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Lagrangian statistics and temporal intermittency in a shell model of turbulence
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We study the statistics of single-particle Lagrangian velocity in a shell model of turbulence. We show that
the small-scale velocity fluctuations are intermittent, with scaling exponents connected to the Eulerian structure
function scaling exponents. The observed reduced scaling range is interpreted as a manifestation of the inter-
mediate dissipative range, as it disappears in a Gaussian model of turbulence.
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In recent years there has been a great improvement in tr@mulations(but at moderate Reynolds numbelg] and, as
laboratory experimental investigation of turbulence from awe will see, in a Lagrangian version of the shell model of
Lagrangian point of vieWy1—4]. In the Lagrangian approach, turbulence.
the flow is described by th@.agrangian velocity v (Xg,t) of Equation(1) can be generalized to higher-order moments
a fluid particle initially at positiorx(0)=Xx,. This is the natu-  with the introduction of a set of temporal scaling exponents
ral description for studying transport and mixing of neutrally &(p),
advected substances in turbulent flows.

One of the simplest statistical quantities one can be inter- (Bv(t)Py~VP(t/ 79) P, 2
ested in is single-particle velocity incremends (t) =uv(t)

—v(0) (where, assuming statistical homogeneity, we haveThe dimensional estimation sketched above gives the predic-

dropped the dependence xy) for which dimensional analy- tion &(p)=p/2 but one might expect corrections to dimen-

sis in fully developed turbulence predidts, 6] sional scaling in the presence of intermittency.
A generalization of Eq(1) which takes into account in-

1) termittency corrections can be easily developed by extending
the previous argument within the multifractal model of tur-
bulence[8,9]. The dimensional argument is repeated for the

wheres is the mean energy dissipation a@igis a numerical local scaling exponerty, giving Sv (t)~V(t/ 7)™ ~". In-

constant. The remarkable coincidence that the variance aégrating over thén distribution one ends with

ov(t) grows linearly with time is the physical basis on

which stochastic models of particle dispersion are based. It is

important to recall that the “diffusive” nature of Eql) is <5U(t)p>~fo dh(T_

purely incidental: it is a direct consequence of Kolmogorov 0

scaling in the inertial range of turbulence and is not directly

related to a diffusive process. Let us recall briefly the argu
ment leading to the scaling in E@¢l). We can think of the
velocity v (t) advecting the Lagrangian trajectory as the su-

perposition of the different velocity contributions coming £(p)=min

from turbulent eddiegswhich also move with the same ve- h

locity of the Lagrangian trajectoyyAfter a timet the com-

ponents associated with the smalland faster eddies, be-  The fractal dimensiom (h) is related to the Eulerian struc-

low a certain scalé, are decorrelated and thus at the leadingture function scaling exponent$q) by the Legendre trans-

order one hasiv(t)=24v(£). Within Kolmogorov scaling, form [9] £(g)=min[qh—D(h)+3]. The standard inequality
the velocity fluctuation at scald is given by év(f) in the multifractal mode[following from the exact result
~V(€/L)*3 whereV represents the typical velocity at the ¢(3)=1], D(h)<3h+2, implies for Eq.(4) that even in
largest scaleL. The correlation time ofév(€) scales as presence of intermittenc§(2)=1. This is a direct conse-
7(€) ~ 7o(¢/L)?" and thus one obtains the scaling in Et).  quence of the fact that energy dissipation enters into(Ex.
with £ =V?/ . at the first power. Our expression for scaling exponédts

This argument shows that the linear scaling in Eg.is  recovers in a more compact form the prediction obtained on
the result of the combination of the Kolmogorov scaling for the basis of an “ergodic hypothesis” of the statistics of en-
velocity fluctuations and eddy turnover time in physical ergy dissipatiorf10].
space, as seen by a Lagrangian tracer. From a numerical Recent experimental resulfd] have shown that indeed
point of view, the observation of E@l) is more delicate than Lagrangian velocity fluctuations are intermittent and display
standard Eulerian structure functions, as it requires the comnomalous scaling exponents, as predicted by the above ar-
rect resolution of the sweeping effect on the Lagrangian tragument. Despite the relative high Reynolds number of the
jectories. Of course, this can be done in direct numericabxperiments, a true temporal scaling range is not observed.

<5U|(t)5vj(t)>:C08t5” y

[ph—D(h)+3]/(1—h)

()

In the limitt/ 7— 0, the integral can be estimated by a steep-
‘est descent argument giving the prediction

ph—D(h)+3

-nh (4)
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Thus the estimation of the scaling exponents in &f.can 3 -
be done only relatively to a reference moméhe so-called 081
ESS procedurgll]). 251 g 04
In this work we use a dynamical shell model of turbulence ol ® 027 1
for investigating scaling2) and prediction(4) at very high 0 -
Reynolds numbers. In shell models the velocity fluctuations T 15} 02 0.3 04
of the eddies at the scale,=L2™ " are represented by a > h -
single variableu, (n=1,2,... N). Only local interactions Tr
among shells are represented and therefore no sweeping ef-
fects are preseifi2]. In this sense shell models are dynami- 05
cal models of velocity fluctuations in a Lagrangian frame- 0 e . , , , . ,
work, and for this reason have been already used in the study 0 1 2 3 4 5 6 7 8

of turbulent dispersiof13]. The equation of motion for the

complex shell variablel, is [14] . . .
FIG. 1. Shell model Eulerian structure function scaling expo-

du, S 1-6 nents{(q) determined from the statistics over°lifdependent con-
at =ik, un+2u:+1— Eun+1U:—1+TUn—1Un—2 figurations. In the inset we plot the codimensior B (h) as deter-
mined by numerically inverting the Legendre transform.

L AT (5)
correspond to a Reynolds number-R&®. For each realiza-

wherek,=¢,*, f, is a deterministic forcing acting on the tjon, Lagrangian structure functions are computed from the
first shells only,v is the viscosity, and is a parameter. Shell |agrangian velocity(6) up to the large-scale timey. An
model(5) is characterized by a chaotic dynamics with a sta-average is then taken over®libdependent realizations. The
tistically steady state with a constant flux of kinetic energyEulerian scaling exponentgq) are determined within the
from large scales to small scales. The fluctuations generateghme simulations from the Eulerian structure functions
by the chaotic dynamics are responsible for the observeg;q(kn):<|un|q>~k;§(q)_
corrections to the Kolmogorov exponents for the structure |, Fig. 1 we plot the set of numerically determined Eule-
functions which are found close to the accepted experimentg|zn structure function scaling exponeri@) together with
values[12]. o the fractal dimensiorD(h) reconstructed by inverting the

Lagrangian velocity in the shell model framework can be| ggendre transform. We observe strong intermittency in ve-
represented as the superposition of the contributions of albcity statistics with scaling exponents that clearly deviate
the different eddies. Let us define from the Kolmogorov prediction. We remark that the scaling
exponents are not universal with respect to the particular
shell model. Model5) gives a set of exponents which are a
little more intermittent than, but not far from, the experimen-
tally observed exponent$9]: £(2)=0.72, {(4)=1.25,
where we have taken, rather arbitrarily, only the real part off(6)=1.71. As a consequence, the values@h) obtained
the shell variables with a unit coefficient. Indeed, from thefrom Egq. (4) using theD(h) of Fig. 1 can be compared
definition of the shell model, there is no precise recipe fordirectly with experimental data results.
reconstructing the Lagrangian velocity. More generally, one Figure 2 shows the second-order Lagrangian structure
could think of a representation in which shell variables arefunction (1) as a function of time. The linear behavior is
multiplied by appropriate wavelet functions. Of course, nu-evident (see the insgteven if a long crossover from the
merical prefactors such a3, in Eq. (1) will depend on the ballistic scaling at short timésv (t)2)~1t? is present. In spite
wavelet basis and thus cannot be estimated within the preseat the very high Reynolds numbers achievable in the shell
approach. Nevertheless one expects that different choices fanodel, the extension of the temporal scaligyis still mod-
the basis do not affect Lagrangian scaling exponégpy, erate. For a comparison with the available experimental data,
which are determined by the dynamical properties of thedn the inset we also plot the result obtained from two simu-
model. lations at lower resolution, with Re2x 10° and Re=10".

Previous studies of multitime correlations in shell modelsin the latter case almost no scaling range is observable. De-
of turbulence have shown the existence of a set of correlatioapite these limitations, we will see that high Re simulations
times, in agreement with the multifractal picture of the tur-allow the determination of the Lagrangian scaling exponents
bulent cascadEgl5]. This is an indication that, as we will see, with good accuracy.
the Lagrangian velocity defined as E§) will be affected by In Fig. 3 we plot the probability density functioripdf’s)
intermittency. of sv(t) computed at differerttin the linear scaling range of

Very long and accurate numerical simulations of the shelFig. 2 rescaled with their variances. The form of the pdf
model (5) with N=24 shells ands=1/2 have been per- varies continuously from almost Gaussian at large time
formed. The energy is injected at a constant f#x0.01 in  (t~ 7g) to the development of stretched exponential tails at
the first two shells and is removed at the smallest shells bghort times, similar to what was observed in laboratory ex-
viscosity v=10"’. With these parameters, our simulations periments[4]. FlatnessF grows from the Gaussian value

N
v(t)zn; Re(uy), (6)
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FIG. 2. Second-order Lagrangian structure functigv (t)?) FIG. 4. Lagrangian structure function scaling expones{ts)

normalized with large-scale velocity as a function of time delay ~ numerically determined by a best fit on E@). The line represents
for the simulation at Re 1¢%. The continuous line is the ballistic the multifractal predictiort4) with D(h) obtained from Fig. 1.
behaviort? at short time. The dashed line represents the linear
growth (1). Inset:( sv(t)?) compensated with the dimensional pre- =1.31,£(4)=1.58, £(5)=1.85, while the experimental data
diction et at Re=10° (continuous ling Re=2x10° (dashed ling give [4] &ex)(3)=1.34£0.02, &ex(4)=1.56+0.06, and
and Re=10 (dotted ling. Eexp(5)=1.8+0.2. Of course our predictiotd) should be
directly tested by using the fractal dimensiDiih) obtained
F=3 up toF=20 at smallest times. This is an indication of from the experimental data.
Lagrangian intermittency, in the sense that the Lagrangian We conclude with a brief discussion on the effects of in-
statistics cannot be described in terms of a single scalingermittency on the extension of the scaling range. The long
exponent. crossover in Fig. 2 can be understood in terms of the inter-
In Fig. 4 we plot the set of Lagrangian scaling exponentsmediate dissipative range as a consequence of the fluctuating
&(p) obtained from a direct fit of temporal structure func- dissipative scal¢9,16]. Indeed, the smallest time at which
tions. The nonlinear behavior ip confirms the presence of one can expect scalingl) is the Kolmogorov timer,
Lagrangian intermittency already observed from the pdf. We~ 7y Re- 2 ~W/(1+M " which fluctuates witth. A demonstra-
present the result for moments up fie= 6, which approxi- tion of the effects induced by intermittency is given by con-
mately corresponds, from E@4), to the Eulerian structure sidering a nonintermittent Gaussian model.
function of orderg=8. In this sense temporal structure func-  Settingf,=v=0, Eq.(5) becomes a conservative system
tions are more intermittent. Figure 4 shows that the agreewith two conserved quantities which depend on the value of
ment with the multifractal predictiofd) is very good up to  §[12]. In statistically stationary conditions, the model shows
the moment achievable with our statistics. What is even morequipartition of the conserved quantities among the shells, in
remarkable is that our prediction is very close to experimenagreement with the statistical mechanics predickibf]. For
tally determined exponents. For example, we fi&B) 5=1+2728 the equipartition state leads at small scales to
Kolmogorov scaling|u,|?)~k;, #® with Gaussian statistics.

15
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FIG. 3. Probability density functions of velocity differences FIG. 5. Second-order Lagrangian structure functi@iv(t)?)
ov(t) normalized with the variance at time lags$/7, normalized with large-scale velociyy as a function of time delay
=0.002 (0),0.01(*), 0.06(x), 0.35(+). The continuous line for the equilibrium Gaussian model. The continuous line is the bal-
represents a Gaussian. Inset: flatnEss(sv(t)*)/(sv(t)?)> as a listic behaviort? at short time. The dashed line represents the linear
function of time and Gaussian vallre=3 (dashed ling growth (1).
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In Fig. 5 we plot the second-order Lagrangian structure funcments, almost no scaling is observed and the scaling expo-
tion (1) for the Gaussian model. Both ballistic and diffusive nents can be determined only in a relative way. The reduc-
scaling are clearly observable and the crossover is strongfjon of the scaling range in Lagrangian statistics is inter-

reduced with respect to Fig. 2 preted as an effect of the intermediate dissipative range. A

In this work we have investigated the statistical propertie Gaussian, nonintermittent version of the shell model con-
9 prop Sirms this interpretation. Deviations from Gaussianity in La-

of Lagrangian velocity in fully developed turbulence. A pre- grangian statistics impose severe limitations on the use of
diction for intermittent scaling exponents of Lagrangianstochastic models for particle dispersic8], which should
structure functions is given within the multifractal formal- be modified in order to take into account the effects of inter-

ism. Very high Reynolds number simulations in the shellmittency.
model confirm the multifractal prediction, even if rather This work was supported by MIUR-Cofin2001 Contract

small scaling ranges are observed. At lower Reynolds numy, 2001023848 We acknowledge the allocation of com-
bers, comparable with those achievable in laboratory experuter resources from INFM “Progetto Calcolo Parallelo.”
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