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Pair distribution functions for particles electrically charged, at a tempera@texpressed in terms of density
matrices and corresponding pseudopotentials are studied, for distinguishable particles and for an electron pair.
Expansions with respect to the separation distance and to a quantum param€ter? are carried out.
Approximate expressions are derived in the limits of high and low temperatures.
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[. INTRODUCTION high and low temperatures. Section Il is devoted to a pair of
distinguishable particles and Sec. Il to the electron pair.
Some years ago, Gombert and co-workers studied the This work is following the studies performed first by
pseudopotentialV;;(r) between two pointlike electrical Kelbg who calculated exactlyge ©*{r), the pseudopoten-
charges at a temperatufd1,2]. More precisely, they evalu- tial for an electron pair without taking account of the ex-
ated the pair distribution function, which is expressed inchange between the two electrons, for very high temperature
terms of density matrices as (]€]—0) [3], then by Davies and Storer who studied com-
pletely the case of zero separation and wrote expansions with
p2(Xi,Yj %Y. B) respect to a quantum parameter related fd]. Rohdeet al.
(X .%i,B8)pa(Y;.y;.B)’ [5] expressed the binary Slater sus., gjj or gee) as ex-
1) pansions with respect toand proposed approximations. Nu-
. . . . merical calculations were done by other authors: Str
with .lelkBT andr=|xi—yj.|. ! andlj.refer to the particle Barker[7]. Let us mention other pioneers in this field who
species; andy; are the particle positionp, andp, are the 56 Trybnikov and Elesifig]. More recently, Vieillefosse
one- and two-particle density matrices, respectively. There iﬁlso worked on this topif9]. '
a temperature, but no account .is taken of the other particles r,qoqq potentials are made to be used, in the framework of
in the plasma(no screening It is a way to represent the  oasqicq) statistical mechanics, in order to evaluate thermo-
quantum effects at a small separation distande the case  yynamjcal quantities in a plasma as was done, for instance,
where r is rrlul</:2h. greater than the de Broglie lengily  py kelhg and co-worker§10,11 and later by Deutsch and
[=7%(KgTuij) ~= in which wj; is the reduced mass of the ¢ \yorkers[12-17, who proposed simple forms to ap-
pair of particleg, V;;(r) reduces to the Coulomb potential. roach these potentialg] and used these simple approxima-
For undistinguishable particles, the symmetry of the wave;ons They were also used by other authors to deal with
functions has to .be.talfen into account. In the case of tW‘?ransport problem§18,19 or with thermodynamical proper-
electrons, the pair distribution function is ties of dense plasmas at high temperaf@@. As the quan-
_ _ tum mechanics is introduced via a two-body potential, it is a
Ged 1) =X~ BVed1)] way to study plasma properties, which is not valid if the

gij(r)=exd —BV(r]= o

1 density is too high. This way, quantum corrections to the
p2(X.Y. XY, )= 5 pa(XY.Y. X, B) classical properties can be evaluated. These potentials are
= . (2) finite at the origin4]. Thus, this method permits to avoid the
P1(X.X,B)p1(Y.Y. B) divergence which appears in the classical studies of plasmas

At high temperature, i.e., in the case where the Landa
length (=1Z,Z;|e?B, Z;e and Z;e being the two electrical
charges which can be positive or negative smaller than
Aij; , some simple expressions to approagf(r) have been
proposed 1,2].

In this paper, expansions gf; are carried out. There are
two expansion parameterg(=r/x;;) and a quantum para- Let
meteré:

with both charge signsWe remark that, at high temperature
|Z,Z;|e?B<X;j), it is necessary to introduce quantum cor-
rections in order to study the properties of a plasma.

II. DISTINGUISHABLE PARTICLES

£=—-22,°BIx;~T 12 ) g% (r)+g;(r) for unlike charge signs,

which can be positive or negative. From this study, approxi- 9y(")

mate expressions for;;(r) are also derived in the cases of

gisj(r) for like charge signs,

wheregf’j(r) is the contribution due to the bound states and
*Unite Mixte de Recherche 8578 du CNRS. g?j(r) is that due to the scattering states.
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A. Scattering state contribution, gisj

g5 (r) can be written as follows: C(p.a)= 2p+q+1 4 E (-n"
3 2.2 77
gﬁ<r>=f 'd—ksexp(_hzk B)LHZ de ‘S oSl man oy
(2m) Hij ] e Jo m=0 [(m+n)!(qg—m+2p—n)!]?
3 2,2
f dosin(6) W c‘l’*/ f d’k [<_ Ak '8) Wheresfr']‘) (n=m) are the Stirling numbers of the first kind
277)3 2 i [22]. Note that
f dkkzeX[{——K kz)f duv weg. C(p.0)=6 and C(0 :& 13
(5

Then, g”(x) is put in a form involvingp derivatives with
\I,C is the Coulomb wave fUnCtiO[Ql]: respect tcg:z as follows:

Ve=exp —am/2)T(1+ia)explikru) gisj(x):g;sj(o)_s(zw)UZgS

X 1F1(a,1;—ik(r—ru)), 6 o
iFaladi=ik(r=ru)) © PP (=dK K exp — 2£2K2)
wherea=2;Z;e ,8/7( k, u=cos6, andd is the angle (,k). X 2 pf explem/K)—
d(é9)PJo
1Fq is the confluent hypergeometric function. Expressing
V., g becomes -
e 9 %3, Cpa)(- 2607 19
exy{ — =X kZ)
9s(r)= 277)1/27( f dk Ko The integral ovelK is known, it was evaluated by Davies
! exp2ma)—1 and Storer in the calculation @f(0). Thus,

2
X fo dv 1F1(—ie,1;ikrv) Fq(ie,1;—ikrv). g5 (x)= g”(o)+g32

(5 d§> & g.,—(ou}

(7
Making use of the dimensionless quantitiés=|2a| "t ><21 C(p,q)(—2£x)%P*4, (15
=kx;;/2|£| andx=r/X;; , the last equation is rewritten in the -
form where[4]
o expl— 262K ?)
S (x)=—8(2m)2 3f dKK—————A, (8 - 2k/2+1
900 =-8(2m e | KK e —1 ® 65(0)=1+(2m) e+ 3 (- 1)K —T|5+1
k=0
ith
wit X £(k+2)| £[<+2. (16)
e=—|&l¢ 9 . .
Z(n) are Riemann’'s{ functions. Therefore, Eq(1l5) be-
and comes
a5l d"lFl( Kt 2"5'””) G300= 3, (~ 87 (312),+ pl(2m) %
% 2k/2+l
1P| oL 2l|§|KXU) (10 +2 (— 1)k +1)§(k+2)

A has been expanded in increasing poweréfwith the
result

1-k -
x T) Iélk”}E C(p,a)(—2&x)%. (17)
p a=0

o0

=p§0 (—1)p<4§Kx>2*’q§O C(p,a)(—2¢x)9.  (11)

B. Bound state contribution, gﬁ

C(p,q), in which p andq are integers, is a number defined Now we are interested igibj , the part of the pair distri-
as bution function due to the bound states. It reads
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> on-io+e Making use of the expansion @ (0) [4], g} (x) is then
gh(r)=(2m)¥x3 > 20 2{] exp(— BEp) expressed in the form

= S e

1 2w T ) .
XEJ'O dgofo dosinOV ,om(r,0,0) V5, (1, 6,0). g”(x) g.J(0)+§3Z [<§d§> [& g”(O)]}
(18) -
— 2p+q

VY,..m and E, are the wave functions and the energies of qul Cp,a)(=2éx) ' 23

bound states corresponding to the quantum numbgeis

andm [21]. Expressing them, the last equation becomes
C. General expansion ofg;;

31 ;{ 2r ) Equations(15) and(23) are very similar. Thug);;(x) can

gh(n=2(2m**—3 3 —ex — -~ Bk, be written as
n—-1 s 1-€ b
X 3, (20+1)(n= (=1} (n+0)! 9y () =i+ 56 (%)
n—¢—1 2
(—2r/na)t*X =0;;(0)+ 532 [( ) [¢ %, <0>]}
.Zo (n—€—k—1)!(2€+k+1)!k!} ’ J ¢de J
19 X 3 C(p,a)(— 2607, (24)
=1
with E,=Z;Z;e%/(2an’) anda=%%/(y;;|Z;Z;|e?). Hence, ‘
= ¢ The expansion o§;;(0) is
gi(x)=2(2m) % >, —4eXp(—2——§ )
n=1n 2 *®  Hk/2 +1

n-1 gij(0)=1+(2w)1’2§+k20 r E+1)g(k+ 2) k2,
X D (20+1)(n—€—1)1(n+£)! B
2 (26+1)( )H(n+€) 25
n—¢-1 0+k 2 - . .
> (—2&x/n) Therefore, the explicit expansion gf;(x) with respect tax
o (n—€—k—1)1(2¢+k+1)Ik! and ¢ [corresponding to Eq17) for g7] is
(20) )
where x=r/X;;. In this case is positive.g; (x) can be gij(X)= ZO (—8X)P| (3/2)+p!(2m) "%
expanded with respect toand ¢, with the result P
*© 2k/2+1 k 1—k
95 (x) =07 (0) +2(2m) M2 -|-k20 0 [‘(§+1)§(k+ 2)( 5 ) §k+2}
= ! )
o w §(2k+2p+3) .
X2 2k 2"2 C(p.a)
p=1 k=0 k! X > C(p,q)(—2£&x)9. (26)
q=0
X(—2&x)2PHa, (21)
C(p,q) is the number defined by E¢L2). In the last equa- D. Small separation behavior
tion, the sum ovek can be rewritten in order to introduce  The behavior neax=0 of the pair distribution and of the
9:01(0), corresponding pseudopotential is deduced from the last equa-
tions. It reads
o {(2k+2p+3
z é’( p ) 2k s 2 10
k=0 2KK! 0ij(x)=0ij(0) 1—2&x+2£% +§§x3—§§3x3
F k+ > 2
2Pt P - 2 - = 2x3 (0)]+0O(x* 2
d(&£2)PK (2k+ 1!
(22 and
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2 2
Vij(x)= In[gij(x)]zA”—(l— §§x3) —2x+ §x3

zz 2
2 2 dA;
T 2y3_ T 203
tgEX T gEx dg +0(x%), (28
with
ij:Z-Z o2 |J(O)_ In[gu 0)]
=2m) Y+ 7 g—l E+0O(&2). (29

We verify that, forx=0, the slope of §;; /ZiZjez)Vij(x) is
— 2,

=-2.
x=0

(30

d
ax zz 5 Vij(X)

This is a known resuli23]. Figure 1 in Ref[2] showsA;; as
a function of&? for e=+1 and—1 [Eq. (9)].
In the case of small distance, an approximatiomgois

gij(x)=g;;(0)exp(—2éx)  forsmall|éx].  (31)

Here, “small distance” means<iA/é&.

E. High temperature limit

The high temperature limit is the smal| limit. Starting
from expansion26) and taking account of Eq12), we ar-
rive at

o

_ 2\p
i (X)=1+(2m) V%~ 4¢x E (3/2)p(—8x)

(2p+2)1(2p+1)

> e
zi (;3'?;;.;5;?‘; P
ngl (-1 +o(le.

=1 9'q(2p+2—q)!(2p+2—0q)
(32

PHYSICAL REVIEW E 66, 066407 (2002
gij(x)=1+ 5[1 exp(—2x%) ]+ (2m) Y2 1- & (21%)]

£-2(2m) "%

(—4x?)P
(2p+ D! (p+1)(2p+1)

’7T
3
x 2

+2£2x 22

L1 (c20-2),
pr1 q(2p+2-q)

(—2x2)p i1
(p+1)!(2p+3) 2 q

O([€®). (33

Thus, in the high temperature limit, the pseudopotential is

V|,(X)=;[1—exp(—2x2)]+(27)1/2

Z,Z;e?
X[1-®(2Y%)]+0(| &) (34
or
Z.Z;e? 2r2\ | zz;e?
V.i(r)= 1—exp — —| |+ 2q)12

21/2r
1-— qa( = +0(e%), (35)

ij

which is exactly the potential derived by Kelbg and his co-
workers[3,11]. It is easy to write the term of the order &f
(or the squared interactiog”) and the following ones cor-
recting this potential. We propos¢di7] an approximate ex-
pression forVij(r). This is the Kelbg potential, which is
modified in such a way that the value at origin,
(277)1’22 Zje?/x;;, is replaced with the exact one:
AijZZ;e /}( WhereAij is defined by EQq(29). This approxi-

mate expressmn is
L [{ 2r?
2

2(m) Y
1_q>( Aij X ”

Z.Z.e?

iZ, Z,Z;e

X

Vij(r)=

X (36)

It reproduces exactly the value at the origin, the slope at the
origin, and as expected there is no ternr#rin ther expan-
sion. Recently, Wagenknecht and co-workers have proposed
exactly the same approximati$g4].

In the last equation, it can be verified that the first summation Rahal proposed another generalization of E§) in or-

over p can be expressed in terms of ex@x?) and of the

der to represent the interaction between an electron and a

error function®(2¥%). Then, this equation is rewritten as hydrogenlike ion. Doing that, he took account of the ion

follows:

extension 25].

066407-4



TEMPERATURE-DEPENDENT PSEUDOPOTENTIA ..

F. Low temperature limit

To study the low temperature limifi.e., the high||
limit), the results due to Davies and Stofé} are used and
generalized wherx does not equal 0. The two cases
+1 ande=—1 are considered separately.

1. Case of like charge signs

In this case¢ is negative. Davies and Storer estimated

g;j(0) by the steepest descent method and wrote it in thé&'

form
2 _ )2/3
)(0)~ g5(~2m6) "% p(—s%) for large |£],
(37
which gives
1 d
(_1)p2(2p+7)/3ﬂ_2(p+2)/3
= 312 )4 (- DI3
_ 2/3
xexp( —3%) for large |¢€|.
(38

In the last equation, only the main tertm the large|é|
limit) is kept. Starting from Eq(24), it is possible to write

2 2/3\ <~
9 ()= Zp(~ 2775)4’3exp< - Wg) )Z -1)P
x[2<—2w§)1’3x]2p20 C(p,q)
&
X(—2&x)9  for large |€|. (39

This equation can be rewritten in terms of increasing powers

of x. For each power ok, the main term(for large |&|)
corresponds t@=0. Therefore, taking into account onfy
=0 and expressin€(0,q) [Eq. (13)], Eq. (39 becomes

gi,-<x>~gi,-<0>go C(0,9)(—2&x)°

2 (—m§)?3
31/2( 2m6)*%e p(—3 513 )
_ q
—(Zq)!( 2¢%) for large |&]. (40

a=0 (g+1)!(q!)?

Note that the first terms in the last summation equal the first

terms in the expansion of expRéx) until orderx?. Thus we
can propose, in the case of largg and small|éx|, another
approximation forg;; :

PHYSICAL REVIEW E 66, 066407 (2002

2 _ )2/3
9 ()~ 3~ 277%)4’3exn( g T ;i —2§x>
forlarge |& andsmall |éx|. (41)

2. Case of unlike charge signs

In this case, as noted by Davies and Storer, the bound
tates dominate for large(which is positive. Thus Eq.(20)
yields

2

gy (0~ 2(277)1/253exp(§ —2§x)

for large ¢ and small éx. (42

All the last approximation$Eqgs. (40)—(42)] have good
behaviors for small x: the expansions of
[ Aj /(ZiZjez)]Vij(x)(zIn[gij(x)]/g) in increasing powers of
x are the good ones until the second order.

Note that the approximationigl) and(42) are valid only
in the case where the separation distance is stsak the
end of Sec. Il D.

Ill. PAIR OF ELECTRONS
A. Expansion of g¢e

In the case of a pair of electrons, the wave functions have
to be antisymmetric. Thus, if the pair of electrons is in a
triplet state, the wave function is antisymmetric for the ex-
change of the positions, and if the pair of electrons is in a
singlet state, the wave function is symmetric for the ex-
change of the positions. Lef, andg3, be the pair distribu-
tion functions for two electrons in a triplet state and in a
singlet state, respectively. Fgg., Eq.(7) is modified as

PZ(nyanya,B) _pz(X,y,y,X,,B)
p1(X.%,B)p1(Y.Y, )
+1

1
1/2 - eXF{‘E )
- Z) }cﬁf dk Ka f
2 0 -1

B exp2ma)—1

T

dr=

Xk

du

X[ F (—ia,1;ik(r—ru))
e KU Fi(=ia,1;ik(r+ru))]

ik(r—ru))

ik(r+ru))]

exp( —2£°K?)
exp w/K)—

X[e K Fy(ia,1;-

- eikru 1F1(ia,1;—

—8(277)1’253J:dKK T(A=B),

(43

with
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o= 5| w1+ g 120w 0d0=63 | (3 55| 126 %001
X1F1 1—R,1,—2|§Kx(1+u)), (44) XE {C(p'q)_%D(p'q)}(_zfx)Zpﬂl_
q=0

(50

k 2
K= ezme=k7(ee/2|§|, and  X=r/Xee, (45) Note thatgee(0) is half the value ofgge “*{0), the pair
distribution function at the origin, in the case where the ex-
change is not taken into accourt]. Thus, Q.(0) is ex-
pressed by Eq25). The expansion df.¢ in increasing pow-
ers ofx and & [analogous with Eq(26)] reads

wherem, is the electron mass. In a similar manrg, reads

pZ(X!yixayrﬂ) +p2(xayryaxvﬂ)

goe(r) = ® = ki1
P1(X,X,,3)P1(yayvﬁ) o gee(x):pZO (—8X2)p +p!(277)1/2§+ kZO
o 2.3 [° exp(—2&°K?) - p -
=-8(mTe fo dKKEXF(W/K)—l(A+B)' T )z o 1—k) o
46 5 ((k+2)| — p§
- 1
Therefore, we get the relation quo {C(p.q)— ED(D.Q)}(—%X)Q- (5)

Compare C(p,q) [Eq. (12)] with the term [C(p,q)

3 1
gee(x)=zgle(r)+ ZQSe(r) —1D(p,q)], which is
B o exp(—2£2K?) 1
——8(27T)1/2§3f0 dK KW(A—EB). .
a7 CPA=5D(P.O= Gy 2( 1"

q S(m+l) S(q m+1)

A is expressed in the preceding sectj&iu. (11)]. B has also X 2 mtn+1Tgomiapontl
been expanded in increasing power o (m+m!(g—m+2p—n)!
(2p+0)! 1
- " (m+n)!(q—m+2p—n)!_§'
B=2 (~1)P(4¢K0™ 3 D(pa)(~2£)% (49 (52
p= 9=

_ They differ by the term—% in the factor [(2p+q)!/
with (m+n)!(g—m+2p—n)!—3]. This is due to the exchange
within the pair of electrons.

n B. Small separation behavior
D(P.O= Zp e 1)1 4 2 (-1 par
From Eq.(50), the behaviors ofj.. and V., nearx=0
4 sﬁnm:nljls(q mmjz})) i1 can be deduced. Thus,

x>

m=o (M+n)l(g—m+2p—n)!’ (49)
8 4 16
gee(x)zgee(o)<1_2§X+2X2+§§2X2_§§X3_3§3X3

In Eq. (47), the integration oveK is evaluated exactly as ) 5 q
done in the case of distinguishable particles. Ttgn,be- Cf 2 S 203 Y 4
comes (§X £ ) g9 0)+ 0 (53
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and

Xee 1 In(2) Kee no ex
_Zvee(x): E In[gee(x)]: - ¢ + gvee C(O)

8 8
—2x+ X3+ §§2x3

2 2
R )
x+3§x+3

3

2 ) 2
—§X—§§X

@) 2, 4
——T-FAee(l_gX +§§X)

dg In[2ged(0)]+O(x*)

2 2 8 8
—2x+ X2+ - X3+ X3+ §§2x3

& '3 3

PHYSICAL REVIEW E 66, 066407 (2002

Ged )= 511+ (2m) %~ 26

+ 21 (—8x2)P[(3/2) ,+ p! (2m) V%]
=

1 1
<[ s 264 S~ 300 |
+0(&%), 57)
with
1 B 1 1 p—1 1
C(p. )~ 5D(p.)= G2l | 2prT 2 2951
(58

This expansion is then rewritten as

2 Ace (3/2),(—8x%)P
~ o e S g2y
3( Exe— f ) +O(X ). (54) gee(x) l+(2’77)1/2§ 2 pz—:o (ZE))T)l
(312)5(— 8x2)P
A is defined as is done in the case of distinguishable par- N ngo (2p+2)!(2p+1)
ticles[see Eq(29)], i.e.,
T 12 = |( 8X2)p
_(E> ¢S, orr
}(ee no ex 0 ex
Aeezgvee t(o)_ |n[gee C(O)] 3/2)p( 8x2)p P )
X2 T opra)n & 2qr1 O
1 T
s In[ZQee(o)]:(Zﬂ')l/z"""T =1 §+O(§2), 1 I3
§ 3 =1- Eexp(—2x2)+;[l—exp(—2x2)]
(55)

where V32 ©*{0) is the pseudopotential at the origin if the

+(2m) Y[ 1- D (2Y%%) ] - (2m)Y2%¢G(x) + O(£2),

exchange between the two electrons is neglected. Equatiomhere

(54) can be rewritten as follows:

2e’r
+ V22 €Xq0)— K—2+O(r2).

ee

Vedr)=kgT In(2) (56)

Looking at the last equation, we remark thafT In(2) is a
purely exchange term. In the expansion\Gfy(r) with re-

spect tor, there is a term of the order of, in contrast to the
unlike particle case. Note that the slope at the origin has the
same value as in the case of unlike particles. We have com-

pared Eq.(53) with the results of Isihara and Wadag6]

[see EQ.2.13 in their papel. We do not completely agree

with them.

C. High temperature limit

In this limit, g.«X) expressed by Eq51), is expanded
with respect taé:

(59
G(x) 1F(1322)+
X)=7 52X —
2t H 2 2(27m) Y%
—2x3)PPt g
XE )
p!  &b29+1
_ 1 2 2 F 1 32 2
—§exﬂ x| 1F1 51512X
21/2 3
- 2
771,22F2(1 15.2,2 ) (60)
_21/2X n
exp( 2x2)2 ( ) (61)
(n+l)F

In Eqg. (59), the Gaussian terr’éexp(—sz), corresponds to

the case of the ideal Fermi gé&sxchange without interac-
tion), the two following terms are Kelbg's potenti@hterac-
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tion without exchange and (27)Y2¢G(x) is an exchange The last expression reproduces the good value at the origin,

term (with interaction. G(x) decreases quickly as in-  the good slope at the origin, and its langbehavior ise?/r,

creases. Equatiori87) and(60) are in agreement with Mat- the Coulomb potential.

suda’s result§27]. It can be verified thavS* evaluated by

Z)r(l;t():g&ov and Elesif8] [see Eq.(1.15 in their pape} is D. Low temperature limit
For this limit, we process exactly as in the case of distin-

guishable particles. Using the relati@®8) and expressing

— 1 2 1/2

v (X) == 28Xp( = 2x%) = (2m) " G(x), 62 c(09)-1D(04), Eq. (50 becomes

in agreement with us. The pseudopotential to &) is

2(_2775)4/3 % (_775)2/3)
———exp —3———

Jed X)=~ 312

Xeo 1 1 1 213

— VedX)=ZIN[ged X)]=7In| 1— Eexp(—sz)

e ¢ ¢ v (2600

1 -1 g=o (q+1)!q!
+ 1—§exp(—2x2)
(2q)!
X —29711 for large|¢|. (66)

a2 ge|¢|

X ;[1—exq—2x2)]+(2w)1’2

As is done for unlike particles, we propose another approxi-

X[1-®2Y%)-G(x)](+O(|¢)) (63  mation:

L 1 2r?
2 Xee

= p( 2r2> ot
2 Xoe

or

_ 4/3 _ 2/3
gee(x)%< 2m)* p(_3< wé) _2§X>

31/2 21/3
Vedr)=—kgTIn

for large |£] and small | £x]. (67)

The last approximation is half of approximati¢l), which
is in agreement with the smallbehavior.

2

e
+—(2m) 12
Kool

IV. CONCLUSION

L 2r2
Ao
212 r Pair distribution function$Egs. (1) and(2)] and the cor-
1—<1>( X )_G(}(—) +0(e*). (64 responding pseudopotentials have been studied. The expan-
ee ee sions with respect ta and ¢ are exactly derived. Some ex-

pressions are proposed in order to approach the

As we have done in the case of distinguishable particles, w@seudopotentials. They fit the known limits. These expres-
propose an approximate expression ¥Qi(r): sions are made to be used in the framework of classical sta-
tistical mechanics instead of the Coulomb potential. This is
L p( 2r2>
2 Koo
[Egs.(5.10 or (5.19 in Ref.[1]] and already used to study
plasma propertie§12—-2Q. For infinite temperature ||
(65 accurate comparisons with exact quantum results, the ap-
proximations proposed here are better.

X

Vedr)=—kgTIn

+

valid for low enough densities. In order to neglect the case
2\ 171 42 2
1 1 2r e 1 2r
—-exp ——5 —|1-exp — —
2 e r Ao
—0), Eq.(36) yields the Kelbg potential3], which is an

where three particles are near, the mean interparticle distance
e_2A 41_(1)(2(77)1/2 L) exact result. The simple approximate expressions proposed
e
A
e ee

has to be larger than the de Broglie length.
In the case of high temperature, the approximati(@&
and(65) are more accurate than those proposed by us earlier
in Ref. [1] can be used easily and permit some calculations
without any computer. This way, quantum corrections to
classical properties of plasmas can be simply studied. But for
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