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From gene families and genera to incomes and internet file sizes:
Why power laws are so common in nature
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We present a simple explanation for the occurrence of power-law tails in statistical distributions by showing
that if stochastic processes with exponential growth in expectation are kdledbserved randomly, the
distribution of the killed or observed state exhibits power-law behavior in one or both tails. This simple
mechanism can explain power-law tails in the distributions of the sizes of incomes, cities, internet files,
biological taxa, and in gene family and protein family frequencies.
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Distributions with power-law behavior in one or both tails E(X{Xo) =Xoe* I,
are ubiquitous in physics, biology, geography, economics,
insurance, lexicography, internet ecology, etc. Associated (4) Galton-Watson branching processith {Z;} indepen-
names includeZipf’s law (word frequencies, city sizgs dent identically distributed random variables representing
Pareto’s law (incomesg, and therank-size property(cities, = numbers of offspring an&(Z;) = u,
firms, etc) There have been many attempts to explain why
such distributions are so common, including notions of self- Xn1=Z1+ZpF .. +2Zx , E(Xp|Xo)=Xou".  (4)
organized criticality{1] and highly optimized toleranci].
We shall show that power-law tail behavior can arise from a We consider the killed state of these processes when kill-
very simple mechanism that can explain its occurrence ifing occurs at random. For the discrete-time procetdesnd

many instances. (4), we assume that the discrete hazard is constant: if the
The basic idea is that if a process that grows exponenprocess has not been killed by time-1, the probability of

tially, in a loose sense, is “killed{or observed onge‘ran- it being killed at timen is a constanp, independent oh,

domly,” the distribution of the killed(observedl state will ~ giving the geometric distribution for the generation number

follow power laws in one or both tails. Consider the simpleN corresponding to the killed state,

case of deterministic exponential growlft) =e*! killed at no1

a random timeT which is exponentially distributed with pa- P(N=n)=p(1-p)"° n=123...; ®)
rameterv. The k'”Sd Stat@(_jfﬂ has the probability den- \ye exclude killing in the zeroth generation. For the
sity function i (x) = (v/u)X for x>1, giving power-  cqniinyous-time processéd) and(3), we assume a constant
law behavior over its full range. We shall consider four o, -.q ratev, giving the exponential distribution

stochastic processes all exhibiting exponential or geometric

growth in expectation. We denote expectation by and P(killed at time=t)=e"". (6)

freely use the conditional expectation identigyf f(X)]

=E{E[f(X)|Y]}. To find the distribution of the killed state we use thement
(1) Geometric Brownian motiofGBM), wheredB, has a  generating functiofMGF) E[e*®] for the continuous state

normal distribution with mean 0 and variandg processes$l) and(2), and theprobability generating function

(PGP E[sX] for the discrete state procesg8sand(4). The
dX=uXdt+oXdB,, E(X{|Xo)=Xeexp(ut). (1)  pGF of the geometric distributiof®) is
. (2) Discre_te multiplicative proce_ssvith {Z.“} independent E[sN=ps1-(1—p)s] L. @)
identically distributed random variables with mean
A number of plots can reveal power-law behavior in an
empirical size distribution. If there is lower-tail power-law

(3) Homogeneous birth-and-death procesdth birth and behavior, a plot of the empirical cumulative distribution

Xn+1=ZpXn, E(Xn|xo)=XO/Uvn- (2

death rates. and s, furiction(CDF) on Iogz_arithmic axes shquld .be close to linear
at its lower end. Equivalently, a logarithmic plot of tkes-
P(Xi+h=n+1|X;=n)=Anh+o(h), cending rank against size should be close to linear at the
lower end. For upper-tail power-law behavior a logarithmic
P(Xi;n=n—1|X;=n)=énh+o(h), plot of the empirical survivor functiorfor complementary
CDF) should be linear at its upper end, as should be a loga-
P(Xi1ph=n|X;=n)=1—(\+8)nh+o(h), 3 rithmic plot of the descending rank against size. One can also
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FIG. 2. Distribution of the total money income of 2¢a0°
people in USA in 2000. The left and right panels sh@wn loga-
rithmic axe$ the cumulative frequency distributioflsinned in the
lower and upper tails, respectively, suggesting power laws
binned income data are not available

look for linearity in a plot of frequencies against size on  Killed discrete multiplicative processWe distinguish

logarithmic axes. However, many sizésspecially extreme three cases for the multiplicative proceés, ;=2Z,X,:
ones will not occur at all or occur only once, and so some

binning will probably be required. - (@ monotoni_cally increasirjg, wheR(Z,>1))=1;
Killed geometric Brownian motionLet X be the killed ~ (b) monotonically decreasing, whéh(Z,<1)=1;
state and letY=InX. The MGF of Y is E[exp(Y9)] (c) bidirectional, wherP(Z,>1)>0, P(Z,<1)>0.
=E{E[exp(Y79)|T]}. SinceYt—Yy=In(X;/Xy) has the nor- . S —
mal distribution N(,u—aZ/Z)T,o\/f) [3], we find that Again letY=In X, so thaty = InX0+2 1UJ,W|thNd|str|b—

FIG. 1. Distribution of the sizes of 19 399 places in the USA in
1999. Logarithmic rank-size plots of the smallest 500 pladefs
pane) and the largest 500 placégght pane] suggest power-law
behavior in both tails of the distribution.

_ _ 12 uted geometrically with parametgr via Eq. (5), and U;
Elexp(¥r9)[T] e_XF[YOSJF(’u 012)Ts+30°Ts] and =InZ;. For brevity let E[exp(sUj)]=MU(s). Then
E[expYs)]=e"ap(a—s) X(B+s) 1, @  E[exp(Y9)]=XGE\[My(9)] and Ex[My(s)"] is the pgf(7)

of N evaluated aM (s). Thus withq=1—p,
whereY,=InX,, while « and— 8 («,8>0) are the roots of 1
the quadratic equatiofo?s?+ (u— % 0?)s— v=0. Equation E[exp(Ys)]=X5pMy(s)[1-aMy(s)]™

is the MGF of th ili ity functi =
(8) is the MGF of the probability density function The tail behavior of the density of is determined by sin

fy(y)=Ale O YOH(y—Y,)+efVYOH(Y,—y)], gularities in the MGF from solutions d¥l,(s)=1/q. Since
My(0)=1 andM{,(s)>0, provided that the MGF of) ex-
an asymmetric Laplace distributioA=aB/(a+ 8) and the ists in the nelghborhood af=0, real zeros oM (s)—1/q
Heaviside functiorH is positive if its argument is positive are simple zeros. There are three cases.
and zero if its argument is negative. It follows that the dis- (a) U;>0 (i.e., Z;>1) with probability 1, so the process

tribution of X is atwo-sided Paretwr double Paretadistri- ~ {Xn} IS increasing. Becausy(s) is increasing with
bution, with density My(s)—e ass—o andMy(s)—0 ass— —c, there is a
unique simple zero d1(s) — 1/q ats™ >0, giving a simple
. AX AXE~1 i x<X, pole of E[exp(Ys)] ats™ and so an upper power-law tail in
X(x)= AXGx— 1 if x>Xo, © the distribution of the killed statX.
(b) U;<0 (i.e., Zj<1) with probability 1, so the process
which exhibits power-law behavior in both tails. {Xn} is decreasing. BecausM (s) is decreasing with

Equation (9) has been used to explain the upper-tailM(s)—0 ass—» and M (s)—x» ass— —», there is a
power-law phenomenon observed for inconiareto’s law  unique simple zero dfl,(s) — 1/q ats™ <0, giving a simple

of incomes [4] and city sizes(the rank-size lay[5]. It is ole of E[exp(Ys)] ats~ and so a lower power-law tail in the
assumed that both individual incomes and settlement 5|zep [ p(Y )] P

dsstrlbutlon of the killed state.
evolve as GBM, while the time that an individual has been
earning and the time a settlement has been in existence can (c) P(U;>0)>0 andP(U;<0)>0, so the procestX}
reasonably be modeled as having exponential distribution&2" both increase and decrease H\dr@(s)—mo ass tends
based on the assumption that the workforce and the populd0 * or —=. As My(s) is convex [E[exp(Ys)] has two iso-
tion of settlements are growing at a fixed rate. The predictedated singularities of opposite sign, both simple poles, Xnd
lower-tail power-law behavior has been shown to occur inhas power-law behavior in both tails.
the empirical distributions of both incomes and human settle- A multiplicative model for growth in file sizes coupled
ment sizes, facts previously unrecognized. Figures 1 and ®@ith a model that yielded geometric killing was used by
illustrate empirical power-law behavior in both tails of settle- Huberman and Adamif7] to explain the upper-tail power-
ment size and income distributions, using recent US ta law behavior in the sizénumber of pagesof World Wide
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FIG. 4. Logarithmic plots of the observed sizes of 1829 genera
FIG. 3. Logarithmic rank-size plots for the upper tail of the of North American vascular plants. The left-hand panel is a rank-
distribution of 734814 http response sizes at the University ofsjze plot for the largest 50 genera. The straight-line behavior sug-
North Carolina at Chapel Hill Main Link9]. gests upper-tail power-law behavior in the genus size distribution.
The right-hand panel shows frequency against genus(sipsses
along with a similar plot with binningboxes, so that each bin
contains at least two genera.

Web sites. MitzenmachéB] used a similar modelwith Z,
assumed to have a lognormal distribudiém explain the phe-
nomenon of power-law behavior in both tails of the distribu-
tion of the size of computer files. Sample data with the char

acteristic power-law rank-size property are shown in Fi 3kiIIing corresponding to a cataclysmic extinction event
) p property 9- ‘(when the whole taxon is destroyedvith such events as-
Killed birth-and-death procesd.et X be the value oK at

. L . sumed to occur in a Poisson process with nate
the time of killing. It can be showh10] that in the case P

- i o o The upper-tail power-law behavior of the distribution of
the upper tail. Precisely, as— o,

developed the eponymotlile distributionto fit such data,
using essentially the above model with=0. He assumed
that the size of a genus was that of a killed pure bidh
Yule) process. That similar behavior occurs for the distribu-
We have a “stretched exponential” behavior in the case tjon of extinct taxa has been obsenjdd].

=8, andP(X=n)~ky(\/8)"n~1T(0=N] for \ < 5. Reed The randomly killed birth-and-death process may also
and Hughe$10] used this model to explain the distribution provide a better model for power-law distributions in gene
of the size(number of specigof live biological genera. Itis family and protein family size distributiongl5]. Assume
assumed that species are created from existing species bHyat the size of a gene family evolves as a homogeneous
speciations that occur independently and at random; and thairth-and-death proce$46] so that new genes in the family
species likewise suffer individual extinctions independentlycan arise from existing ones independently at random, and
and at random. Thus the evolution of the number of livingsimilarly may be lost. If gene families evolve in a Yule pro-
species can be represented by a birth-and-death prezgss cess then the time in existence of family is exponentially
Ref. [11]). Genera are assumed to be created in a similadistributed, and a power-law tail results, in the same way as
fashion to specielsl 2], so that the time since origination of a in the taxon model above.

live genus is exponentially distributed and the current size of Killed Galton-Watson branching procesghe PGF for the
such a genus is that of a randomly killed birth-and-deatmumberX,, of individuals in thenth generation of a branch-
process(i.e., of X). Figure 4 shows a logarithmic rank-size iNg processX,,1=Z;+Z,+---+Zy , started with one in-
plot for the largest 50 genera of North American vasculardividual for the zeroth generation, is givéh7] by G,(s)
plants and a frequency plot of all 1829 living genera of such=G,_,(g(s)). Hereg(s)=G,(s) is the PGF for the number

plants. The rank-size plot is approximately linear, as is theyf offspring of an individual. The pg6(s)=E(s*) of the

frequency plot fo_r larger genera, consistent with Llpper'ta”statef of the branching process killed on the production of
power-law behavior as predicted by the model.

— ] the Nth generation via the geometric distributidb) is
Let Y be the number of population elements that haveG(s)=E°°_lGn(s)p(l—p)“‘l and it satisfies G(s)

. . . ™ . n
existed up until the time of killing. It can be shoyh3] in =pg(s)+(1—p)G(g(s)). Functional equations of this kind
the case\> 6+ v thatY also exhibits upper-tail power-law

were encountered in stochastic processes by Hughes
behavior. That is, ag— [18], who observed a close analogy with real-space renor-
malization methods and antecedents in the theory of nondif-
ferentiable functions, and noncontinuable analytic functions.
By analyzing the singular behavior of the solutions of the
This result may explain upper-tail power-law behavior in thefunctional equation, we have argued elsewHhdr@| that if
size distribution of extinct fossil taxée.g., Ref.[14]), with  the offspring distribution has finite meamu=g’(1)

P(X=n)~kn [LF70=9 for x> 5. (10)

P(Y=m)~c,m 177001 for \>s+p. (11
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FIG. 5. Family names in the 1990 US Census: logarithmic plot

of rank against frequency for the most common 250 names, with th
upper left point for the most common name.

=E(Z), the dominant behavid?(f= m)~R(m)m~ 1~ < will
be found asm—oe, where k=In[(1—p) 1}/In » and R(m)
has log-periodic oscillations, that iR(m) is periodic in Inm

PHYSICAL REVIEW B6, 067103 (2002

with period Inu. The existence of the oscillations can be
rigorously proved[19] when the offspring distribution is
geometric, but the oscillations are of very small amplitude.
Recently, Gluzman and Sorneft20] have reviewed the ex-
istence of log-periodic oscillations mirroring underlying
scale hierarchies in several areas of physics.

Since Galton proposed the branching process as a model
for family names(and Watson partially solved the problem
of the probability of extinction of a namewe have investi-
gated the applicability of the killed branching process model
to the size distribution of namgsinder the hypothesis that
new names can enter either via immigration in a Poisson
process, or from a mutation of any existing name, which can
gceur with constant probability Figure 5 shows the rank-
size plot for US surnamdg1]. The closeness of the points to
a straight line(corresponding to power-law behavias im-
pressive. Similar plots of daf&2] for Isle of Man surnames
in 1881 and Chinese family names show the same linearity.
Grouped frequency plots also provide evidence of power law
tails.
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