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Venusian “hot spots”: Physical phenomenon and its quantification
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An overall picture of the Venusian hot spots phenomenon is considered in the framework of the simplest
conceptual models that admit the solutions in the form of steadily rotating “hot” vortices. Model assumptions
take into account only those features of the middle atmosphere in the polar region of Venus that are supported
by observational data and are essential for understanding the physical mechanism initiating similar vortices.
The problem is analyzed in the framework of both the pointlike and petal-like models of cyclostrophic vortices.
Interpretation of these models as an upper and lower bound of a complete theory allows one to find the region
of existence of the regimes responsible for the Venusian hot spots and also to establish and assess numerically
conditions under which such vortices can be formed. The emphasis is on a comparison of the theoretically
established results with the observational data.
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[. INTRODUCTION enon, called super-rotation, manifests itself as a strong zonal
circulation with velocitiesu~100 m s * at equator(see Fig.

Earth and Venus have some similarities and dissimilaritie®). Thus the rotation period of the Venusian atmosphere can
in basic parameterfl]: the radiiR are ~6360 and~6052 be estimated al ~4 days in contrast to 243 days for the
km; gravity accelerations are-9.8 and 8.9 ms? (at sur- planet rotation. The altitude dependence of angular velocity
face; surface temperatures are288 and~730 K; pressures demonstrated in Flg 3 has a_maximum at heights near 65
near surface are 0.1 and 9.2 Mpa; densities near surface a8, followed by a slump at altitudes 65-70 km. The expla-
1.23 and 65.0 kg fi; rotation periods are 23.9 (prograd¢ natlorj'of the zonal nature of the circulation with §uch Iqrge
and 243 daysretrogradg overhead motions of the Sun are velocities in the Venusian atmosphere can be given within
east to west for the Earth and west to east for Ve(iisli-
nations of equator to orbit are23° and~177°. The pres-
sure scale heightd of the Earth’s and Venusian atmospheres
are~8.4 and~15.8 km i.e. H<R.

The circulation of the Venusian atmosphere has a number
of peculiarities making it different from the atmosphere of
the Earth(Golitsyn [2,3]; Schubert and co-workergt,5];
Kerzhanovichet al. [6]). In the context of the problem con-
sidered in this paper most essential of them are the follow-
ing.

(1) There is ample evidendsee Fig. 1 for two hot spots
in the Venusian polar region near the cloud téasaltitudes
about 60 km. This phenomenon was discovered during IR
remote sensing from Pioneer Venus spaceditylor et al.

[7]) and was also observed during IR interferometer spec-
trometer studies on board Venera 15 and Venera 16 space
crafts (Linkin et al. [8]). These hot spots located symmetri-
cally relative to the pole with latitude about 75°-85° have a
radius of about 5° and rotate about the pole with a period of
T,~3 days (Taylor et al. [7], Schubertet al. [4]; Linkin

et al. [8]).

(2) Most of the atmosphere in the lower and middle lati-
tudes at altitudes of the main cloud layet altitudes about FIG. 1. Brightness temperature isolines indicating a dipole
60 km) rotates, outstripping the planet rotatiilkerzhanov-  structure of hot spots, as measured on Venus by Vener@rdis
ich et al. [6]; Newmanet al.[9]; Leovy[10]). This phenom-  Linkin et al. [8]).

1063-651X/2002/6@)/06630411)/$20.00 66 066304-1 ©2002 The American Physical Society



GONCHAROV, GRYANIK, AND PAVLOV PHYSICAL REVIEW E 66, 066304 (2002

-150 ‘ : 320
-130
_-1l10¢t
2 i —
E 907 X 300
D -70r o
-50f =]
-307¢ 8 280
10l 5
— — -
-90-80 -70 -60 -50 -40 -30 -20 -10 0
Latitude (deg) 260

0 20 40 60 80
FIG. 2. Scatter of measurements of zonal circulation in the Ve- Latitude (deg)

nusian atmospherérom Limaye [1]). For comparison, the solid

line shows the latitude dependence of the zonal velocity on the £ 4 pjot of temperature versus latitude, as defined at the 500
assumption that the super-rotation of the Venusian atmosphere i§y,ars |evel(from Newmanet al. [8]). The dashed line illustrates
characterized by a constant angular velocity. the validity of a parabolic approximation near the pole.

the framework of the cyclostrophic balance suggested by Lem the formation of a polar hood. The colder disturbances
ovy [10]. The cyclostrophic balance implies the balance bemove, correspondingly, away from the pole, which could re-
tween meridional gradient of pressure and centrifugal forcesy|t in the formation of a cold belia “collar”) at a certain

After the mission of Pioneer Venus spacecraft this hypothesigtitude if conditions prohibiting the transfer of disturbances
has got an observational supptBichubertet al. [4]). down to an equatorial zone exist. Let temperature distur-

(3) At altitude z~60 km, where hot spots are located, a pances being warmer than an environment be vortical ones.
polar atmosphere is appreciably colder than that at low latitn this case, the transfer of the parcels directly to a pole is in
tudes, by ~20-40 K (Kerzhanovichet al. [6]; Schubert general not possible, because, near the pole, a vortex finds
et al.[4]; Newmanet al. [9]; Linkin et al. 1985[8]; Yakov- jtself in a velocity field induced by another vortex and both
lev etal. [11,12)). Radio and infrared data for this altitude yortices start to be involved in a mutual rotation around the
show essentially no change in the average temperature Withple. This could lead to the formation of a stationary
latitude up to 55°. Next a temperature fall toward the pole«dipole™-type vortex structure that rotates with an angular
becomes more appreciable and goes on in such a manner thajocity different from the angular velocity of the zonal flow.

a parabolic minimum is formed near the pésee Fig. 4. Thus the existence of a warm polar hood, cold altcol-

As was shown in papers of Gryanit3] and Goncharov |ar"), and hot spotga “dipole”) has a unified nature as a
and Pavlov[14], the cyclostrophic balanceproperty 2,  result of the separation of warm and cold gases in the field of
coupled with a meridional thermal contraproperty 3, can  centrifugal forces induced by the rotation of planetary atmo-
be used to explain the existence of stationary hot spots asgphere. Thermal hood and hot spots are formed at different
vortex structure(property 3. Indeed, as it has been men- attitudes. The hood is formed in layers where the vorticity is
tioned above, localized temperature disturbances containingw enough and warm parcels may be transported directly to
warmer and, correspondingly, lighter gas move in the field othe pole; on the contrary, the vortical dipole is formed in the
centrifugal forces towards the axis of rotation, i.e., towardﬂayer' where vorticity is high enough and warm parce|s can-
the pole. An accumulation of the warm gas at the pole resultfot move directly to the pole because of the interaction of
' ' vortices with each other. These vortices have principally
5 nonlinear thermohydrodynamic nature.

It should be emphasized that the presence of localized
4 vortices breaks zonal circulation in the polar region. In this
sense, one can speak that the presence of vortices suggests
3 the more complicated nature of dynamics in the polar regions
of Venus as compared to the middle and lower latitudes. This
c 2 motivates the interest to study the specifics of circulation in
the polar region of Venus in more details.
1 Within the framework of dipole-vortex conception, Venu-
sian hot spots can be characterized by four dimensional pa-
40 45 50 55 60 65 70 rameters: a re!ative gngular veloc'tty_of rotation around the
Alitude (km) pole, a vortex intensity, and two typlcgl length scal_ésa_nd

a specifying a distance between vortices and their size, re-

FIG. 3. The vertical profile of angular velocity of rotation of the Spectively. In turn, the basic state can be characterized by an
Venusian atmospherd), in the polar region(reconstructed after angular velocity) of the super-rotation and by a length scale
data of Newmaret al. [9]). The angular velocity is measured at Ry on which the thermal contrast between the pole and the
107% 571, the altitude at 1 km. equator occurs. Because, from a physical standpoint, the
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problem is characterized by four dimensionless parametersvhere B is the coefficient of thermal expansiopg is an
wlQ, 1/Ry, all, e= 7130 (Ryx) 1, they must be connected undisturbed density, anfl, is an undisturbed temperature.
by a relation Application of this system of equations to describe the hot
spots dynamics in a polar region of the Venusian atmosphere
means that we restrict our study to two-dimensional motions
of enough large horizontal scaleand that vortex structures
arise in a “thin” flat atmospheric layer near the 65 km alti-

Our aim is to investigate this relationship for two limiting tude, where, as shown in Fig. 3, the angular velo€tyf
casesal/l<1 when a model of localized pointlike vortices rotation remains practically constant.
developed by Gryanik[13] is applicable anda/l~1, The large-scale approximation also gives justification for
Q|(wRO)*1>1 when hot spots phenomenon can be anaUSing the model of an inviscid ideal fluid. Omlttlng viscous
lyzed in terms of petal-like vortices considered by Gon-terms in Eq(2.1) implies that frictional forces are negligible
charov and Pavloy14]. Using these extreme cases as ancompared to the Coriolis force. For estimating the ratio of
upper and lower bound of the theory, we intend in this papethese forces, it is common practice to use the Ekman number
to give a diagram of states showing the region of existence dE =3 »Q I~ where the quantity is considered as the co-
possible regimes responsible for stationary rotating strucefficient of kinematic or turbulent viscosity. Because the an-
tures consisting of “hot” vortices of the dipole type and also gular velocity () of the Venusian atmosphere measures
to elucidate and to quantify conditions under which thesg1-5)xX107°>s™*, for v~10°-10*m’s™' and |
vortices can be formed. ~10-16 km Ekman number falls in the rangeE

To this end, in Sec. Il the conceptual model of cy- ~10 *-103<1.
clostrophic circulation in the Venusian polar region is intro-  For the undisturbed base state of the fluid wher0, it
duced. In Sec. Ill a class of steady rotating vortex structure$ollows from Eq.(2.1) the condition ofcyclostrophic balance
is considered. From them we study two types of dipolelike
structures—Ilocalized point and petal vortices—in Sec. IV Po L9ipo= Q5% , (2.5
and V, respectively. Section VI contains the comparison of
theoretical results with observational data and discussion. wherep, is the background pressure.

Assuming that the departures of the pressute p—pg

Il. CONCEPTUAL MODEL and the density’' =p—po=poB(To—T) from their undis-

) , ) . turbed valuesp, and py are small enough, i.eB(Ty—T)
Reasoning from above cited properties of the Venusiang 1 e can use the Boussinesq approximatiee, for ex-

atmosphere dynamics, we present the simplest conceptuglysie, Tumef16]; Landau and Lifshitz17]). This approxi-
model that describes it as the dynamics of a two-dimensiongl,ation implies that one may neglect the density variations
incompressible fluid in a Cartesian coordinate system rotat;,q hence replace by the constant valup,, except in the
ing about vertical axix; with the constant angular velocity “buoyancy term” p’d,d/p,, where equation of staté2.4)

(). Because all dynamical variables of the problem are funcy, st pe used. As a result, EQ.1) can be rewritten as

tions only of horizontal position vector={x,,x,}, the basic

equations of hydrothermodynamics in the field of centrifugal
force (for a full derivation see Greenspah5]) are

o | a

e=F QRT

. (1.9

i+ v —2Qeyv=—p taip’ +QB(T—To)xi,
(2.6)

A+ - Cov=—p LoD+ 0 .
i+ ukdvi— 20 ek p oiptad, 2.1 9 T+0dT=0,

&tT‘f’Uk&kT:O, (22) v=0
kVk™— Y-

=0, 2.3 . : :
KUk @3 To simulate the effect of increasing temperature from the
pole to the equator, we take the background distribution of

wherev; are components of a velocity field in the rotating )
the temperature in the form

coordinate systenp is fluid density,p is pressureT is tem-
peratured = %sziz is the potential of centrifugal force, and
gi Is the alternat?ng_tensQH_—l forik=12, —1 for ik=21, T(X)=To+ sz’ y>0. 2.7
and zero for two indices being equal 2

The energy equatio2.2) states that all heat exchanges
are by convection; no conduction or heat sources beindhis expression can be considered as an expansion of a ra-
present. Proceeding from the incompressibility assumptiongdially symmetric stationary distributiofig(x) in the Taylor
the fluid densityp depends only on the temperattréut not  series in the vicinity of the pole.
on pressurg. Because this dependence is weak enough for The incompressibility conditiof2.3) makes it possible to
the class of problems of interest here, we can use the axpress velocity components in terms of the stream function
proximation W,

p=pol1-B(T=To)l, (2.4 v=—¢e"a;4.
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Taking the operator cure"'g; of Eq. (2.6) and thus ex- 9 X2\ g 1
cluding the pressurp’ from the description, we obtain the 8ik%( pmo5 | A= 2| =0, (3.6
coupled set of governing equations ' k

. . h he | h [
SA it 5 A e 02 B, where the length scal@, expressed as

— — —-1/2
o+ &% pa = ye™* X dytp, (2.8 R=Ro(w/f)),  Re=(B7)"™ 39
. o ) is the dynamical characteristic of the model wiilg is the
whereAy; is vorticity and7=T—Ts is the temperature per- thermal length scale characterizing the model in the back-
turbation. ground regime.

In the absence of temperature stratificatiop=(0) and It should be emphasized that solutions of E3}6) corre-
centrifugal force (0=0), Egs. (2.8) become traditional sponding to localized vortices exist only when-0. The
equations for the vortex evolution in a two-dimensional idealphysical meaning of this condition is that the field of cen-
fluid. trifugal forces leads to the movement of coldeensey fluid

parcels away from the rotation axis, and an equilibrium other

Ill. STEADILY ROTATING VORTEX STRUCTURES than a thermodynamic one may hold only in a case when
temperature inhomogeneity supported by outer sources pro-

Let us con_S|der the solutions of EC(QB)_Wh'Ch COIe-  hibits such movement, i.e., if temperature increases with the
spond to stationary vortex structures rotating with constanfjiciance from the rotation axis’>0

angular velocityw around the pole.
Taking into account that when going to the new rotating
coordinate system where the structures become immovable,

the derivative with respect to time is transforming as Let us consider solutions of E¢B.6) describing a radially
symmetric vortex dipole with center in the pole

IV. LOCALIZED POINTLIKE VORTICES

o= — wejXidk,

Ay—R 2= 8(z2—29) + 8(z— Z8)]. 4.1
we obtain the following system of equations: v V= o(2=20) T 8z 25)] @

Here 6(z) is the Dirac delta functiony are vortex intensities

2 A
8iki( ,/,_wx_ aA_(p: 2 8ikXi£, 3. (x>0 if the circulation L_<; counterclock\_/vi$ez9=e' %72, and
IX; 2] 9% IRy z5=—€'l/2 are coordinates of vortices in the complex
5 plane z=x;+ix,. It follows from Eq. (4.1) that the flow
o w_wx_ T e Al (3.7  induced by such vortices is expressed in terms of the Green
kax; 2 ) ax. TPk, ' function G(z) of the operator 4 —R™?)
Rewriting Eq.(3.2) in the form U= G(|z—20]) + G(|z—Z5|)], (4.2
a X2\ a . X o 1 (|
Eikox, boos ax\ Y2 T G(lz))=—5_-Ko E) (4.3
we find that whereK,(x), n=0,1,... is the modified Bessel function of
2 5 nth order.
_ X_: X Substituting Egs(4.1) and(4.3) into Eq.(3.6) and equat-
y—w Fl 7+ vy—=]. (3.3 ) ! . , > =4 ;
2 2 ing terms withé function and its derivatives, we obtain the

condition connecting parameters of vortices with the angular
The functionF can be found in an explicit form from the velocity of their rotation:

requirement that the flow in the background regime with no

disturbances and ¢ is also a solution of Eq(3.3). x I
Insertingr=0 and¢=0 in Eq. (3.3, we obtain wl=—2Ki| 7] (4.9
F(z2)=— QZ (3.4 whereR as the function ot is given by Eq.(3.7).
v ' As shown by GryaniK13], Eq. (4.4) can be rewritten in

terms of the dimensionless parameté@nde,
and hence the functiong and 7 are linearly related as

7130 ¢ Ol 5
) E—= y =, .
= (35 Ro Ro
as the equation
Using this relation in Eq(3.2) gives the equation describing
vortex structures in terms of stream function e=E2K,(&). (4.6)
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Because the vectd,= 92/ s is tangential to the contour
0.6 and the normalizing conditiofzg|>=1 holds, we can write
that

0.4 2,=€'¢, (5.2

whereg is the inclination angle of the tangent to the contour
0.2 in a points.

The equation for finding the contour shape is most con-
veniently formulated in terms of a contour curvaturthat is
0 2 4 6 8 10 related with the inclination angle as

K=0ds¢. (5.3
FIG. 5. The parametet as the function of ratio of angular

velocities of rotation/e for the pointlike model. Referring to Goncharov and Pavlpi4] for more details, we

present here the summary results on describing a contour

The plot corresponding to this equation is presented ir]shape in a weak-curvature approximation when the stream

Fig. 5 and later will be treateee Sec. jlas a lower bound  function ¢(s) on the contour and the curvatuig(s) are

for the basic relation(1.1. Among other things, this plot connected by simple local relatidAppendix A

indicates the law whereby the quantigy characterizing a R3

vortex intensity depends on the paramef¥iw, when the P(s)= 9o

ratio I/R, is fixed. 4
In accordance with Fig. 5, it is clear that for each fixed

Eq. (4.6) has two roots¢. if e<e,, one rooté, if ¢

k(S), (5.4

and « is governed by the equatidippendix B

=g, , and no roots ife>¢, , wheree, is the threshold EPAY: 1
value of the parametes. The numerical computation gives (% =— ZK4+ cik?+d 3k+c,. (5.5
£, ~0.63 and¢, ~1.38. Thus a point-vortex dipole can exist
only if Herec, andc, are two dimensional constants parametrizing
. the solutions, and the scadkis given by
l*Q
<g,~0.63. 4.7 R U3
Rox ¥ d= 5(%) | (5.6

If the angular velocity of rotatio} is fixed inequality
(4.7) shows that either vortices should be sufficiently intens

x=x,=7l3QR; e, !, or distance between them should

Within a class of self-nonintersecting contours, Ef5) has
She periodic solution expressed in terms of elliptic sn func-

not exceed a limiting valud=<l, ()~ Y¥(Roe, x/Q)13 O S

The threshold value of the intensity of vortices increases 1 a—b

with increasing of angular velocity of rotation, ~ while k=gl Pt—— | (5.7
the limiting distance decreasek;~Q Y3 The threshold 1—asr<—s|m)

value of the intensity of vortices decreases with the decreas- d

. . . — 71/2 . .
ing of temperature '”hOTg’ge”eW y "~ butthe fimiting where parameters, b, \ are related to the independent basic

distance increases; ~ y~°. parametersy andm

V. PETAL-LIKE VORTICES

-1 a(1+m—2a?)
a=-—

1-m 2 m— 4\1173»
Solutions considered in this section look like two-petal L ) e o]

regions bo_uznded by a closed contour such that the_quantity ) a?+m(a?—2)
q=A¢—R 2y takes constant valueg, and 0, respectively, b=2"13 T Za(m= a1 (5.9
inside and outside the regiddetails of the contour dynam- o[ (1-m)*a(m—a’)]
ics method and of the operator techniques can be found in J@=mi=a®)
Refs.[18], [19]). Analytic representations of such solutions N=2-13 (a”—m)(1—a”) _
in the complexz plane are given by the contour integral [(1-m)?a(m—a*)]3
Qo 5 In turn, the parameters, andc, are expressed in terms of
_ 10 s aandb as
q o # dsz—i’ (5.1
_d—2 ba 1 — - b b2 2
which is taken around the closed contasr 2(s), wheresis €1= 7 arp)r G g (bratbian.
contour arc length. (5.9
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FIG. 7. The dependenae(«) for the two-petal vortex regime.
0 // 0 Marginal point (@=0.35,m=—0.25) corresponds to limit vortex
structure with a self-contact contour.

» 2 As analysis of Eq(5.11) shows, because a contour of a
two-petal vortex structure is closed, we must satisfy the con-
-2 -1 0 1 2 -2 -1 0 1 2 .
dition
© )

FIG. 6. Double-petal vortex structures in the plan o x, _ 2 __ 7
+ix,: @=0.05(a); =0.20 (b); «=0.30 (c); «=0.35 (d). The bk(M)+(a—b)II(a|m)= 4)\’ (512
pointss,. lie in the petal tips and_ lie between the petals.
wherelT(u|m)=T1I(u;(=/2)|m) is the complete elliptic inte-
The equations describing the boundary shape of vortegral of the third kind.
structures rotating in theplane can be obtained by integrat-  Equation (5.12) enable us to compute the dependence
ing Eq.(5.2). It can be directly verified that ik satisfies Eq. m(«) displayed in Fig. 7 as a curve that has a limit point
(5.5), the solution of Eq(5.2) is given by (a=0.353,m=—0.246) where the contour of the vortex
structure becomes self-contacting.

0K K2 . . . . . .
2(s)=2d% = +i| ¢, — _) el (5.10 _ Distances of points, , s_ from the coordinate origin are
Js 2 given by
where in turn the inclination angle can be found by integrat- 1z, ~M(1+2a)+ o3(a+2)
ing expressior(5.3) along a contour: p+=2"d [(I—m)aXa?—m)2"
s b a-b A
@(S)=f ds’x(s’)=as+ TH(aZ,arr(as|m)|m) :21/3d_m(1_2a)+a3(a_2) (5.13
p- [(1—m)a2(a4—m)2]1/3 : :
A
—2Imin cn(as|m) a’—m Being functions ofe, p, andp_ identify the maximal and
minimal sizes of vortex structure, respectively.

The self-contacting occurs whem_ =0. Together with
. (5.11 Eq. (5.12 this gives all the necessary conditions to compute
the marginal valug’/d=2.99.
Here IT(u;¥|m) is the incomplete elliptic integral of the This extreme case can be used to estimate an upper bound
third kind and amg|m) is the Jacobi amplitude. for the basic relatiorf1.1). The result to be expected is evi-
From Eq.(5.7), it is clear that the contour curvature of the dently applicable whea/I~1 and¢é=Ql(wRy) " '>1, i.e.,

two-petal structure, being an oscillatory periodic functionwhen a finite size vortex can be described in a weak-
with period & (m)/\, has extrema at the points curvature approximation. The corresponding expression can
be easily obtained from E5.6) if we take into account that

+idn

A
as|m)\/1—a2

. K(m) : K(m)
s,=(4j—1)dT, S+=(4j—3)dT, j=1,2, ”
q0:§1 (514)

whereK(m) is the complete elliptic integral of the first kind

[20]. The tops of the petals lie at the pomit and the point where » and S are the vortex intensity of an isolated petal
s_ are in the troughs between the petals. Examples of twoand its area, respectively.

petal structures are illustrated in Fig. 6 for various values of Because in the limiting cassee Fig. )] the typical
the parametet. sizel and the are& are approximately estimated as
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This task turns out to be sufficiently simple for the model

40 of petal-like vortices. Because the model exploits the ap-
proximationd/R>1, the corresponding estimations can be
30 easily obtained from the relationship
€ -
20 Ay—R™?P=0o, (6.1

which holds throughout the vortex core.

10 . . . L
Ignoring the first term in Eq(6.1) and taking into account
0 Eq. (3.5 together with the relation
3 4 5 6 7 8 9 10
& B~=1T,, (6.2
FIG. 8. Plot of quantitye versus parametef for the petal-like whereT, is the pole temperature, at the second approxima-
model. tion in the small parametd®/d we can find the evaluation
|=4d, S=d?, (5.19 0?7
) Qo= 7 (6.3
from Eq. (5.6) it follows that @ 1o
I 3_ 128 wherer,, is the amplitude of the temperature deviation in the
R/ 12w (5.16 hot spot against the background.

Substitution of Eqs(6.3) and(5.15 into Eq. (5.6) gives
After reformulation in terms of parametessand ¢ defined as

before by Eq(4.5), Eq. (5.16 gives the law ) I \3T,
()T 64
128 Q 2R0 Tm
E= T3, (5.17)
§ where the temperature ratig,/T, emerges instead of the
which is plotted in Fig. 8. parametero /().

From Egs.(6.3) and (6.4) we can deduce one more im-
portant property supported by observatidSshubertet al.

[4]; Taylor et al. [7]; Linkin et al. [8]). Because the vortex

First and foremost we sum up those conclusions abougpots are hot and hence the temperature deviatjos posi-
properties of hot spots in the polar region of Venus which ardive, the quantitiess» andg, must have the same sign as the
in a qualitative agreement with both the discussed theoretica@ngular velocity() of rotation. Therefore the hot spots have
models. Some quantitative estimates of structural and dythe same sense of rotation as the Venusian atmosphere and
namic parameters of the dipole are given as well. outstrip it.

(1) The hot spots are dipolelike vortical structures consist- In order that the point-vortex model could also be inter-
ing of two vortices of an equal intensity. Being symmetri- preted in terms of the thermal structure of hot spots, we must
cally located at equal distances from the pole, these vorticegxtend the results of Sec. IV to dipoles composed of finite-
rotate around it with a constant angular velociffaylor  size vortices. To do this, we assume that the vortices have
et al. [7]). circular cores of an equal radiasand that the quantity is

(2) The hot vortex spots cannot penetrate to altitudes kept constant, taking valueg, and O, respectively, inside
>70 km. This is due to the character of a meridional tem-and outside the vortex core.
perature inhomogeneity in the polar region. Because at If we assume further that the size of the vortices is much
heightsz>70 km the temperature decreases from the poléess than the intervortical distantéut is much more than
toward the equataiNewmanet al.[9]; Linkin et al.[8]) and  the screening radiuR, i.e.,
hencey<0, Egs.(2.8) do not have localized vortical solu-
tions in this case. Moreover, as can be showny<f0 the R<a<l,
cyclostrophic instability does not develop. The vortices seem
to be localized in the layer 55z<65 km. This is suggested and neglect core’s deformations arising only in the fifth order
by the character of vertical distribution of vorticity in the of the perturbation theory in the small paramegdr, we can
polar region(see Fig. 3. then conclude that the resi&.3) remains valid at the second

In order that temperature data characterizing the structurapproximation in the small parametera.
of hot spots can be used for quantitative estimates, the vor- Equation(6.3) enables us to use measuring data charac-
tical parameters), and x should be expressed in terms of terizing thermal structure of hot spots in order to estimate the
thermal ones. This provides a possibility to indirectly esti-parameters for the theory of both pointlike and petal-like
mate the quantitie§, ¢ which were arising in previous sec- vortices.
tions under theoretical studying. From Eg.(4.5), with the help of Eq(5.14), we can find

VI. DISCUSSION AND CONCLUSIONS
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2 As the quantityw is the relative angular velocity of the
hot spots rotation, it is determined as the difference
1 | .
- Py 0=|0- w0,
|_.
é 0 \ whereQ) =27/Tm andw=27/T, are the absolute angular
o | velocities of rotations for the atmosphere and the hot spots,
L T s} respectively. Thus we find that the paramebét falls in the
| p )i p
| . range 0.38-0.48.
i 1 TS Assuming that reasonable values ©f lie in the range
"2 5 1z 1 y . 20-30 K, we obtain the domain marked in Fig. 9 by the dark
) 0 ’ rectangle. Its location clearly indicates that although both of
log, o(00/€2) our models are far from the hot spots phenomenon observed

in the Venusian atmosphere, they serves as upper and lower
%ounds. For a more exact quantitative description, there is a
need to develop intermediate models where the parameter
gf! would take values between 0 and 1.

The petal-like model allows us to estimate the influence
of the vortex dipoles on the zonal circulation. After averag-
ing Eq. (6.2) over latituded, we find

FIG. 9. Domain of existence of hot spots phenomenon. Th
upper curve(point vortices$ is calculated from Eq(6.6) and the
down one(patche} is calculated from Eq(6.7). The values of
parameters are given in text. The dark rectangle marks the range
experimental parameters.

ml® o T,

g= = — —, (6.5)
SR @ 7m (15 P 1)_ 20,

where depending on the choice of model the vortex core area r a_rr o R? v= Ea 3(), ©.8

Stakes value$S= a? for the point model an®=12/16 for

the petal one. _ _ _ wherey is the latitude-averaged stream function,
Because comparisons of theoretical results with experi-

mental data are more convenient in terms of the parameters

™/ To and w/Q), after reparametrization of Eq$4.6) and E: i Zﬂ-lﬂdﬁ, (6.9
(5.17 we obtain the relations 2m Jo
Tm _ Iizo 2)3 1('_ 9) (6.6) and J(r) is the petal shape in the polar coordinates.
To a1 "' \Ryo) Using the stream functiogs, we can compute the mean
zonal velocity as
Tm 1 1\3Q 6
-I—_0 - g R_O E; ( 7) aZ
. u=Qr+—, (6.10
which are used as upper and lower bounds of the theory. ar

Following the factual evidencesee, for example, Linkin
etal. [8]), to make estimates we take valueg~2  where the first term describes solid-state rotation with the
X108 Kkm™2, 1=2x10°km, T,~250K, and a angular velocityQ and the second one is the dipole contri-
~500 km, which are typical for the Venusian atmospherebution to the zonal circulation.
As B~1/T,, the thermal scale can be estimated in accor- The results of numerical calculations, in accordance with

dance with Eq(3.7) asRy~10" km. Egs. (6.8 and(6.10, under conditions
Plugging the parametels a, and R, in Egs. (6.6) and
(6.7, we find the domain of natural physical parameters oy oy
™m!/To and w/Q) (see Fig. 9 where the Venusian hot spots o =0, o =0,
r=0 r=o

phenomenon can be explained within the framework of cy-
clostrophic vortex theory.

As may be inferred from Fig. 9, the upper bound deter-are shown in Fig. 10 where parameter®,, 7,, T, take the
mined by the point-vortex model can be unlikely attainedfollowing typical values:|=2x10° km, Ry=10" km, 7,
due to the inequalityr,,<Tj. =25K, andT,=250 K.

To show the location of the Venusian hot spots phenom-
enon in Fig. 9, we estimate the range of typical parameters
™™/ To and /), using reliable experimental data. According
to this data(Taylor et al. [7]; Linkin et al. [8]), the rotation This work was partly supported by the Russian Founda-
period T, of the Venusian hot spots ranges from 2.7 to 2.9tion for Basic ResearctGrant No. 00-05-64019aThe au-
days while the super-rotation period is estimatedTg,  thors thank G. Golitsyn and N. Schorghofer for useful com-
=4 days. ments.
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4 Using the formula(see Ref[21]) that can be obtained as a
/ corollary of the Cauchy’s formula in the theory of function
3 - of complex variable
g » g1 5
F 7 Gzz -,
! ,// the z derivative of theé function can be easily calculated
24 from Eq. (A6) as
0
0 1 2 3 4 a0 i .
ar/l 52 % ds zS5(x—X). (A7)

FIG. 10. The influence of hot spots on the mean zonal velocity.

The dashed line corresponds to the rotational motion with constarfl€re,z=x;+ix,, Z=x;~ix,. The substitution of Eq(A4)
angular velocity. in Eq. (A1), after differentiatingd functions using Eq(A7),

leads to the contour integral

APPENDIX A: RELATIONSHIP BETWEEN THE STREAM )
FUNCTION AND CURVATURE ON THE BOUNDARY o y— w2 . 1 "
OF THE DOMAIN Koxi 2 | oxy R?

a6 o9

We find the equation rz‘”
_ lp_ w—
dz dz 2

=—4qp

d r2\ o Q%yB
e | V05 o | AT =z ¥ =0 (AD) |22

— & a - _
—qojgdsﬁ(x—X)g y—w—|=0. (A8)

for the quantity
From this it follows that the rotating-frame stream function

o] must be constant on the vortex boundary:
: (A2)
QO - 2|2
B U—w % =const. (A9)

qul/l_ Riz'ﬂ! R=

whereR is the length-scale characteristic of the problem.

The spatial distribution of the quantityis supposed to be  Here, 4 is defined byg= i, .
given by a piecewise uniform function in the plame x, Equation(A9) determines the boundary sha@) if the
+ix,. Letus note again tha‘t% 1X1,%5}. Suc_h a dlgtnbuuon _stream function} is expressed in terms of the contour coor-
may be described simply using the two-dimensional Heav"dinatesf(. Taking into account that Green's functi@(x,x’)
side step functionsd#(z)=1, if ze D, and6(z) =0, if z&¢ D. of operatorA —R 2 is given by '
Here,D is a singly connected region in tlzeplane bounded
by a closed contour, which is given in the parametric form 1 <|x—x’|)

0 3

G(x,x')=—=—K
z=1(s), (A3) 2m 7\ R

. . and solving Eq.(A2), we obtain the stream functiow in
wheres is contour arc length. In terms & functions, the 9 Ea.(A2) #

L . . terms ofq:
distributionq of interest can be written as g
1 L [x—x']
a=0ob(2), (A4) Y)==5_ | &X'qX)Ko| ——|,  (AL0)
whgreqo is a constant value that the quantiytakes within where dx=dx,dx, and K,(¢£) denotes a modified Bessel
reg;onl?r.] tors.— 9395 t iial to th ‘ h function of nth order[20].
or the vectorzs=gz/0s tangential to the contour, the To convert Eq(A10) into a contour integral, we make use
following normalizing condition holds: of the equality
|22=1. (A5) Ko
Ko=R2AKy+27R?8(x—x") =4R*—— + 2rR?8(x— ),

. . . . 020z
The 6 functions admit the following analytical represen-

tation through the contour integral: which follows immediately from the definition of Green’s
) function. Assuming that— X, being outside of the regian,
_ and integrating Eq(A10) by parts, with obvious transforma-
0(z)= ds . .
2 z tions, we find

2
= (A6)
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" ZRZJd' P K [x—X'] ax o1 d P B2
Y(s)=—— | dX'a(x’) ——7Ko| —¢ 25 KI=1 S K&=0. (B2)
_ 2qoR? f dx’a—e/ K |X=x'] Substituting Eqs(A15) and (B1) in Eq. (A9), we obtain

T gz 9z’ "° R .
R |2/ —2|\ 24(Z ~2) 90R k—(X?+9?)=const (B3)
72—z - - = -
=—q0fds’Kl =~ (AL 2w
2 R |2/ —2'|

_ . We take the length scalé=(R/2)(qo/ ). In terms of
Now we introduce the new variablg(s)—the slope angle—  the dimensionless variables, from E@2) and Eq.(B3)

the unit vector tangential to the contour at a pamakes  \yithout changing the old symbol designations, we obtain the

with the axisx;. Then, according to EqA5), we have equations
dz=e'¢, (A12) P oy
. ) ——ky=1, —=+kX=0,
Let the following be vortex structures with a “weak con- Js Js
tour curvature”:
k— 2(%°+9?)=const. (B4)

|k|=|dse| <1IR. (A13)

. L . ) ) _ The expressions for variablé&sandy in terms of curvature
In this case, it is possible to make the radical approximationge optained from EqB4):

in the integral of Eq(A11),

2 —2|=~|s'~s|, IM2T -D=~Lx(s)(s' ~5)% g=22%  g—2c,- k2. (B5)
(A14) s
Here, the overbar denotes complex conjugation. The substitutionB5) in Eq. (B4) gives the equation for the
Using Eq.(A14), the integralA11) can be reduced to the normalized curvature:
local relation
dK\? 1
. qoR® P :—ZK4+ClK2+ K+Cy. (B6)
¥(s)= ——«(s), (A15)

~ Herec, andc, are two constants parametrizing the solutions
which relates the stream functiah and the contour curva- of the problem. Recall that the condition for application of
ture « in the points. In the work[22], a “stream-function”-  Eq. (B6) is determined by the inequalitgA13), which in
curvature relation analogous to E@\15) is derived using a dimensionless form is given by

different formalism.

d 1 1/3

=<r=3

Jdo

APPENDIX B: EQUATION FOR CURVATURE o (B7)

Let As the inequality(B7) shows, the condition of weak contour

7=e¢(X+iy), (B1) curvature does not limit physical applicability of the solu-
tions as might much appear at first sight. Let recall that
wherex andy as well asp are some functions of the contour d>R. The reason is that the inequali7) holds always for
arc lengths. From Eg.(A12) the following relationships intense vortices characterized by large enough values of the
hold: ratio qo/ .
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