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Generic features of modulational instability in nonlocal Kerr media

John Wyller
Department of Mathematical Sciences, Agricultural University of Norway, P. O. Box 5065, N-1432Ås, Norway

Wieslaw Krolikowski
Australian Photonics Cooperative Research Centre, Laser Physics Centre, Research School of Physical Sciences and Engin

Australian National University, Canberra ACT 0200, Australia

Ole Bang
Department of Informatics and Mathematical Modelling, Technical University of Denmark, DK-2800 Kongens Lyngby, Denma

Jens Juul Rasmussen
Riso” National Laboratory, Optics and Fluid Dynamics Department, OFD—128, P. O. Box 49, DK-4000 Roskilde, Denmark

~Received 29 August 2002; published 31 December 2002!

The modulational instability~MI ! of plane waves in nonlocal Kerr media is studied for a general response
function. Several generic properties are proven mathematically, with emphasis on how new gain bands are
formed through a bifurcation process when the degree of nonlocality,s, passes certain bifurcation values and
how the bandwidth and maximum of each individual gain band depends ons. The generic properties of the MI
gain spectrum, including the bifurcation phenomena, are then demonstrated for the exponential and rectangular
response functions. For a focusing nonlinearity the nonlocality tends to suppress MI, but can never remove it
completely, irrespectively of the shape of the response function. For a defocusing nonlinearity the stability
properties depend sensitively on the profile of the response function. For response functions with a positive-
definite spectrum, such as Gaussians and exponentials, plane waves are always stable, whereas response
functions with spectra that are not positive definite~such as the rectangular! will lead to MI if s exceeds a
certain threshold. For the square response function, in both the focusing and defocusing case, we show
analytically and numerically how new gain bands that form at higher wave numbers whens increases will
eventually dominate the existing gain bands at lower wave numbers and abruptly change the length scale of the
periodic pattern that may be observed in experiments.
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I. INTRODUCTION

The phenomena of modulational instability~MI ! of plane
waves has been identified and studied in various phys
systems, such as fluids@1#, plasma@2#, nonlinear optics@3,4#,
discrete nonlinear systems~such as molecular chains@5#,
Fermi-resonant interfaces, and waveguide arrays@6#!, disper-
sive nonlinear directional couplers with the change of refr
tive index following a exponential relaxation law@7#, etc. It
has been shown that MI is strongly affected by vario
mechanisms present in nonlinear systems, such as hig
order dispersive terms in the case of optical pulses@8#, satu-
ration of the nonlinearity@9#, and coherence properties o
optical beams@10#.

In this work we study the MI of plane waves propagati
in a nonlinear Kerr-type medium with a nonlinearityN(ucu2)
~the refractive index change, in nonlinear optics! that is a
nonlocal function of the incident wave fieldc(x,z). We con-
sider a phenomenological model

i ]zc1
1

2
]x

2c1sN~ ucu2!c50, ~1!

where the nonlinear responseN(ucu2)5R* ucu2 has the ge-
neric form of a spatial convolution between the wave inte
sity ucu2 and a response functionR(x), where R* ucu2
1063-651X/2002/66~6!/066615~13!/$20.00 66 0666
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5*2`
` R(x82x)uc(x8,z)u2dx8, Here x is the transverse spatia

coordinate ands51 (s521) corresponds to a focusing~de-
focusing! nonlinearity. The evolution coordinatez can be the
time coordinates, as for Bose-Einstein condensates, or
propagation coordinate, as for optical beams. We cons
only symmetric spatial response functions that are posi
definite and~without loss of generality! obey the normaliza-
tion condition

E
2`

`

R~x!dx51. ~2!

Thus we exclude asymmetric effects, such as those gene
by asymmetric temporal response functions~with x being
time!, as in the case of the Raman effect on optical pul
@11#.

In nonlinear optics, Eq.~1! represents a general phenom
enological model for media in which the nonlinear refracti
index change~or polarization! induced by an optical beam i
determined by some kind of a transport process. It may
clude, e.g., heat conduction in materials with a thermal n
linearity @12–15# or diffusion of molecules or atoms accom
panying nonlinear light propagation in atomic vapors@16#.
Nonlocality also accompanies the propagation of waves
plasma@15,17–21#, and a nonlocal response in form~1! ap-
pears naturally as a result of many-body interaction p
©2002 The American Physical Society15-1
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cesses in the description of Bose-Einstein condensates@22#.
The orientational nonlinearity of liquid crystals is also no
local and may be described by Eq.~1! @23,24#. It is worth to
mention that an important aspect of the nonlocality in
these systems is that it completely prevents collapse of fin
size beams@25#.

The width of the response functionR(x) relative to the
width of the intensity profileuc(x,z)u2 determines the degre
of nonlocality. In the limit of a singular response we get t
well-known nonlinear Schro¨dinger ~NLS! equation that ap-
pears in all areas of physics. Here the focusing case (s51)
produces MI of the finite bandwidth type, while the defocu
ing case (s521) predicts modulational stability@3#. When
the width of the response function is finite but small co
pared to that of the intensity distribution, model~1! is ap-
proximated by the weakly nonlocal NLS equation@26–30#

i ]zc1
1

2
]x

2c1s@ ucu21g]x
2ucu2#c50. ~3!

Hereg!1 is defined as the second virial ofR(x),

g[
1

2E2`

`

x2R~x!dx, ~4!

In contrast to the local NLS limit (g50), the MI now de-
pends not only on the sign ofs but also on the intensity o
the plane waves@18#. Finally, in the case of strong nonloca
ity it has been shown that Eq.~1! simplifies to a linear
model, and hence there is no MI in this limit@31#.

MI has thus been studied in different limits. The gene
case~1! has recently been investigated with respect to
and compared with the weakly nonlocal limit@26#. Here we
present an analytical study of the full nonlocal case w
arbitrary profileR(x) whose spectrum obeys a sufficient d
gree of smoothness, with particular emphasis on generic
tures of the MI. The present paper complements and exte
the results obtained in Ref.@26#.

II. MI IN THE NONLOCAL NLS EQUATION

Model ~1! has plane wave solutions of the form

c~x,z!5Ar0exp~ ik0x2 iv0z!, r0.0, ~5!

wherer0 , k0, andv0 are linked through the nonlinear dis
persion relation

v05
1

2
k0

22sr0 , ~6!

Following Ref.@26#, we perturb the plane wave solutions
follows:

c~x,z!5@Ar01u~j,t!1 iv~j,t!#exp~ iu0!,

j5x2k0z, t5z, u05k0x2v0z, ~7!
06661
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whereu and v are real functions. Inserting this expressio
into the nonlocal NLS equation~1! and linearizing around
the solution~5!-~6! gives the equations

]tu1
1

2
]j

2v50, ~8!

]tv2
1

2
]j

2u22sr0~R* u!50, ~9!

where R* u5*2`
` R(j82j)u(j8,t)dj8 is again the spatia

convolution integral. Introducing the spatial Fourier tran
form of a function as f̂ (k)5*2`

` f (j)exp(ikj)dj, and ex-
ploiting the convolution theorem for Fourier transforms, t
linearized system is converted to a set of ordinary differen
equations ink space,

]tX5AX, ~10!

where the vectorX and matrixA are defined as

X5F û

v̂
G , A5F 0

1

2
k2

2sr0 R̂ ~k!2
1

2
k2 0

G . ~11!

The eigenvaluesl of the matrixA are given by

l25k2r0Fs R̂ ~k!2
1

4r0
k2G . ~12!

The general expression~12! was also derived in Ref.@26#.
Here we have briefly reviewed the derivation for the sake
completenes and because it constitutes the basis of our s
of MI. From Eq. ~12! one can deduct the general existen
properties of MI in nonlocal media listed in Table I@26#.

III. GENERIC PROPERTIES OF THE MI GAIN
SPECTRUM

The local case withs50 ~the NLS equation! is well
known. There is always MI in focusing media (s51) and
always stability in defocusing media (s521). Here we
therefore focus on the interesting case with a finite degre
nonlocality (sÞ0). The spectrumR̂(k) has the following
generic properties:

~1! SinceR(x) is real valued and symmetric, then so
R̂(k), i.e., R̂(k)5R̂(2k)5R̂* (k).

~2! Normalization~2! implies thatR̂(0)51, which means
that R(x) tacitly is assumed to be absolutely integrable, a

TABLE I. Existence criteria for MI in nonlocal media.

s511 s521

R̂(k).0 MI Stability

R̂(k) not sign definite MI depends onR̂(k)
5-2
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henceR̂(k) is continuous@32#.
~3! Symmetry condition 1. imposesR̂8(0)50, i.e., the

spectrumR̂(k) has a critical point atk50, providedR̂(k) is
a differentiable function ofk. Here and in the following,
prime denotes differentiation with respect to the argumen

~4! Normalization~2! for R(x) means thatR(x) is abso-
lute integrable, and hence by Riemann-Lebesque lemma
have limuku→`

R̂(k)50 @32#.

We further assume the following properties:

~5! The functionsxR(x) and x2R(x) are also absolutely
integrable, which means thatR̂8(k) and R̂9(k) are continu-
ous for allk @32#.

~6! The response function is characterized by a typi
width or scaling lengths ~the degree of nonlocality! and
assume the generic formR(x)5s21F(x/s), where the
scaling functionF is nondimensional, i.e., independent ofs.

The spectrumR̂(k) can be expressed in terms of the Fo
rier transformF̂ of the scaling functionF as

R̂~k!5F̂~sk!. ~13!

The properties~1!–~6! of the spectrumR̂ carry over toF̂.
Note that due to the normalization@property~2!# and the

Riemann-Lebesque lemma@property ~4!#, the scaling func-
tion has the property that

lim
s→`

F̂~sk!5H 1, k50

0, kÞ0.

Thus eigenvalue equation~12! approaches uniformly the
form l252k4/4 for s→`, which is recognized as the e
genvalue equation for MI in the linear potential free Sch¨-
dinger equation

i ]zc1
1

2
]x

2c50.

Hence the well-known result of modulational stability is r
produced in the limit of strong nonlocality.

For 0,s,` we proceed as follows: Using the nond
mensional scaling functionF̂, the degree of nonlocality ca
be explicitly put into eigenvalue equation~12!, even though
the specific response function is not known. We thus rew
Eq. ~12! in the form

S l

2r0
D 2

5 k̄2f~ k̄,s̄!, ~14!

where the scaled wave numberk̄ and the scaled nonlinearit
s̄ are defined as

k̄5sk, s̄54r0s2s. ~15!

The MI gain band structure is then determined by thestruc-

tural functionf( k̄,s̄), given by
06661
e

l

-
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f~ k̄,s̄![
s̄F̂~ k̄!2 k̄2

s̄2
. ~16!

This is the most convenient form for the mathematical tre
ment. Due to the symmetry property~1!, we consider only
positive wave numbers in the following, i.e.,k̄>0.

The parameters̄ contains both the nonlinearity and th
degree of nonlocality, and plays the role of acontrol param-
eter. The crucial point in the MI analysis is the properties
the functionf in the (k̄-s̄) space. Using properties~1!–~6!

we can characterize the setV of ~unstable wave numbers! k̄

fulfilling the inequalityf( k̄,s̄)>0 for a given value ofs̄ as
follows:

~I! Modulational stability.If f( k̄,s̄)<0 for all k̄ thenV is
empty. In this case there can be no MI.

~II ! Finite bandwidth MI.

~a! If f( k̄,s̄)>0 for any k̄ then MI occurs. For suchk̄
values we define the normalized MI growth rateg,

g5U l

2r0
U5uk̄uAf~ k̄,s̄!. ~17!

~b! Any MI gain spectrum will be offinite bandwidth

becauseF̂ is localized@property ~4!# and thusf→2 k̄2/ s̄2

for uk̄u→`.
~c! The number of MI gain bands is generically finit

This follows if one can show that the transversality conditi
] k̄fÞ0 is satisfied at all the zeros off for a givens̄. This
result is proved in the Appendix~Theorem I!.

~d! The breakdown of the transversality condition f
certain values of the control parameters̄, i.e., ] k̄f5f50,
describes bifurcation phenomena likeexcitation, vanishing,
coalescence, and separationof MI bands.

This list represents the overall picture of the MI for the no
local NLS equation~1!. In the following we detail different
aspects of this picture. We first formulate the theory of ex
tation, vanishing, coalescence, and separation of MI band
bifurcation phenomena. Then we study the general prope
of the focusing case (s̄.0) and the defocusing case (s̄
,0), separately. Finally, the discussion is illuminated w
examples.

IV. BIFURCATION ANALYSIS: EXCITATION, VANISHING,
MERGING, AND SEPARATION OF MI GAIN BANDS

Let (k̄b ,s̄b)Þ(0,0) denote points where the transversal
condition breaks down, i.e., where the structural functionf
and its derivative] k̄f both are zero,

f~ k̄b ,s̄b!5] k̄f~ k̄b ,s̄b!50. ~18!

The number of zeros off, and thus the number of gai
bands, will change ass̄ passes the bifurcation values̄b . The
second derivative of the structural function evaluated at
bifurcation point determines what type of phenomenon ta
5-3



in

n

er
n
i

t

n

ed
e

us
he

the

rum

he

a-

-

a

ian

-
ion
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place. If the second derivative is positive, then two MI ga
bands merge, or one band separates into two,

] k̄
2
f~ k̄b ,s̄b!.0⇒merging or separation, ~19!

while a negative second derivative represents excitation
vanishing of an MI gain band,

] k̄
2
f~ k̄b ,s̄b!,0⇒excitation or vanishing. ~20!

In fact, in a similar way as in the proof of Theorem I, it ca
be shown that the bifurcation points (k̄b ,s̄b) are distinct and
isolated if the condition

] k̄
2
f~ k̄b ,s̄b!Þ0 ~21!

is satisfied. This is a key result in our theory. The nongen
case] k̄

2
f( k̄b ,s̄b)50 will not be considered here. Finally, a

overall requirement for a bifurcation to actually take place
that the velocity condition

] s̄f~ k̄b ,s̄b!Þ0 ~22!

is satisfied at the bifurcation point. This assures thatf( k̄b ,s̄)
does not remain on the zero axis, but crosses it when
control parameters̄ passes through the bifurcation values̄b .
Conditions~18!, ~21!, and~22! are referred to as thegeneric
conditions for bifurcations.

Using the definition~16! of the structural functionf, we
can find more specific results. Thus Eq.~18! becomes

k̄bF̂8~ k̄b!52F̂~ k̄b!, k̄b.0, ~23!

s̄b5 k̄b
2/F̂~ k̄b!. ~24!

By assumptions̄bÞ0, and thus Eq.~24! implies k̄bÞ0. To
determine the bifurcation valuesk̄b ands̄b of the scaled wave
number and the control parameter, one first solves Eq.~23!

for k̄b under the conditionsF̂( k̄b).0. Thens̄b is given by
Eq. ~24!. The second derivative is given by

] k̄
2
f~ k̄b ,s̄b!5

s̄bF̂9~ k̄b!22

s̄b
2

, ~25!

and thus the generic condition~21! may be written as

s̄bF̂9~ k̄b!5 k̄b
2 F̂9~ k̄b!

F̂~ k̄b!
Þ2. ~26!

Importantly, we find that at the bifurcation point,

] s̄f~ k̄b ,s̄b!5 k̄b
2/ s̄b

3Þ0.

The velocity condition~22! is therefore always satisfied i
our general nonlocal system~1!. In Table II we have sum-
marized the features of the bifurcation process.
06661
or

ic

s

he

V. MI GAIN SPECTRUM IN FOCUSING MEDIA

To obtain specific results~bandwidth, maximum, etc.!
about the individual gain bands constituting the normaliz
MI gain spectrum~17!, we now consider the focusing cas
s̄.0. We apply symmetry property~1! @F̂( k̄)5F̂(2 k̄)#

and consider only positive wave numbersk̄>0. In this case
the following features are apparent:

~i! Existence of a fundamental gain band.There exists a
closed bounded interval@0,k̄1# in which f( k̄,s̄).0 for 0
< k̄, k̄1 and f( k̄1 ,s̄)50. This follows from the properties
~2!–~4! and the intermediate value theorem for continuo
functions. Hence there will always be MI, independent of t
shape of the spectrumF̂. The band@0,k̄1# originates from
the underlying local NLS equation, and is thus denoted as
fundamental gain band.

~ii ! Possible existence of higher-order gain bands.MI
gain bands may also exist for wave numbersk̄. k̄1. This
property depends sensitively on the shape of the spect
and on the control parameters̄.

~iii ! Number of gain bands.If the transversality condition
] k̄fÞ0 is satisfied at all theN zeros off for a given s̄
.0, then the number of gain bands,m, is given byN52m
21 (m51,2, . . . ).This follows from Theorem I in the Ap-
pendix, and the fact thatf(0,s̄)51/s̄.0 andf→2 k̄2/ s̄2 for
k̄→`.

A. The fundamental gain band

The fundamental gain band exists for all values of t
degree of nonlocality,s ~i.e., of the control parameters̄),
also in the local limit described by the focusing NLS equ
tion. This gain band has the following features:

~f1! Gain profile. If the transversality condition
] k̄f( k̄1 ,s̄),0 @i.e., F̂8( k̄1),2k̄1 / s̄] is satisfied, then there
is at least one critical pointk̄cP@0,k̄1# at which ] k̄g( k̄c ,s̄)

50. This follows from the fact that] k̄g(0,s̄)51/As̄,
] k̄g( k̄,s̄)→2` as k̄→ k̄1

2 and the intermediate value theo
rem for continuous functions.@It is possible to extend this
argument to cases where the spectrumF̂ does not possess
well-defined tangent at k̄50. If we require that
lim k̄→01F̂8( k̄) exists ~but is different from zero!, then we
also have existence of at least one critical pointk̄cP@0,k̄1#.
This occurs, for example, for the spectrum of the Lorentz

TABLE II. Generic conditions for excitation, vanishing, merg
ing, and separation of MI gain bands in the nonlocal NLS equat
~1!.
5-4
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response function.# At least one of these critical pointsk̄c

gives a maximum growth rategmax(s̄). The curvature of the
gain spectrum is given by

] k̄
2
g~ k̄c ,s̄!5

F~ k̄c ,s̄!

2Af~ k̄c ; s̄!
, ~27!

where we have defined the functions

F~ k̄,s̄!5 s̄D~ k̄!28k̄, ~28!

D~ k̄!53F̂8~ k̄!1 k̄F̂9~ k̄!. ~29!

Thus the gain curve has a local minimum atk̄c if F( k̄c ,s̄)
.0 and a local maximum ifF( k̄c ,s̄),0. A special case
occurs if the curvature is negative for allk̄c , i.e., if
F( k̄c ,s̄),0 is always satisfied. Then the maximum
unique, i.e., only one critical wave numberk̄c exists. Restor-
ing to original variables, the normalized gain is given by

g5
k

4r0

A4r0F̂~ k̄!2k2. ~30!

For fixed amplituder0 the velocity therefore becomes

]g

]s
5S k3

8r0gD F̂8~ k̄!, ~31!

and thus the variation of the gain with the degree of non
cality s depends on the sign of the functionF̂8( k̄1), i.e.,
sgn$]g/]s%5sgn$F̂8( k̄1)%.

~f2! Bandwidth.The conditionf@ k̄1( s̄),s̄#50 defines the
bandwidthk̄1( s̄) as a function of the control parameter, fro
which we find the velocity

] k̄1

] s̄
52

k̄1
2

s̄@ s̄F̂8~ k̄1!22k̄1#
. ~32!

Since the transversality conditionF̂8( k̄1),2k̄1 / s̄ is satis-
fied, there is no problem with division by zero, and th
velocity is always positive. For fixed amplitudero , this ex-
pression becomes

]k1

]s
52

2r0k1F̂8~ k̄1!

2r0sF̂8~ k̄1!2k1

~33!

in real variables. The transversality condition implies th
2r0sF̂8( k̄1),k1, and thus the variation of the bandwid
with the degree of nonlocality (s) depends on the sign o
F̂8( k̄1), i.e., sgn$dk1 /ds%5sgn$F̂8( k̄1)%. For a fixed de-
gree of nonlocality (s), we obtain

]k1

]r0
52

k1
2/~2r0!

2rosF̂8~ k̄1!2k1

.0. ~34!
06661
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Thus the bandwidthk1 always increases with increasing am
plitude of the plane wave,r0 ~i.e., the more nonlinear the
system is!, no matter what the degree of nonlocality is.

~f3! Local minima and maxima.The criticality condition
] k̄g( k̄c ,s̄)50 is equivalent to the equation

H@ k̄c ,s̄#50, ~35!

which determines the critical wave numberk̄c( s̄) as a func-
tion of the control parameters̄. The function

H~ k̄,s̄![ s̄@2F̂~ k̄!1 k̄F̂8~ k̄!#24k̄2 ~36!

satisfies the relationdH/ds̄5F dk̄/ds̄. Thus, for F( k̄c ,s̄)
Þ0 ~nonzero gain curvature!, we obtain the velocity

dk̄c

ds̄
52

4k̄c
2

s̄F~ k̄c ,s̄!
. ~37!

For fixed amplituder0, this expression becomes

]kc

]s
52

kcr0D~ k̄c!

sr0D~ k̄c!22kc

. ~38!

From Eq. ~38!, we see that if the degree of nonlocalitys

increases, then a local minimum@sr0D( k̄c).2kc# will al-
ways decrease, whereas the properties of a local maxim

@sr0D( k̄c),2kc# will depend on the sign of the function
D( k̄c). If 0,D( k̄c),8k̄c / s̄ then kc will increase, and if
D( k̄c),0 thenkc will decrease.

At inflection points,F( k̄c ,s̄)50 @sr0D( k̄c)52kc#, and
thus Eq. ~38! does not apply. An inflection point actuall
corresponds to a bifurcation, at which two critical points~ex-
trema of the gain curve!, i.e., one local minimum and on
local maximum, will be formed or vanish. The bifurcatio
points (k̄c ,s̄)5( k̄e ,s̄e) are solutions of the system of equ
tions F( k̄e ,s̄e)5H( k̄e ,s̄e)50, which gives

G~ k̄e!5 k̄e
2F̂9~ k̄e!1 k̄eF̂8~ k̄e!24F̂~ k̄e!50, ~39!

and s̄e58k̄e /D( k̄e). The bifurcation points are isolated an
distinct if the transversality conditiondG/dk̄eÞ0 is satisfied.

For typical response functions with a positive, monoto
cally decaying spectrum~such as the Lorentzian spectru
commonly appearing in physical problems!, i.e., with
F̂8( k̄),0 for all k̄, both the gaing(k) and the bandwidthk1
will always be a decreasing function of the degree of non
cality. If each gain band further has a unique maximum, th
bifurcations will not be an issue. Table III summarizes t
generic features of the fundamental gain band in nonlo
focusing media (s̄.0). Note that the fundamental gain ban
always has the classical Lighthill shape of the MI gain sp
trum in the local focusing NLS equation.
5-5
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B. Higher-order gain bands

Here we detail the properties of the higher-order g
bands that do not exist in the local limits50, but may be
formed through a bifurcation process when the system

comes sufficiently nonlocal. Lets̄b denote the bifurcationa

value of the control parameter and assume that fors̄. s̄b

there are wave numbersk̄0 and k̄1 ( k̄0, k̄1) satisfying the
following properties (i 50,1):

~a! f( k̄i ,s̄)50⇔F̂( k̄i)5 k̄i
2/ s̄.

~b! f( k̄,s̄).0 for k̄0, k̄, k̄1⇔F̂( k̄). k̄2/ s̄ for k̄0,

k̄, k̄1.
~c! ] k̄f( k̄0 ,s̄).0⇔F̂8( k̄0).2k̄0 / s̄.
~d! ] k̄f( k̄1 ,s̄),0⇔F̂8( k̄1),2k̄1 / s̄.

Note that assumptions~c! and ~d! imply that we have im-
posed transversality conditions atk̄0 and k̄1. The following
results are apparent:

~hf1! Gain profile.The gaing is positive and continuous
differentiable for k̄0, k̄, k̄1. At the boundaries,g( k̄0 ,s̄)

TABLE III. Generic features of the fundamental gain band

the MI gain spectrumg in nonlocal focusing media (k̄5sk>0, s̄
54r0s2.0) with the degree of nonlocality (s).
06661
n
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5g( k̄1 ,s̄)50, ] k̄g( k̄0 ,s̄)→` for k̄→ k̄0
1 , and ] k̄g( k̄1 ,s̄)

→2` for k̄→ k̄1
2 . Hence, by the intermediate value the

rem, there is at least one critical wave numberk̄c P@ k̄0 ,k̄1#

at which the gain has a local extremum,] k̄g( k̄c ,s̄)50.
Equations~27!–~31! and the properties~f1! derived there-
from all apply to the higher-order gain bands also, e.g., lo
minima, maxima, and inflection points are distinguished
the sign of the functionF( k̄c).

~hf2! Bandwidth.The bandwidth of the higher order gai
bands is defined asB[k12k0. The transversality conditions
~c! and~d! mean that Eqs.~32!–~34! for the velocities apply
to both the boundariesk0 and k1, i.e., to ]ki /]s and
]ki /]r0. Thus the left boundaryk0 will always decrease
with the degree of nonlocality (s), since F̂8( k̄0)
.k0 /(2r0s). The variation of the right boundaryk1 with s

will depend on the sign of the functionF̂8( k̄1), as for the
fundamental gain band. However, even ifF̂8( k̄1),0 andk1
therefore decreases withs, the bandwidthB may still in-
crease withs if k0 decreases faster thank1, i.e., if ]k0 /]s
,]k1 /]s.

In terms of the plane-wave amplituder0, the right bound-
ary k1 will always increase withr0 as for the fundamenta
gain band (]k1 /]r0.0), whereas the left boundaryk0 will
always decrease withr0 (]k0 /]r0.0) due to the conditions
~c! and ~d!. Thus the bandwidthB will increase rapidly the
stronger the focusing nonlocal nonlinearity.

~hf3! Local minima and maxima.Equations~35!–~38! and
the properties~f3! of local minima and maxima in the fun
damental gain band also apply to the higher-order g
bands.

VI. MI GAIN SPECTRUM IN DEFOCUSING MEDIA

We now consider the defocusing case withs̄,0 and ap-
ply again the symmetry property~1! @F̂( k̄)5f̂(2 k̄)# to
consider only positive wave numbersk̄>0. The following
main features are apparent:

~i! Nonexistence of the fundamental gain band.No closed
bounded interval@0,k1# exists, for whichf( k̄,s̄).0 when
0< k̄, k̄1 and f( k̄1 ,s̄)50. This follows from the fact
f(0,s̄),0 and continuity of the structural function.

~ii ! Modulational stability for positive definite spectra.If
F̂( k̄).0 for all k̄, then f( k̄,s̄),0, and hence we alway
have modulational stability in this case.

~iii ! Possible existence of MI.MI may occur for nonzero
wave numbers in higher-order gain bands. This property
pends sensitively on the shape of the spectrum and the
trol parameters̄.

~iv! Number of gain bands.If the transversality condition
] k̄fÞ0 is satisfied at all theN zeros off for a given s̄
.0, then the number of gain bands~m! is given by N
52m (m50,1, . . . ). This follows from Theorem I in the
Appendix and the fact thatf(0,s̄)51/s̄,0 and f→
2 k̄2/ s̄2 for k̄→`. Note that the stable case with no zero
and hence no gain bands, is included (m50).

f
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A. Higher-order gain bands

Here we detail the properties of the higher-order MI ga
bands that do not exist in the local limits50, but may be
formed through a bifurcation process when the system
comes sufficiently nonlocal. Lets̄b,0 denote the bifurca-
tional value of the control parameter and assume that fos̄

, s̄b , there are wave numbersk̄0 and k̄1 ( k̄0, k̄1) satisfying
the following properties (i 50,1).

~a! f( k̄i ,s̄)50⇔F̂( k̄i)52 k̄i
2/us̄u.

~b! f( k̄,s̄).0 for k̄0, k̄, k̄1⇔F̂( k̄),2 k̄2/us̄u for k̄0

, k̄, k̄1.
~c! ] k̄f( k̄0 ,s̄).0⇔F̂8( k̄0),22k̄0 /us̄u.
~d! ] k̄f( k̄1 ,s̄),0⇔F̂8( k̄1).22k̄1 /us̄u.

Again ~c! and ~d! are the transversality conditions at the z
ros k̄0 and k̄1. All Eqs. ~27!–~39! are formerly the same
except for sign changes in the equations that are in term
real variablesk, s, r0, andg. We have the following results

~hd1! Gain profile.Equations~27!–~29! and the properties
~f1! derived therefrom hold also for the defocusing ca
However, the normalized gain is now

g5
k

4r0

A24r0F̂~ k̄!2k2, ~40!

and the velocity therefore becomes

]g

]s
52S k3

8r0gD F̂8~ k̄!. ~41!

Thus the variation of the gain with the degree of nonloca
s still depends on the sign ofF̂8( k̄), but now sgn$dg/ds%
52sgn$F̂8( k̄)%.

~hd2! Bandwidth.The bandwidthB is again defined as
B5k12k0 and Eq.~32! is still valid for bothk0 andk1 due
to the conditions~c! and ~d!. However, in real variables th
velocities now become

]ki

]s
52

2r0kiF̂8~ k̄i !

2r0sF̂8~ k̄i !1ki

, ~42!

]ki

]r0
5

ki
2/~2r0!

2r0sF̂8~ k̄i !1ki

, ~43!

which replaces Eqs.~33! and ~34!. From Eqs.~42! and ~43!
we see that both boundariesk0 andk1 have exactly the sam
dependences ons andr0 as in the focusing case, given b
the properties~hf2!.

~hd3! Local minima and maxima.Equations~35!–~37!
still apply, since they are in scaled variables. However,
real variables the velocity is now given by

]kc

]s
52

kcr0D~ k̄c!

sr0D~ k̄c!12kc

, ~44!
06661
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which replaces Eq.~38!. Furthermore, in real variables,kc

now corresponds to a local minimum whensr0D( k̄c),

22kc and a local maximum whensr0D( k̄c).22kc . Nev-
ertheless, a minimum still always decreases withs and the
properties of a maximum still depends on the sign ofD( k̄c).
If 22kc,sr0D( k̄c),0, thenkc will increase withs, and if
sr0D( k̄c).0 thenkc will decrease withs. The properties
of inflection points are the same as listed under~f3!, except
that now the inflection point occurs atsr0D( k̄c)522kc .

VII. EXPONENTIAL RESPONSE FUNCTION

As a generic example of a response function with
positive-definite spectrum, we consider the typical expon
tial response function

R~x!5
1

s
FS x

s D , F~z!5
1

2
exp~2uzu!, ~45!

whose Fourier transform is a Lorentzian,

R̂~k!5F̂~sk!5
1

11s2k2
. ~46!

This response function appears, e.g., in materials with a n
linear response determined by a transport mechanism~diffu-
sion, heat conduction, etc.! and described by the generic di
fusionlike equation@20#

i ]zc1
1

2
]x

21Dnc50,

Dn2s2]x
2Dn5sucu2,

wheres is the diffusion parameter. The Lorentzian spectru
~46! is a monotonically decreasing positive definite functio
Thus MI is always present if the medium is focusings
51), whereas there can be no MI if the medium is defoc
ing (s521), according to Ref.@26# and Table I. In the
following we therefore consider only the focusing cases
51, s̄.0):

FIG. 1. Focusing nonlocal medium with 4r051 and exponen-
tial response function. Left: MI gain versus wave numberk for s
50, 1, 4. Right: bandwidthB ~solid!, maximum gainGm ~dashed!,
and wave numberkm at maximum gain~dotted! versus degree of
nonlocality (s).
5-7
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Let us summarize the generic properties predicted by
theory, given spectrum~46!, for which F̂( k̄).0 for all k̄ and
F̂8( k̄),0 for k̄.0, with F̂8(0)50. First, we see that bi
furcations cannot occur, sinceF̂ andF̂8 have opposite sign
and thus the bifurcation Eqs.~23! and ~24! do not have a
solution, i.e., for all degrees of nonlocality (s), only the
fundamental~long-wave! gain band exists. Equations~31!

and~33! with F̂8( k̄),0 then predict that the maximum ga
Gm(s) and the gain bandwidthk15B(s) always decrease
with s.

For more information on the gain profile, we must calc
late the functionsD andF, i.e., we must calculate the specifi
curvatureF̂9( k̄) from Eq. ~46!. Inserting the curvature into
Eqs.~28! and~29! gives thatD( k̄),0 andF( k̄),0 for all k̄,
and thus the maximumGm of the fundamental gain band i
always unique and occurs at the wave numberkc5km ,
which always decreases withs according to Eq.~38!. From

FIG. 2. Focusing nonlocal medium with 4sr051 and rectangu-
lar response function. Bifurcation values of the nonlocality para
etersb

(n) ~dots! versus bifurcation numbern. The dashed line show
approximation~52!.

FIG. 3. Focusing nonlocal medium with 4sr051 and rectangu-
lar response function. The first four (n50, 1, 2, 3! MI gain bands
~shaded areas! versus wave numberk and degree of nonlocality
(s). Bifurcation points are indicated.
06661
ur
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the eigenvalue equation~12!, we find the specific expression
for the bandwidthB(s) and maximum gainGm(s):

B25
A1116r0s221

2s2
, Gm

2 5
r0km

2

11s2km
2

2
km

4

4
,

where km is the positive real solution of the equatio
2s2km

3 12km5A8r0.
We have numerically investigated the eigenvalue equa

~12! and depicted the results in Fig. 1. The numerical res
and the expressions forB(s), Gm(s), and km(s) confirm
the generic properties listed in Tables III and I, i.e., only o
fundamental MI gain band exists with a bandwidth, uniq
maximum, and wave number at maximum gain that all d
crease with the degree of nonlocality. Thus the nonloca
tends to suppress MI, but can never remove it entirely. Us
the qualitatively similar Gaussian response function, th
results were confirmed by direct numerical simulation in R
@26#. There the exponential response was also conside
but without finding the analytical expressions for the ma
mum gain and bandwidth, and without any theory for t
generic properties of the gain spectrum.

VIII. RECTANGULAR RESPONSE FUNCTION

Now, let us consider the situation where the spectrum
not sign definite and not strictly decreasing for allk. Then it
is possible to have additional gain bands in both the focus
and defocusing cases. As an example, we consider the
angular response function

R~x!5
1

s
FS x

s D , F~z!5H 1

2
, uzu<1

0, uzu.1,

~47!

whose Fourier transform is given by

R̂~k!5F̂~sk!5
sin~ks!

ks
. ~48!

The bifurcation equation~23! then reads

3 tan~ k̄b!5 k̄b , k̄b.0, s sin~ k̄b!.0, ~49!

from which one finds the bifurcation valuessb andkb of the
degree of nonlocality and the wave number,

sb
25

k̄b
3

4sr0sin~ k̄b!
, kb5

k̄b

sb
. ~50!

The bifurcation relation~49! gives the approximate valu
k̄b

(n) for the nth bifurcation,

k̄b
(n).S 2n1

s

2Dp, n51,2,3, . . . , ~51!

corresponding to the degree of nonlocality and the transv
wave number

-

5-8
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sb
(n).AS 2n1

s

2D 3

p3

4r0
, kb

(n).A 4r0

S 2n1
s

2Dp

.

~52!

Strictly speaking, Eq~49! has also the zero solutionk̄b50,
corresponding tosb50, but we do not count this as a bifu
cation. Moreover, one finds that the curvature of the str
tural functionf is always negative at the bifurcation point

f9~ k̄b!52S 61 k̄b
2

s̄b
2 D ,0. ~53!

Thus new MI bands are always excited at the bifurcati
both when the nonlinearity is focusing and defocusing.

In a gain band,f.0; and thuss̄ sin(k̄).0. From the defi-
nition ] k̄g( k̄c ,s̄)50 of the critical wave numberk̄c , we fur-
ther have thats̄@sin(k̄c)1k̄ccos(k̄c)#54k̄c

2.0. Using these re-
lations in the definition~29! of the functionD, we find that
s̄D( k̄c),0. ThusF is always negative on the critical poin
~or extrema of the gain profile! and all gain bands therefor
have a unique maximum. From Eqs.~38! and ~44! we then
have that the wave numberkc5km

(n) at maximum gain of the
nth gain band will always decrease with the degree of n
locality (s), both in focusing and defocusing media. Let
look at these cases separately in more detail.

A. Focusing case„sÄ¿1…

In the focusing case the fundamental gain band (n50) is
always present, and thus MI is always present as well
accordance with Table I. For the response function~48!, the

TABLE IV. Nonlocal focusing medium with a rectangular re
sponse function. Lowest-order bifurcations for 4sr051.

Nonlocality Eq.~52! Wave number Eq.~52!

sb
(1)521.203 sb

(1).22.011 kb
(1)50.352 kb

(1).0.357
sb

(2)552.555 sb
(2).53.155 kb

(2)50.263 kb
(2).0.266

FIG. 4. Focusing nonlocal medium with 4sr051 and rectangu-
lar response function. Wave number at maximum gainkm

(n) ~left!
and bandwidthB(n) ~right! of bandsn50 ~solid!, n51 ~dotted!,
andn52 ~dashed!.
06661
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bandwidth k̄ of the fundamental gain band is always le
than p, and thus bothF̂8, D, andF are negative for all 0
, k̄, k̄1. The fundamental gain band therefore has a uniq
maximum gain; and according to Eqs.~31!, ~33!, and~38! its
maximum gain, its bandwidth, and its wave number at ma
mum gain all decrease with the degree of nonlocality (s).
For the higher-order gain bands the generic properties of
bandwidthB(n) and the maximum gainGm

(n) are difficult to
predict.

The results for the first and second bifurcation are su
marized in Table IV, whereas all bifurcation values of t
nonlocality are plotted in Fig. 2. We see that Eq.~52! gives a
quite accurate prediction of the bifurcations. The accura
becomes better with increasingn.

The full structure of the gain spectrum is depicted as
contour plot in Fig. 3. For small and moderate values of
degree of nonlocality (s,21.2), we only have one funda
mental MI gain band. For higher values ofs new gain bands
appear as predicted. These results are consistent with
findings in Ref.@26#.

The dependence ofkm
(n) andB(n) on s are depicted in Fig.

4, which confirms the predicted generic properties and
ther shows that the bandwidth of the different bands
proach each other whens increases.

FIG. 5. Focusing nonlocal medium with 4sr051 and rectangu-
lar response function. Gain versus modulation wave numberk for
s510 ~solid!, s530 ~dotted!, ands560 ~dashed!.

FIG. 6. Focusing nonlocal medium with 4sr051 and rectangu-
lar response function. Maximum gainGm

(n) versuss for bandsn
50 ~solid!, n51 ~dotted!, andn52 ~dashed!.
5-9
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In Fig. 5 we have shown cuts of the MI gain spectrum
s510, 30, and 60. We note a surprising feature fors530,
which is not predicted by our analysis of the generic featu
the maximum gain of the second band is higher than tha
the fundamental band. To show this in more detail, we h
plotted the maximum gain in Fig. 6. Here we clearly see t
at s525 (s556) the maximum gain of then51 (n52)
band becomes larger than the maximum gain of the fun
mentaln50 band. This crossing should be detectable in
numerical experiment, since the system will always even
ally select the wave number at maximum gain when star
from random white noise.

B. Defocusing case„sÄÀ1…

In the defocusing case, there is no fundamental (n50)
gain band, and thus all plane waves are modulationally st
until the nonlocality becomes sufficiently strong to reach
first bifurcation. Table V summarizes the results for the fi
and second bifurcation, whereas all bifurcation values of
nonlocality are plotted in Fig. 7. We see that Eq.~52! gives a
quite accurate prediction of the bifurcations also in the de
cusing case. The accuracy again becomes better for inc
ing n.

The full structure of the gain spectrum is depicted a
contour plot in Fig. 8. The fundamentaln50 MI gain band
is absent, so for small and moderate values of the degre
nonlocality,s,9.2, there is no MI. For higher values ofs
.9.2 gain bands appear as predicted. These results are
sistent with the preliminary findings in Ref.@26#.

The dependence ofkm
(n) andB(n) on s are depicted in Fig.

9, which again confirms the predicted generic properties

TABLE V. Nonlocal defocusing material with a rectangular r
sponse function. Lowest-order bifurcations for 4sr0521.

Nonlocality Eq.~52! Wave number Eq.~52!

sb
(1)59.176 sb

(1).10.230 kb
(1)50.444 kb

(1).0.461
sb

(2)535.780 sb
(2).36.461 kb

(2)50.300 kb
(2).0.302

FIG. 7. Defocusing nonlocal medium with 4sr0521 and rect-
angular response function. Bifurcation values of the nonlocality
rametersb

(n) ~dots! versus bifurcation numbern. The dashed line
shows approximation~52!.
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shows that the bandwidths of the different bands appro
each other whens increases.

In Fig. 10 we have shown cuts of the gain spectrum
s520, 50, and 80. Again, for boths550 and 80, we ob-
serve that the maximum gain of then52 band is higher than
that of the lowestn51 band. To show this in more detail, w
have plotted the maximum gain in Fig. 11.

From Fig. 11 we clearly see that ats'47 (s'84) the
maximum gain of then52 (n53) band becomes larger tha
the maximum gain of the lowestn51 band. We even see
that ats'109, the thirdn53 band becomes dominant, i.e
its maximum gain exceeds also that of the secondn52 band.
Again these crossings should be detectable in a nume
experiment, since the system will always eventually sel
the wave number at maximum gain when starting from r
dom white noise.

In fact, our numerical simulations clearly confirm th
prediction. We numerically integrated nonlocal NLS equ
tion ~1! with the defocusing nonlinearity and the rectangu
response function in the form of Eq.~47!. As the initial con-
ditions, we used a planar wave front superimposed wit

-

FIG. 8. Defocusing nonlocal medium with 4sr0521 and rect-
angular response function. The first three (n51, 2, 3! MI gain
bands~shaded areas! versus wave numberk and degree of nonlo-
cality s. Bifurcation points are indicated.

FIG. 9. Defocusing nonlocal medium with 4sr0521 and rect-
angular response function. Wave number at maximum gainkm

(n)

~left! and bandwidthB(n) ~right! of bandsn51 ~solid!, n52 ~dot-
ted!, andn53 ~dashed!.
5-10
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GENERIC FEATURES OF MODULATIONAL . . . PHYSICAL REVIEW E 66, 066615 ~2002!
weak ~less than 1025) random perturbation. Then the equ
tion was numerically integrated using the split-step fast F
rier method with a transverse resolution ofDx51022 and a
step length ofDz51023.

Figure 12 summarizes the results of this numerical exp
ment forsr0521. It shows the wave number at maximu
gain in propagation as a function of the nonlocality para
eters. Lines correspond to solutions obtained from disp
sion relation~12!. Squares indicate the results of full nume
cal simulations of Eq.~1!. The agreement between the sm
signal analysis and numerical simulation is excellent. T
inset shows examples of the development of the instab
for three values of the nonlocality parameters. It is evident

FIG. 10. Defocusing nonlocal medium with 4sr0521 and
rectangular response function. Gain versus wave numberk for s
520 ~solid!, s550 ~dotted!, ands580 ~dashed!.
06661
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that as the degree of nonlocality increases, the period of
MI signal first increases until the growth rate of the fund
mental and second MI bands equalize (s'24 in Fig. 12!.
Subsequent increase ofs leads to instability with shorter
period, which indicates that the system follows the path
termined by the second MI band.

IX. CONCLUSION

The linear stage of the MI for the nonlocal NLS equati
has been studied in terms of the spectrum of the respo

FIG. 11. Defocusing nonlocal medium with 4sr0521 and rect-
angular response function. Maximum gainGm

(n) versus degree of
nonlocality for bandsn51 ~solid!, n52 ~dotted!, and n53
~dashed!.
FIG. 12. Wave number at maximum gain versus the degree of nonlocality (s). Defocusing nonlocal medium withsr0521 and
rectangular response function. Lines, solutions to dispersion relation~12!; squares, results of direct numerical integration.
5-11
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WYLLER, KROLIKOWSKI, BANG, AND RASMUSSEN PHYSICAL REVIEW E66, 066615 ~2002!
function. From dispersion relation~12!, it follows that the
crucial point in this discussion is the location of the spectr
of the response function relative to the parabolak2 in k
space. The following features complement and extend
results obtained in Ref.@26#:

~i! The MI is of the finite bandwidth type. It consists of
finite number of well-separated gain bands. Moreover, i
possible to predict the occurrence of excitation, vanishi
coalescence, and separation of MI bands.

~ii ! For a large class of response functions~exponential,
square, Gaussian, etc.!, each MI band has a unique maximu
growth rate. In isolation, each band resembles the MI b
found in the focusing local NLS equation.

~iii ! In the focusing case we always find at least one
gain band centered at aboutk50. It is verified analytically
that the width of this MI band, as well as the correspond
growth rate, decreases when increasing the width of the
sponse function, provided the spectrum of the response f
tion is decreasing in this MI band. Furthermore, additio
MI bands are excited at higher wave numbers when
width parameter exceeds a certain threshold, i.e., when
nonlinearity becomes sufficiently nonlocal. The latter ph
nomenon is a unique feature of the nonlocal nonlinearity
has no equivalent in the local case and the weakly nonlo
limit.

~iv! In the defocusing case we can either have stability
MI of the finite bandwidth type. The latter situation can on
occur in the high wave number regime, and only if the wid
of the response function exceeds a certain threshold,
when the nonlinearity becomes sufficiently nonlocal.

~v! In both the focusing and defocusing case, the high
order MI bands move towards lower wave numbers as
width of the response function increases. In the limit
strong nonlocality, the MI bands vanish completely. This
sult agrees with the fact that the strongly nonlocal limit
the NLS model~1! is a linear model.

~vi! Finally, it should be emphasized that the results
small signal analysis are in complete agreement with th
obtained by direct numerical integration of the nonlocal N
equation describing the general type of nonlocal nonlin
media that we have studied.

ACKNOWLEDGMENTS

This work was supported by the Danish Technical R
search Council~STVF Grant No. 26-00-0355!, the Danish
Natural Sciences Foundation~SNF Grant No. 9903273!, and
the Graduate School in Nonlinear Science~The Danish Re-
search Academy!.

APPENDIX: SUFFICIENT CONDITION FOR THE
EXISTENCE OF A FINITE NUMBER OF GAIN BANDS

Let us assume that the functionf defined by Eq.~16!,
i.e.,
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f~ k̄,s̄![
s̄F̂~ k̄!2 k̄2

s̄2
,

changes sign. Then we have the following important resu
Theorem 1.Let s̄ be a given finite, real number. If th

transversality condition] k̄fÞ0 is satisfied for all the zeros
of f, then these points are distinct and isolated. Moreov
the number of such zeros is finite.

Proof. First, let us prove that the zeros off are distinct
and isolated. We proceed by means of a contradiction a
ment. Let$k̄n%n51

` be a convergent sequence of zeros off,

i.e., f( k̄n ,s̄)50 for all n and lim
n→`

k̄n5 k̄* . Then, by con-

tinuity of f, we have

05 lim
n→`

f~ k̄n ,s̄!5f~ k̄* ,s̄!.

which means that the accumulation pointk̄* is a zero off.
Hence any interval aboutk̄* contains at least one zerok̄n .
But the transversality condition implies that] k̄f( k̄* ,s̄)
Þ0, from which it follows that there is an open intervalI

5^k̄* 2D k̄,k̄* 1D k̄&, such thatf( k̄; s̄)Þ0 for all k̄PI , k̄

Þ k̄* , from which it follows that no zero off can be an
accumulation point of some sequence of zeros off. There-
fore, all the zeros must be distinct and isolated. Next, let
prove that the set of zeros is finite. From the Rieman
Lebesques lemma we have that lim

n→`
F̂( k̄)50, and hence

due to the definition off we have thatf( k̄; s̄);2( k̄2/ s̄2) as
k̄→`. Therefore there must be ak̄B such thatf( k̄B ,s̄)50
andf( k̄,s̄),0 for all k̄. k̄B . Hence all the zeros off be-
long to the bounded, half-open interval^0,k̄B#. Hence we
can only have a finite sequence$k̄n%n51

N , k̄N[ k̄B for which

f( k̄n ,s̄)50, n51,2, . . . ,N. j

We immediately obtain the following result: Lets̄ be a
given finite real number and assume that the transvers
condition] k̄fÞ0 for all the zeros ofk̄n (n51,2, . . . ,N) of
f. Then the number of zeros~N! is odd ~even! for the case
s̄.0 (s̄,0). This follows from the fact that we hav
f(0;s̄).0 @f(0;s̄),0# for s̄.0 (s̄,0) and f( k̄; s̄);
2( k̄2/ s̄2) as k̄→`. In the situation described by Theorem
we have also a counting rule for the number of gain band
a function of the number of transversal cuttings. In the
cusing case (s̄.0), we haveN52m21 (m51,2, . . . ),
while in the defocusing caseN52m (m50,1,2, . . . ). In
both cases the numberm is equal to the number of finite
well-separated gain bands. Notice that we allow for the c
m50 in the defocusing case, which accounts for the c
where there are no gain bands, i.e., the modulational st
situation.
5-12
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