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Weak fountains in a stratified fluid
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The behavior of weak axisymmetric and plane fountains resulting from the injection of denser fluid upwards
into large containers containing a stably stratified fluid has been explored using dimensional analysis, scaling
analysis, and direct numerical simulation. For weak fountains, with Froude numbet By dimensional and
scaling analyses have been used to derive scaling relations for the dimensionless fountain height, width,
thickness of the temperature layer, and development times in terms of the Froude number Fr, Reynolds number
Re, Prandtl number Pr, and ambient stratification nunsbBiumerical simulations have been carried out for a
series of Fr, Re, Pr, and for both axisymmetric and plane fountains to validate and quantify the scaling
relations obtained by the dimensional and scaling analyses. The numerical results have been found to agree
well with the analytical scaling relations.
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[. INTRODUCTION Therefore, for a uniform discharge velocity at the source, Fr
is obtained for both axisymmetric and plane fountains as
Fountains occur with jets when the buoyancy force actingollows:
on the jet, as a result of a density difference between the jet

fluid and the surrounding ambient fluid, acts in the opposite v
direction to that of the jet flow. Thus, both dense jets pro- - —01/2, (4
jected upwards into a less dense medium, and less dense jets (Xog")

projected downwards into a more dense medium, will pro-
duce fountains. Considering only the upward projected dense For strong fountains, the flow becomes turbulent quite
flow, the jet will penetrate to a finite height, with the fluid close to the source, and such flows are characterized by Fr
then falling back as a plunging plume. In cases where the jet-1.0. For these strong fountains, the fountain front, the
source lies on a solid boundary and the ambient fluid is hoplunging plume, and the intrusion flow are the distinct fea-
mogeneous, the plunging plume falls to the boundary andures. Many analytical and experimental studies on the foun-
then forms a gravity intrusion traveling away from the maintain front and plunging plume have been carried [du12].
fountain flow. The fountain outflow forms a gravity intrusion similar to
The behavior of a fountain is mainly controlled by the those that have been widely studied in other contfk8s-
Reynolds number Re, the Prandtl number Pr, and the Froudgs]. In general, the fountain investigations have focused on

number Fr, which are defined as follows: the fountain front and plunging flow rather than the intru-
112 sion.
Re— VoXo pr=2  Fr= ( MOVO) Weak fountains, characterized by<Ft.0, have some dif-
v K’ BoXo/) ferent patterns of behavior from those of strong fountains.

) ) . . . Weak fountains have no distinguishable upward and down-
whereV, is the discharge velocity, is the radius of the 514 flow, instead the streamlines curve and spread from the
source orifice for an axisymmetric fountain or the half-width ¢ ;rce. In particular, the fountain top, downflow plume, and
of the source slot for a plane fountainand« are the kine-  jnysion are not distinct features, and the intrusion height is
matic viscosity and thermal diffusivity of the fluidl, and 5 gypstantial component of the total fountain he[giét—19.

By are the specific momentum and buoyant flux, respecg,ch weak fountains are expected to be laminar. Earlier
tively. When the discharge velocity at the source is uniform,,ork has shown that the laminar scalings break down for Fr

Mg andB, are obtained as greater thar=1.5[17].
22 o 2 Weak fountains discharged into a stably stratified fluid
Mo=mVoXo,  Bo=mg"VoXs, @ have many applications. One example is the replenishing of
for axisymmetric fountains and cold salt water in solar ponds by weak fountain flows to
maintain stable concentration and temperature gradients in
Mo=2V3Xo, Bo=29'VoXo, (3)  order to suppress convective flows inside the ponds for the

maximum collection and storage of solar en€lga§]. A good
for plane fountains, wherg’ is the reduced gravity between understanding of the behavior of weak fountains in stratified
the fountain and the ambient fluid at the discharge sourcefluids is essential for the design and management of these
processes, as well as being of fundamental interest to fluid
mechanics and heat transfer. Recently, we carried out a series
*Electronic address: wenxian.lin@aeromech.usyd.edu.au of scaling analysis and numerical studies on the behavior of
"Electronic address: armfield@aeromech.usyd.edu.au weak fountains in homogeneous fluid6-19, however, no
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study has been found that investigates the behavior of weaksing the numerical results and shown to provide a good
fountains in stratified fluids, which motivates us to conductprediction of the observed fountain behavior.
the current study.

Both scaling analysis and numerical simulati¢f§—19 Il. DIMENSIONAL AND SCALING ANALYSES

showed that the dimensionless fountain heghtand width Under consideration are axisymmetric and plane fountains
Xy (nondimensionalized bX,) provide a full parametriza- i a stably stratified fluid. In the case of the axisymmetric
tion of the fountain flow in the fountain core for weak foun- fountains’ the physica' System is a vertical Cy”ndrical con-
tains in a homogeneous ambient fluid. The vertical velocCitytainer of heightH and radiud while in the case of the plane
and temperature on the symmetry axis were scaled With fountains, it is a rectangular container of heigthtand half-
and the horizontal distribution of both the vertical and hori-width L. In both the cases, the Newtonian fluid is initially at
zontal velocities in the zone of self-similarity in the fountain rest and linearly stratified, characterized by a constant strati-
core were scaled with boty,, andx,, . In addition, the di- fication paramete§,, with
mensionless thicknes8y_ (nondimensionalized by,) of

N [ 1 dpa(Y)

p

the temperature layer on the symmetry axis, over which the =~ =0y " dy
fountain fluid temperature changes from the inlet value to pa(0)

that of the ambient fluid, provides a parametrization of theyhere p,(Y) and p,(0) are, respectively, the density of the
thermal structure of the fountain front, and the dimensionlesgmpient fluid at heigh and atY=0, that is, the bottom of

Tms and 7¢ (nondimensionalized by,/Vy) provide the  the container. The temperature stratification parameter is
time scales for the fountain flow in the fountain core to reach
a steady state and for the temperature layer to achieve full S= ITa(Y) -85
development, respectively. oY

The primary purpose of this study is to obtain scallngWhereT

! . . . : a(Y) is the temperature of the ambient fluid at height
relations describing the behavior of weak fountains with FrY and 3 is the coefficient of thermal expansion of the fluid.

=1.0 when they are discharged into stably stratified ambienﬁ.he sidewall is nonslip and insulated and the top is open. On
fluids. An initial scaling is obtained using dimensional argu-y.o bottom center. an orifice of radid, for axisymmetric

ments and assuming a power law relation between the four}E)untains or a slot of half-widtlX, for plane fountains is

tain flow quantities and the control parameters. This aPsed for the fountain source. The remaining bottom region is

proach cannot provid_e a c_om_plete descrip_tion of the scalin% rigid nonslip insulated boundary. At tinte=0, a stream of
for the case when viscosity is assumed important and th uid with a uniform discharge velocity, and at a lower

stratification of the ambient fluid has to be taken into ac- T . . )
count, as then the number of control parameters is greattemperatureTo [To=T4(0)] is discharged impulsively into

than the number of dimensions, but does provide an indica(\?-ﬁe container from the source to initiate the fountain, and this

. . . o discharge is maintained thereafter. For axisymmetric foun-
tion of the correct scaling relation, requiring only the evalu-__: . . : .

. . ; tains, the flow is assumed to be axisymmetric and two di-
ation of two powers. To obtain tentative values for the un-

known powers, a further scaling analysis is carried out baseaw_ensmnal while for plane fountains, the length in the span-

on the assumed viscous interaction that will influence theWlse coordinate is assumed to be long enough so that two-

i ; : . . . dimensional flow may be assumed.
ifr?tue ngozel/%irlllt.o-(zrc]ﬁrtwa?eﬂ?)\gtv(/eegelr?ntielnri;\ierIC?I;WVI:fC(t)#es For weak fountains discharged into a homogeneous fluid,
fountain core, and thé downward outer flow, gnd within theit was ShOV.V” that their pehayior s well Qescribed by the
viscous intrusion that forms downstream of the downwar %L\J;;ai'rr: thheelgfr;tzgtaifr?ucrgfelntgvgtgéw,a1Tg;émest€£_r;%e
outer flow. Viscous interaction between the fountain core an dditionallv. AY  the thickness of the axis )éver which.the
downward outer flow will lead to a reduction in the fountain MRS ' S
height, however, initial results showed that the fountaintemperature changes frofy to T,(0), asshown in Fig. 1,
height increased with increasing viscosity so it was unlikelywhere both the temperature and vertical velocity profiles on
that this was the dominant viscous interaction in the flow.the axis at a steady state are sketched for weak fountains in a
Increased viscous interaction in the intrusion means that estratified fluid, provides a parametrization of the thermal
ther the intrusion height will increase, or that the horizontaiStructure of the fountain front. In a stratified fluig,is an
pressure gradient that drives the intrusion will increase t@dditional control variable apart from Re, Pr, and Fr. In the
balance the increased viscous force and maintain the sanf@lowing dimensional and scaling analyses and the subse-
intrusion height. An increased intrusion height will require duént numerical simulations, only weak fountains with Fr
an increased fountain height for<€4.0, while an increased =~ 1.0 will be considered.
horizontal pressure gradient will also require an increased
fountain height. Thus, the observed behavior of the weak
fountain indicated that the primary viscous interaction was Due to the symmetry of the system geometry and the
that occurring in the intrusion. This observation was used tdoundary and initial conditions, one-half of the physical do-
construct a scaling relation and obtain tentative values for thenain may be chosen as the computational domain, while the
unknown powers remaining in the relation obtained from aweak fountain discharge makes it appropriate to assume a
dimensional analysis. The scaling relations are validatedaminar flow. With the Boussinesq assumption, the governing

, ®)

P

A. Governing equations
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FIG. 1. A sketch of the profiles of the temperature and vertical

velocity on the symmetry axis at a steady state.

equations are the Navier-Stokes equations and the tempera- ~ Y=v =0, @:0 at
ture equation, which are written in dimensionless and incom-

pressible form as follows:

Vo

1 a(xiu)+av_ 6
xi ox gy ©)
au 1 a(xluu) a(vu)
—+ — +
T w oX ay
ap 1| a|1axu| ¢
———p———.( )+—, (7
Ix Re|dx|yl dx ay?
v 1 dxluv)  d(vv)
—+ = +
T X! IX ay
B (9p+1 19 jav+a2v+1 oo
=" oy TRel x| X x Py ﬁ( by)s
8

90 1 a(xlud) a(v6) 1
—+— + =
aT Xl dX ﬁy

wherej =0 and 1 denote the plane fountains and axisymmet-
ric fountains, respectively, y, u, v, 7, p, and# are, respec-
tively the dimensionless horizontal and vertical coordinates,

19 90 +a20
~RePrw ax| X ax) T 2l

y
9
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wherep is density andX, Y, U, V, t, P, andT are the corre-
sponding dimensional quantities.
The appropriate initial and boundary conditions are

u=v=0, 6=6,,, atallx,y, (11
when <0 and
0. “_o0, 20 ax-0, 0
= —= —= = =y<_—:
u ToX )4 atx ’ y o,
0 00 0 L 0 H
= — _— _— g g—'
u=v=0, X at x o' y X
u=0, v=1, 6=1 at Os=x=1, y=0;
1<x< L =0;
X\XO! y_ [l
Ju dv 0 00 ¢ 0 L H
ay a9y oy s @ X Xo’ y Xo’
(12
when=0.

B. Scaling relations
1. Fountain height

As Fr is~1.0, both the specific momentum fldk, and
the specific buoyancy fluB, are important. For weak foun-
tains considered here, the kinematic viscositys also im-
portant, together with the stratificatid&®, when the ambient

is stratified. These four parameters will provide a complete

parametrization of the fountain heightt,, which is defined
as the height, at which the vertical velocity of the fountain

front on the symmetry axis is zero at a steady state, as shown

in Fig. 1. Expressing/, in terms ofMg, By, S;, andv as

Yl =IM§BES Y, (13
where ‘I =]" means “has the dimension of.”

For axisymmetric fountainsvly, By, S,, andv have the
following units:

Mo[=]L*T72,  Bo[=1L*T3

S[=1L"Y  y[=]L2T 7, (14

x velocity andy velocity, time, pressure, and temperature.whereL and T represent the dimensions of length and time,
0,y is the dimensionless temperature of the ambient fluid atespectively. Therefore, from E¢L3), we have

heighty.
Nondimensional quantities are obtained as follows:
X Y U Vv
X_Xoy y—XO, u_VO! U_Voy
t P T-Tao
T= oo, = , 0= -, 10
*olVo' P Ty M

L[ — ](L4T—2)a(L4T—3)b(L—1)C(L2T—1)d

[:]L(4a+4b—c+2d)-|—(—2a—3b—d)_ (15)
Hence, dimensional consistency then requires

4a+4b—c+2d=1, (16)

—2a—-3b—d=0, (17)
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which give the following relations: The powersc andd in Egs. (21) and (28) remain un-
known, however tentative values may be obtained from a
scaling analysis as follows. The scaling analysis uses the
quantitiesXy, andY},, whereX, is the distance, at which the
fountain outflow has formed a viscous intrusion, angdis
With these relations, we find that for axisymmetric fountains,the height of the intrusion. The analysis is based on the as-
_ _ sumption that for low Reynolds number flow, the height of
Yl =]m (1/2)(1+C+d)['8(-r0_TaYO)]CFr(HC)SCRe o weak fountains is controlled by the rate, at which fluid can

= d 3 1 b= ! 1 18
a——z-l—z( +0), ——E( +0). ( )

NFr(lJrc)ScRedeO (19 exit the fountain via the viscous intrusion that forms down-
stream of the fountain.
where “~” means “scales with,” 7~ (Y2Fetd g1, Over X,,, the primary balance in Eq7) will be between

—Ta,0)]% is a dimensionless constant aBglhas been repre- the horizontal pressure gradient and the vertical diffusion,
sented by the following dimensionless temperature stratificagiving
tion numbers:
p* u*
dé, Xo . 2"
=—2-__"° g, 20 h o Reyj
dy  B(To Tag (20

For a linearly stratified fluids is a constant. Hence, the di-
mensionless fountain height,, has the following scaling
relation with Fr, Re, and:

(29
s

where x,=X,,/Xg, Yh=Yn/Xy, p* is the dimensionless
pressure scale, and is the dimensionless horizontal veloc-
ity scale. Over the fountain heighy,,, the pressurg@* is
governed by the pressure-buoyancy balance, which, from Eg.

v (8), gives
Y=o ~Fr1*0sRe 1, (21)
Xo p* s
_ Tl (30
For plane fountainsMy, By, S,, andv have the follow- Ym FP
ing units: .
where it is assumed that, ands are greater than 1.0, and
Mo[=]L3T 72, Bo[=]L3T 3, S[=]L"% thus the component of the pressure resulting from the strati-
fication will dominate that resulting from the difference be-
y[=]L2T L (220  tween the jet inlet density and the ambient density at the jet
inlet.
Then from Eq.(13), we have Combining Eqs(30) and (29) gives
L[:](L3T72)a(L3T73)b(L7l)C(LZTfl)d yran u* F2
[=]L(8a+3b-c+20)T(~2a-3b-0) 23) T ReyZ’ (31
Hence, dimensional consistency then requires Using Eq.(6) gives a scale fou* in terms of a vertical
H *
3a+3b—c+2d=1, (24) velocity scalev™ as
th*
—2a—3b—-d=0, (25) u* ~ v (32
m

which give the following relations: which allows Eq.(31) to be written as

a=1+c—d, b=-3(2+2c—d). (26) )
V&S Xpu*Fr 33
With these relations, we find that for plane fountains Xp Reymyﬁ'
— 192(1/3)(1+c—2d) _ c
Yl =12 [A(To~=Tao)] Usingv* ~1, this may be written as
X Fr(2/3)(2+20—d)scRe—dxo
213)(2+ 2~ d) cCp o d 3 XpFr®
~FH s‘Re 94X, (27 Y™~ 5 (34)
ynRes
and AV+e=2dp (T —T,)]° is a dimensionless con- _ S _ _ S
stant. Hence, the dimensionless fountain he'whthas the ASSUm|ng the intrusion he|ght scales with the intrusion
following scaling relation with Fr, Re, ang development distancgy,~x;, then gives
Yim 2/3 Fr2)
_Im )(2+2¢—d) ~d IR
Y= Xq Frl c-dsRe 9. (29 Y RO (35)
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10 where X,, is the dimensional fountain width, and for plane

fountains with Fr~1.0,

05 F X~ Fr23)@+2c-dgeped (37)
S With c=—1/3 andd= 1/3, these relations become
\;_3 00 |
Fr(2/3)
-0.5 XWN Ré1/3)8(1/3)1 (38)
envelope of mipima 3. Thickness of temperature layer
' w . . Thi u y
-10 (@ e i R . .
0o 10 20 3000 10 20 30 40 Similarly, Mg, By, andS; are also important for the de-
X X velopment of the temperature layer, together with the thermal

diffusivity « instead ofy. Following the same procedure as

FIG. 2. Typical horizontal profiles of the vertical velocity at nine for y,, we find that dimensional consistency gives

heights at a steady state f@ an axisymmetric fountain ang) a

plane fountain, both with Fr1.0, Re=200, Pr=1.0, ands=2.5. AYT~X0Fr(1+°)s°(Re PD_d, (39)

On this basisc may be tentatively set te-1/3 andd to  for axisymmetric fountains with Fr=1.0, which then gives

2. Fountain width

AY
— T 1+c)aC —d
As shown in the previous studi¢46—19 when both a Ay = x_ONFr( 's(Re Py ¢, (40)
weak axisymmetric and a weak plane fountain flow in a ho-

mogeneous fluid are at a steady state, a characteristic fouand for plane fountains with F& 1.0,

tain width X, can be determined. This is also true for weak

fountains in a stratified fluid. To show the definition Xy, Ay ~ Fr2/3)(2t2c-d)s¢(Re Py 9. 41
the horizontal profiles of the vertical velocity gt=0.1y,,,

0.%m, 0.ym, 0.4y, 0.5y, 0.6/, 0.%y, 0.8y,, and  With c=—1/3 andd=1/3, these relations become
0.9y, at a steady state are presented in Fig. 2, obtained with

the numerical simulation for both an axisymmetric and a Fr2/3

plane fountain with F=1.0, Re=200, Pe=1, ands=2.5. At Ay_~ e (42)
each height, it is seen that the vertical veloaiti,y), non- (RePrs)

dimensionalized by, decreases gradually asincreases )

until at a specificx, v(x,y) becomes 0 for eac, which is 4. Time scales

the location, at which the upflow terminates and the down- There are two time scalés andt,; to represent, respec-

flow begins. Beyond this locatiom;(x,y) continues to re- tively, the time scale for the fountain flow in the fountain
duce until a clearly defined minimum is reached, then in-core, which is the domain enclosed % x,, andy=y,,, to
creases until it again crosses the zero line. The envelope @gach a steady state and the time scale for the full develop-
the minima for each height itself has a clearly defined mini-ment of the temperature layer, defined as follows:

mum as shown by the bold line in the figure, corresponding

to y=0.4y,, and y=0.6y,,, minimum, respectively, for the Yo AY
axisymmetric and plane fountains considered, which occur at tms™ v tme~
x=1.57 and 2.13, respectively. The minimum of the enve- m

lope is fqund to b.e clearly defined fqr aI_I Fr used, similar toWhereVm is the velocity that will scale with the development
the previous studies of weak fountains in homogeneous flu-

. o . L time.
ids[17,18. This width was defined to be the fountain width For V.., the governing parameters aké,, By, », and

and was found to be the horizontal length scale that characs- A dimensional analysis similar to that used jog gives
terizes the fountain flow in a homogeneous fluid at a steady®’ y 9

state[17,18.

As X, is similar toy,,, the scalings obtained for,, are
also valid forx,,, that is, for axisymmetric fountains with Fr
~1.0,

T

Vi,

(43

Vi~ VoFr 17 9s°Re™ 9,
for axisymmetric fountains with F+=1.0, and
VmNVOFr*(1/3)(1*20+d)SCRe*d,

szﬁw FrltogtRe @ (36)  for plane fountains with Fr=1.0.
Xo Hence,
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X
tms~ —FP2, tmf~V—ZFr2Pr’d

=1

for both axisymmetric and plane fountains with 1.0,
which give the following dimensionless time scales:

i
Tmszm~pr2, (44)

tin !
Tmfzmﬂ:rzpr*d. (49)

With d=—1/3, Eq.(45) becomes i
Ty~ FIPPI 13, (46)

When s=0, that is, in a homogeneous fluid,must be I
equal to 0 and the scalings given above may be reworked tc
show thatd = 1/2 and the scaling®1), (28), (36), (37), (40),
(41), (44), and(45) reduce to

=1V

Ym~FrRe 12, (47
X~ FrRe 12 (48) E

Ay ~Fr(ReP)~ "7, (49)
— 50 &

T~ FPPr 12, (51)

Temperature Stream function

which are exactly the scaling relations obtained for weak

. - . . FIG. 3. Time evolution of numerically obtained temperature and
fountains with Fr~1.0 in homogeneous fluid47]. ! VOt Hmencatly ' perail

stream function contours for a plane fountain with=Ar0, Re

=200, Pe=1.0, ands=2.5.
I1l. NUMERICAL RESULTS

A. Numerical method beyond the uniform mesh regions expand at a rate of 7.5%
. . . up to x=0.1(L/Xy—5) andy=0.1(H/Xy—2) for axisym-
. Thg equations are discretized on a nonstaggered me_sh letric fountains and of 5% up ®=0.1(L/Xy,—4) andy
ing finite volumes, wrgh standard second-order c;entral dlffgr—: 0.1(H/X,—3) for plane fountains, respectively. Beyond
ences used for the viscous, the pressure gradient ar_ld d|v2{—: 0.1(L/Xg—5) or x=0.1(L/Xo—4) and y=0.1(H/X,
gence terms. 'I_'he QUICK third-order upwind scheme is use 1 2) ory=0.1(H/X,—3), the mesh size expansion rate de-
Iﬁ:ethe%fatmjt\i/()ertl:g\;eretigrv%dl]ﬁsrsg ;ogn[ﬁn;g& r%gd 'It'ﬁgus)ggn §reases at a rate of 10% until it reaches 0, resulting in con-
order Adams-Bashforth scheme and Crank-Nicolson schemetant coarse meshes in the remaining regions.
are used for the time integration of the advective terms and
the diffusive terms, respectively. To enforce the continuity,
the pressure correction method is used to construct a Pois- To provide an overview of the transient behavior of weak
son’s equation, which is solved using the preconditionedountain flows in a stably stratified fluid, visualizations of the
GMRES method. A detailed description of these schemegypical time evolution of the numerically simulated transient
were given elsewherd 6,22 and the code has been used fortemperature and stream function contours are presented in
the simulation of a range of buoyancy dominated flowsFig. 3 for a plane fountain with Fr1.0, Re=200, Pr=7,
[23,24]. ands=2.5. From initialization, the fountain is seen to grow
Due to large variations in length scales, it is necessary tin both height and breadth, producing a gravity intrusion that
use a mesh that concentrates points in the fountain regiomavels away from the fountain on the horizontal boundary.
and in the boundary layers and is relatively coarse in otheBy the timer= 10, the fountain core has reaches full devel-
regions. To construct such a mesh, a uniform fine mesh ispment, however the gravity intrusion continues to grow.
used in the regions of €x<5 and O<sy=<2 for axisymmet- Considerable work has been carried out on gravity intrusions
ric fountains and of &x<4 and O<y=3 for plane foun- and in a recent study, Maxworttt al.[15] investigated the
tains, respectively, and a stretched mesh is distributed in thgravity intrusion produced by a lock flow in a stratified am-
remaining regions both in theandy direction. The meshes bient. Although many of the features of that flow were dif-

B. Numerical validation of scaling relations
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ferent to the fountain flow considered here, the early stage: UL UL L BUELLEL B
of the intrusion flow are similar. Maxworthgt al. obtained
intrusion nose propagation speeds for a range of domair
height ratios, density differences, and stratifications. Apply-
ing their results to the fountain shown here predicts an intru-
sion nose velocity of=1.0. In Fig. 3 the intrusion nose has a N
velocity of 0.875 fromr=2 to r=4, 1.0 fromr=4 to r
=6, 1.125 from7=6 to 7=8, and 0.87 fromr=8 to —~ 00k B, -
=10, and these results are, therefore, in reasonable agre s g
ment with those of Maxworthyt al. [15]. < 5

It is found from this figure that the fundamental flow pat- —
terns are qualitatively similar to those of the weak fountains L O Axisymmetric, s>=1.0 .
in homogeneous fluid with Fr1.0, Re=200, and P+7 0.5 < Plane, s<1.0 -

>

0.5 d 4444 -

Axisymmetric, s<1.0

[17,18, although there are some distinct different features - Plane, s>=1.0 .

and quantitative differences which will be discussed below. i Axisymmetric, linear fit

The development of the axisymmetric fountain is qualita-

tively similar to that of the plane fountain, and for brevity, T T

only the plane fountain has been shown. 195 20 20 0.0 1.0 2.0
To validate the scaling relations obtained in Sec. Il, a In(s)

series of numerical simulations have been carried out for

both axisymmetric and plane fountains with selected values FIG. 4. Infy,,) plotted against Irs) for 1.0<s<5.0 when Re

of the control parameters Fr, Re, Pr, andSpecifically, Fr =200, Fr=1.0, and P+ 1.0.

=0.2, 0.4, 0.6, 0.8, and 1.0 with R&00, Pr=1.0, ands

=2.5 are used to show the dependence of the scalings on Er; 4 was to first ; ;
; . . plot Ing,) against In§), and obtain the
for axisymmetric fountains, whereas=0.2, 0.4, 0.6, 0.8, slope of any linear region, providing a first estimate 6or

and 1.0 with Re=200, Pr=1.0, ands= 3.0 are used to show This ¢ was then used to obtaia allowing Infy,—a) to be

ggcdz%peggerlcoeo Og:lze Zsocg “vrx]/ﬁﬁ glFOr f(;)r':piag € gﬁggtamsﬁlotted against Irg), giving a new estimate foc. This pro-

— 2.5 are used to show the dependence of the scalings on I?gss was repeated untilwas constant to three significant

for axisymmetric fountains, whereas R0, 50, 100, and Igures. . : .
200 with Fr=1.0, P=1.0, ands=3.0 are used to show the In Fig. 4, Inf/yy) is plotted against Irgj for both axisym-

dependence of the scalings on Re for plane fountains; PPEtric and plane fountains with Re200, Pr=1.0, and Fr
=0.7, 1.0, 4.0, 7.0, and 10.0 with #1.0, Re=200, ands =1.0. The linear fits in the region of 1s0s<5.0 give the
=2.5 are used to show the dependence of the scalings on Baluec=—0.335(+ 0.003) for both axisymmetric fountains
for axisymmetric fountains, whereas=0.7, 1.0, 4.0, 7.0, and plane fountains. It is clear thet —1/3 is the appropri-
and 10.0 with F=1.0, Re=200, ands=3.0 are used to ate power for the scaling relation, Eq&1) and(28), as was
show the dependence of the scalings on Pr for plane fourpbtained in the scaling analysis. The numerical resultssfor
tains; ands=0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 1.0, 1.5, 2.0, 2.5, 3.0,<1.0 do not show a linear relation betwegp ands™ 3,
3.5, 4.0, 4.5, and 5.0 with Fr1.0, Re=200, and P 1.0 are indicating c=—1/3 is not the appropriate power for this
used to show the dependence of the scalings.on range ofs. In fact, as we discussed in Sec. 11 B 1, the scaling
To use the numerical results to validate the scaling relarelation, Eq.(21), was obtained with the assumption trsat
tions and to confirm that 1/3 is the appropriate value for =1.0. Fors<1.0, the slopes of the plots in Fig. 4 increase
the powerc for weak fountains with Fr=1.0 ands=1.0 in  gradually towards O, supporting the hypothesis thaiust be
stratified fluids, we write the scaling relation fgf, in the 0 ats=0. Similar results for Re variation withfixed show

Plane, linear fit

following general form: that fors=1, d=~1/3, while fors=0, d~1/2. In the subse-
guent numerical validations of the scaling relations, it has
Ym=a+bs’, (52)  therefore been assumed that —1/3, d=1/3.

In Fig. 5, the numerical results validating the scaling re-
with fixed Re, Pr, and Fr, whette=Fri'*9Re "2 anda  |ation for y,, [Egs. (21) and (28)] are presented, where the
is included because the relation obtainedder 1.0 may not  four sets of data showing the respective dependence on Fr,
extend unchanged ®=0 (as will be shown beloyvWe then  Re, Pr, and have been combined. Thyg, have been plotted
wish to plot Eq.(52) in log-log form, but we must transf@  against Fr, Re, andin the form FF¥/(Res)'?, as predicted

to the left hand side of Eq52), giving by the scaling relation, no variation was observed with re-
spect to Pr, again as predicted. The results are seen to then all
In(ym—a)=b+clIn(s), (53)  collapse onto a single line for each of the axisymmetric and

plane sets of data, confirming the scaling relations, which
and the slope of the log-log plot will then give However, can be expressed in the following general linear quantitative
the numerical results give a set of(, s), they do nota  relation for both axisymmetric and plane fountains in the
priori give a. The procedure that was followed to determineranges of Fr, Re, ansl considered:

066308-7



W. LIN AND S. W. ARMFIELD PHYSICAL REVIEW E 66, 066308 (2002

3.0 [ T rrrrrrrirg l T rrrrrrrirt I T T T 1T 1T T T T T ] 5-0 LI I I B B B B B} I LI L L L L L L) I L

[ O Frdependence ] F O Frdependence 3

[ O Redependence i F O Re dependence ]

[ s dependence i 40 g s dependence 3

[ P Prdependence ] F P Prdependence 3

20 — linear fit ] F — linear fit 3

i 1 3.0F -

>-E : Plane : ><; E Plane E

20F 3

101 - : ]

i Axisymmetric ] C ]

i ] 10 E— Axisymmetric _E

0'%- | I R T T N T N | I 1111 8 11 1) I | T T T T I — ] ] o : [ T T T T T T I | | | N T W T N Y | | [ T T T T T T T | :
.0 0.1 0.2 0.3 '%.0 0.1 0.2 0.3

P Fr°
(Res)"” (Res)"”

FIG. 5. y,, plotted against Pf¥/(Res)?, FIG. 6. x,, plotted against Ef¥/(Res).

The times for the fountain core to reach a steady state,
Fre® Tms, @re shown in Fig. 8. In this case, the scaling relation,
(Re—s)l/s’ (54) Eq. (44), shows variation with respect to Fr only, and the
data have been plotted against,Fwith the linear behavior
confirming the scaling prediction. The linear regression co-
wherea andb are constants determined by regression of theefficients are shown in Table |. Results for the time to reach
numerical data, which are listed in Table I. a steady state for the temperature layey;, are shown in
The numerical results validating the scaling relations forFig. 9, plotted against PPr'*, again confirming the scaling
x,, [Egs.(36) and(37)] are shown in Fig. 6. Once again, no 'elation, Eq.(45), with the linear regression coefficients
Pr dependence was observed and so the data are pIottéBOWn in Table I. ) )
against F¥¥/(Res)Y?, as predicted by the scaling relation. The profiles of the vertical velocity (0,y) and tempera-

The data collapse onto a line for each of the axisymmetric{ure 0(0y) characterize the fountain flow at a steady state

and plane fountain sets, with the linear regression coeffitrj]'G_lq' To SIhOW tlf;e effect of Frt, S‘?’ T:r.’ a'f(i));‘v((.)’y)’ ts of
cients given in Table I. e numerical results are presented in Fig. or six sets o

: : - Fr, Re, Pr, ands for both the axisymmetric and plane foun-
Results for the interface thlcknes&;yT, are shown in Fig. tains. All sets of data fall onto a single curve, which is well

7. In this case, the data were found to vary with Fr, Re, Prgpproximated by
ands and have, therefore, been plotted against all these con- 5 5
trol parameters in the form #¥(Re Prs)Y/3, again confirm- _ PN Yy Yy
ing the scaling prediction of Eq440) and (41), with the v(0y)=1.000+0.32 Y 2.27 Y +0.95 Y
linear regression coefficients given in Table I.

Ym=a+b

TABLE |. Regression results for both axisymmetric and plane fountains.

y X Fountain type a b R
Yim Fr?¥(Res) "1 Axisymmetric 0.186£0.012) 5.842(-0.086) 0.9980
Plane 0.306¢ 0.015) 8.895¢-0.117) 0.9984
Xu Fr?¥(Res) "3 Axisymmetric 0.922(-0.0086) 5.056¢-0.102) 0.9992
Plane 0.992¢0.016) 12.401¢0.126) 0.9991
Ay Fr¥’(Re Prs) 13 Axisymmetric 0.023¢-0.002) 0.967{0.012) 0.9986
Plane 0.019¢0.002) 1.364{-0.014) 0.9990
Tms Fr? Axisymmetric 0.619¢-0.182) 8.248(-0.198) 0.9943
Plane 0.871¢0.251) 14.887¢0.273) 0.9967
T Frrpr /3 Axisymmetric 0.673¢-0.107) 9.144(-0.122) 0.9982
Plane 1.021¢0.191) 15.877¢0.219) 0.9981
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0-4 _I T 1V T T T T 177 I T iVr 1 rrrrrurT I T 1T v 1T 7T 17T 17T I_ 25-0 L) T L) L) I L) L) L) L} I L} Ll L) Ll
E O Frdependence E - O Frdependence E
E O Re dependence E [ O Re dependence ]
03 C < s dependence ] 200~ 4q s dependence 7
i P Prdependence b - P Prdependence b

[ — linear fit ] [ — linear fit ]
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> i ] i Plane ]
< 02 Plane - E [ ]

C ] © i i

i ] 10.0f J

0.1F - [ ]

. ] 501~ Axisymmetric 7]

0‘%- I SR S S A H U S N A M A A AR S A S AT A A 0 4 ' 4 ' | ' | 1 N | N 1 N N ]
.0 0.1 s 0.2 0.3 %,0 0.5 1.0 1.5
__Ffr Fr?
(RePrs)™® Py
FIG. 7. Ay_plotted against P¥/(Re Prs)™?. FIG. 9. 7 plotted against BfPrs,
for the axisymmetric fountains and sets of data again fall onto a single curve, indicating and
y y 2 e Ym are again the appropriate length scalesdi®,y), that is,
v(O,y)—l.OOO+O.l4E< —2.287( +1.14%) , Y=V¥m
m m m 0(0y)~f : (57)
AyT

for the plane fountains, confirming thg, is the appropriate  sjmilar to that for weak fountains in homogeneous fluids
length scale for (0yy), similar to that for weak fountains in  [16-19.

homogeneous fluidgl6-19.

In Fig. 11, the numerically obtained temperature profiles
0(0y) on the symmetry axis are plotted againsy (
fym)/AyT for the same sets of Fr, Re, Pr, agds used in The behavior of both weak axisymmetric and plane foun-

Fig. 10 for both the axisymmetric and plane fountains. Alltains that result from the injection of denser fluids upwards

IV. CONCLUSIONS

20.0 T T T T T T T T T T T 1.0 ' (a}' ' (b}'
: O Frdependence :
- O Re dependence -
15.0 - < s dependence ]
i P> Prdependence i =
- . S o5} 1F
L = linear fit 4 E4
PE 100 Plane ]
5 i 0.0 L
0.0 05 1.0 0.0 05 1.0
i T v ¥
50 - Yen Yo
B Axisymmetric . . . .
- . FIG. 10. Numerical simulated(0,y) plotted againsy/y,, in the
- E fountain core for six sets of Fr, Re, Pr, aador (a) axisymmetric
i | | . fountains and(b) plane fountains: , Fr=0.4, Re=200, Pr
0-%‘0 05 1.0 =1.0,s=2.5;- - - -, Fr=1.0, Re=200, P=1.0,s=1.0;——-,
Ee? Fr=1.0, Re=200, Pk=1.0, s=2.5; ———-—, Fr=1.0, Re
r
=200, P=1.0,s=5.0; —O—— Fr=1.0, Re=50, Pr=1.0, s
FIG. 8. 7 plotted against Pt =25 —@ , Fr=1.0, Re=200, P=7.0,s=2.5.
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0.0

For Fr ~1.0, the specific momentum flux and specific
buoyancy flux at the fountain discharge source are important
control parameters. Additional control parameters are the
stratification numbers of the ambient fluid and the viscosity
of the fluid. Dimensional consistency provided scaling rela-
tions fory,,, Xu, AyT, Tms,» and 7, which depended on the

control parameters, together with the poweendd. A scal-
ing analysis, based on the assumption that the fountain
height is controlled by the rate, at which fluid can exit the
fountain via the downstream viscous intrusion, gave tentative
values ofc=—1/3, d=1/3. A series of numerical simula-
tions show that the numerical results agree well with the
00 analytical scaling relations and confirm that—1/3d
=1/3 are the appropriate powers for both weak axisymmetric
and plane fountains when GFr<1.0, 5<Re<500, 0.7
FIG. 11. Numerical simulatedd(0)y) plotted against ¥ tshztrj 1%n3ng/—1.)/&;/sA?/IOé;[;ah(tahgu?peprrlgzlriftzullteiSlﬁosig?evé
—Ym)/Ay_in the fountain core for six sets of Fr, Re, Pr, afbr m ] me= Iy _
(a) axisymmetric fountains antb) plane fountains:—, Fr=0.4,  for the profiles of vertical velocity and temperature on the
Re=200, P=1.0,s=25 - - - - Fr=1.0, Re=200, Pr=1.0,s  Symmetry axis for both axisymmetric and plane fountains in
=1.0:—-—-, Fr=1.0, Re=200, P=1.0,s=25;: — —-—-— Fr  stratified fluids, similar to those for weak fountains in homo-

~1.0, Re=200, P10, s=5.0: —O——, Fr=1.0, Re=50,  9eneous fluids.
Pr=1.0,s=25,—@ , Fr=1.0, Re=200, P=7.0,s=2.5.

(b)

00,y)

0.0 -15
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