distributions with power-law behavior in one or both ta
are ubiquitous in physics, biology, geography, econom
insurance, lexicography, internet ecology, etc. Associa
names includeZipf ’s law ~word frequencies, city sizes!,
Pareto’s law ~incomes!, and therank-size property~cities,
firms, etc.! There have been many attempts to explain w
such distributions are so common, including notions of s
organized criticality@1# and highly optimized tolerance@2#.
We shall show that power-law tail behavior can arise from
very simple mechanism that can explain its occurrence
many instances.

The basic idea is that if a process that grows expon
tially, in a loose sense, is ‘‘killed’’~or observed once! ‘‘ran-
domly,’’ the distribution of the killed~observed! state will
follow power laws in one or both tails. Consider the simp
case of deterministic exponential growthX(t)5emt killed at
a random timeT which is exponentially distributed with pa
rametern. The killed stateX̄5emT has the probability den
sity function f X̄(x)5(n/m)x2n/m21 for x.1, giving power-
law behavior over its full range. We shall consider fo
stochastic processes all exhibiting exponential or geome
growth in expectation. We denote expectation byE, and
freely use the conditional expectation identityE@ f (X)#
5EY$E@ f (X)uY#%.

~1! Geometric Brownian motion~GBM!, wheredBt has a
normal distribution with mean 0 and variancedt,

dX5mXdt1sXdBt , E~XtuX0!5X0exp~mt !. ~1!

~2! Discrete multiplicative process, with $Zn% independent
identically distributed random variables with meanm,

Xn115ZnXn , E~XnuX0!5X0mn. ~2!

~3! Homogeneous birth-and-death process, with birth and
death ratesl andd,

P~Xt1h5n11uXt5n!5lnh1o~h!,

P~Xt1h5n21uXt5n!5dnh1o~h!,

P~Xt1h5nuXt5n!512~l1d!nh1o~h!, ~3!
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E~XtuX0!5X0e(l2d)t.

~4! Galton-Watson branching process, with $Zi% indepen-
dent identically distributed random variables represent
numbers of offspring andE(Zi)5m,

Xn115Z11Z21 . . . 1ZXn
, E~XnuX0!5X0mn. ~4!

We consider the killed state of these processes when
ing occurs at random. For the discrete-time processes~2! and
~4!, we assume that the discrete hazard is constant: if
process has not been killed by timen21, the probability of
it being killed at timen is a constantp, independent ofn,
giving the geometric distribution for the generation numb
N corresponding to the killed state,

P~N5n!5p~12p!n21, n51,2,3, . . . ; ~5!

we exclude killing in the zeroth generation. For th
continuous-time processes~1! and~3!, we assume a constan
hazard raten, giving the exponential distribution

P~killed at time>t !5e2nt. ~6!

To find the distribution of the killed state we use themoment
generating function~MGF! E@eXs# for the continuous state
processes~1! and~2!, and theprobability generating function
~PGF! E@sX# for the discrete state processes~3! and~4!. The
PGF of the geometric distribution~5! is

E@sN#5ps@12~12p!s#21. ~7!

A number of plots can reveal power-law behavior in
empirical size distribution. If there is lower-tail power-la
behavior, a plot of the empirical cumulative distributio
function ~CDF! on logarithmic axes should be close to line
at its lower end. Equivalently, a logarithmic plot of the~as-
cending! rank against size should be close to linear at
lower end. For upper-tail power-law behavior a logarithm
plot of the empirical survivor function~or complementary
CDF! should be linear at its upper end, as should be a lo
rithmic plot of the descending rank against size. One can a
©2002 The American Physical Society03-1
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look for linearity in a plot of frequencies against size
logarithmic axes. However, many sizes~especially extreme
ones! will not occur at all or occur only once, and so som
binning will probably be required.

Killed geometric Brownian motion. Let X̄ be the killed
state and let Ȳ5 ln X̄. The MGF of Ȳ is E@exp(Ȳs)#
5ET$E@exp(YTs)uT#%. SinceYT2Y05 ln(XT /X0) has the nor-
mal distribution N„(m2s2/2)T,sAT… @3#, we find that
E@exp(YTs)uT#5exp@Y0s1(m2s2/2)Ts1 1

2 s2Ts# and

E@exp~Ȳs!#5eY0sab~a2s!21~b1s!21, ~8!

whereY05 ln X0, while a and2b (a,b.0) are the roots of
the quadratic equation12 s2s21(m2 1

2 s2)s2n50. Equation
~8! is the MGF of the probability density function

f Ȳ~y!5A@e2a(y2Y0)H~y2Y0!1eb(y2Y0)H~Y02y!#,

an asymmetric Laplace distribution;A5ab/(a1b) and the
Heaviside functionH is positive if its argument is positive
and zero if its argument is negative. It follows that the d
tribution of X̄ is a two-sided Paretoor double Paretodistri-
bution, with density

f X̄~x!5H AX0
2bxb21 if x<X0,

AX0
ax2a21 if x.X0 ,

~9!

which exhibits power-law behavior in both tails.
Equation ~9! has been used to explain the upper-t

power-law phenomenon observed for incomes~Pareto’s law
of incomes! @4# and city sizes~the rank-size law! @5#. It is
assumed that both individual incomes and settlement s
evolve as GBM, while the time that an individual has be
earning and the time a settlement has been in existence
reasonably be modeled as having exponential distributio
based on the assumption that the workforce and the pop
tion of settlements are growing at a fixed rate. The predic
lower-tail power-law behavior has been shown to occur
the empirical distributions of both incomes and human set
ment sizes, facts previously unrecognized. Figures 1 an
illustrate empirical power-law behavior in both tails of sett
ment size and income distributions, using recent US data@6#.

FIG. 1. Distribution of the sizes of 19 399 places in the USA
1999. Logarithmic rank-size plots of the smallest 500 places~left
panel! and the largest 500 places~right panel! suggest power-law
behavior in both tails of the distribution.
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Killed discrete multiplicative process. We distinguish
three cases for the multiplicative processXn115ZnXn :

~a! monotonically increasing, whenP(Zn.1))51;
~b! monotonically decreasing, whenP(Zn,1)51;
~c! bidirectional, whenP(Zn.1).0, P(Zn,1).0.

Again let Ȳ5 ln X̄, so thatȲ5 ln X01(j51
N Uj , with N distrib-

uted geometrically with parameterp via Eq. ~5!, and U j
5 ln Zj . For brevity let E@exp(sUj)#5MU(s). Then
E@exp(Ȳs)#5X0

sEN@MU(s)N# and EN@MU(s)N# is the pgf ~7!
of N evaluated atMU(s). Thus withq512p,

E@exp~Ȳs!#5X0
spMU~s!@12qMU~s!#21.

The tail behavior of the density ofȲ is determined by sin-
gularities in the MGF from solutions ofMU(s)51/q. Since
MU(0)51 andMU9 (s).0, provided that the MGF ofU ex-
ists in the neighborhood ofs50, real zeros ofMU(s)21/q
are simple zeros. There are three cases.

~a! U j.0 ~i.e., Zj.1) with probability 1, so the proces
$Xn% is increasing. BecauseMU(s) is increasing with
MU(s)→` as s→` and MU(s)→0 ass→2`, there is a
unique simple zero ofMU(s)21/q ats1.0, giving a simple
pole of E@exp(Ȳs)# at s1 and so an upper power-law tail i
the distribution of the killed stateX̄.

~b! U j,0 ~i.e., Zj,1) with probability 1, so the proces
$Xn% is decreasing. BecauseMU(s) is decreasing with
MU(s)→0 ass→` and MU(s)→` as s→2`, there is a
unique simple zero ofMU(s)21/q ats2,0, giving a simple
pole ofE@exp(Ȳs)# at s2 and so a lower power-law tail in the
distribution of the killed stateX̄.

~c! P(U j.0).0 andP(U j,0).0, so the process$Xn%
can both increase and decrease. HereMU(s)→` ass tends
to ` or 2`. As MU(s) is convex,E@exp(Ȳs)# has two iso-
lated singularities of opposite sign, both simple poles, anX̄
has power-law behavior in both tails.

A multiplicative model for growth in file sizes couple
with a model that yielded geometric killing was used
Huberman and Adamic@7# to explain the upper-tail power
law behavior in the size~number of pages! of World Wide

FIG. 2. Distribution of the total money income of 2163106

people in USA in 2000. The left and right panels show~on loga-
rithmic axes! the cumulative frequency distributions~binned! in the
lower and upper tails, respectively, suggesting power laws~un-
binned income data are not available!.
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Web sites. Mitzenmacher@8# used a similar model~with Zn
assumed to have a lognormal distribution! to explain the phe-
nomenon of power-law behavior in both tails of the distrib
tion of the size of computer files. Sample data with the ch
acteristic power-law rank-size property are shown in Fig.

Killed birth-and-death process. Let X̄ be the value ofX at
the time of killing. It can be shown@10# that in the casel
.d the distributions ofX̄ can exhibit power-law behavior in
the upper tail. Precisely, asn→`,

P~X̄5n!;k1n2[11n/(l2d)] for l.d. ~10!

We have a ‘‘stretched exponential’’ behavior in the casel

5d, andP(X̄5n);k2(l/d)nn2[11n/(d2l)] for l,d. Reed
and Hughes@10# used this model to explain the distributio
of the size~number of species! of live biological genera. It is
assumed that species are created from existing specie
speciations that occur independently and at random; and
species likewise suffer individual extinctions independen
and at random. Thus the evolution of the number of livi
species can be represented by a birth-and-death process~e.g.,
Ref. @11#!. Genera are assumed to be created in a sim
fashion to species@12#, so that the time since origination of
live genus is exponentially distributed and the current size
such a genus is that of a randomly killed birth-and-de
process~i.e., of X̄). Figure 4 shows a logarithmic rank-siz
plot for the largest 50 genera of North American vascu
plants and a frequency plot of all 1829 living genera of su
plants. The rank-size plot is approximately linear, as is
frequency plot for larger genera, consistent with upper-
power-law behavior as predicted by the model.

Let Ȳ be the number of population elements that ha
existed up until the time of killing. It can be shown@13# in
the casel.d1n that Ȳ also exhibits upper-tail power-law
behavior. That is, asm→`

P~Ȳ5m!;c1m2[11n/(l2d)] for l.d1n. ~11!

This result may explain upper-tail power-law behavior in t
size distribution of extinct fossil taxa~e.g., Ref.@14#!, with

FIG. 3. Logarithmic rank-size plots for the upper tail of th
distribution of 734 814 http response sizes at the University
North Carolina at Chapel Hill Main Link@9#.
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killing corresponding to a cataclysmic extinction eve
~when the whole taxon is destroyed!, with such events as
sumed to occur in a Poisson process with raten.

The upper-tail power-law behavior of the distribution
the size of living genera has long been known. Yule@12#
developed the eponymousYule distributionto fit such data,
using essentially the above model withd50. He assumed
that the size of a genus was that of a killed pure birth~or
Yule! process. That similar behavior occurs for the distrib
tion of extinct taxa has been observed@14#.

The randomly killed birth-and-death process may a
provide a better model for power-law distributions in ge
family and protein family size distributions@15#. Assume
that the size of a gene family evolves as a homogene
birth-and-death process@16# so that new genes in the famil
can arise from existing ones independently at random,
similarly may be lost. If gene families evolve in a Yule pro
cess then the time in existence of family is exponentia
distributed, and a power-law tail results, in the same way
in the taxon model above.

Killed Galton-Watson branching process. The PGF for the
numberXn of individuals in thenth generation of a branch
ing processXn115Z11Z21•••1ZXn

, started with one in-

dividual for the zeroth generation, is given@17# by Gn(s)
5Gn21„g(s)…. Hereg(s)5G1(s) is the PGF for the numbe
of offspring of an individual. The pgfG(s)5E(sX̄) of the
stateX̄ of the branching process killed on the production
the Nth generation via the geometric distribution~5! is
G(s)5(n51

` Gn(s)p(12p)n21, and it satisfies G(s)
5pg(s)1(12p)G„g(s)…. Functional equations of this kind
were encountered in stochastic processes by Hugheset al.
@18#, who observed a close analogy with real-space ren
malization methods and antecedents in the theory of non
ferentiable functions, and noncontinuable analytic functio
By analyzing the singular behavior of the solutions of t
functional equation, we have argued elsewhere@19# that if
the offspring distribution has finite meanm5g8(1)

f

FIG. 4. Logarithmic plots of the observed sizes of 1829 gen
of North American vascular plants. The left-hand panel is a ra
size plot for the largest 50 genera. The straight-line behavior s
gests upper-tail power-law behavior in the genus size distribut
The right-hand panel shows frequency against genus size~crosses!
along with a similar plot with binning~boxes!, so that each bin
contains at least two genera.
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5E(Zj), the dominant behaviorP(X̄5m);R(m)m212k will
be found asm→`, wherek5 ln@(12p)21#/ln m and R(m)
has log-periodic oscillations, that is,R(m) is periodic in lnm

FIG. 5. Family names in the 1990 US Census: logarithmic p
of rank against frequency for the most common 250 names, with
upper left point for the most common name.
rin

lm

,

06710
with period lnm. The existence of the oscillations can b
rigorously proved@19# when the offspring distribution is
geometric, but the oscillations are of very small amplitud
Recently, Gluzman and Sornette@20# have reviewed the ex
istence of log-periodic oscillations mirroring underlyin
scale hierarchies in several areas of physics.

Since Galton proposed the branching process as a m
for family names~and Watson partially solved the proble
of the probability of extinction of a name!, we have investi-
gated the applicability of the killed branching process mo
to the size distribution of names~under the hypothesis tha
new names can enter either via immigration in a Pois
process, or from a mutation of any existing name, which c
occur with constant probability!. Figure 5 shows the rank
size plot for US surnames@21#. The closeness of the points t
a straight line~corresponding to power-law behavior! is im-
pressive. Similar plots of data@22# for Isle of Man surnames
in 1881 and Chinese family names show the same linea
Grouped frequency plots also provide evidence of power
tails.
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