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Dynamics of ‘‘leaking’’ Hamiltonian systems
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In order to understand the dynamics in more detail, in particular for visualizing the space-filling unstable
foliation of closed chaotic Hamiltonian systems, we propose to leak them up. The cutting out of a finite region
of their phase space, the leak, through which escape is possible, leads to transient chaotic behavior of nearly all
the trajectories. The never-escaping points belong to a chaotic saddle whose fractal unstable manifold can
easily be determined numerically. It is an approximant of the full Hamiltonian foliation, the better the smaller
the leak is. The escape rate depends sensitively on the orientation of the leak even if its area is fixed. The
applications for chaotic advection, for chemical reactions superimposed on hydrodynamical flows, and in other
branches of physics are discussed.
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I. INTRODUCTION

Opening up closed chaotic Hamiltonian systems by
leak, i.e., by defining a finite region in their phase spa
through which escape is possible, leads to the escap
nearly all the trajectories, and to transiently chaotic behav
We emphasize that this behavior is always related to
presence of a chaotic saddle which governs the motion of
long-lasting transients. The chaotic saddle, made visible
the leaking, is necessarily a subset of the original invari
space-filling set and can thus be considered as a skeleto
it.

The possibility of leaking a billiard to generate chaos w
a finite lifetime was already mentioned in the classical pa
by Pianigiani and Yorke on transient chaos@1#. Later this
problem was discussed in detail in the context of fractal e
boundaries@2#, of geometrical acoustics@3#, as well as in the
context of ergodicity@4# with fixed holes of exit. Another,
more recent, reason for studying the motion in leaked s
tems is the Ott-Grebogi-Yorke~OGY! method of controlling
chaos @5#, in which a control region is defined inside o
which the dynamics is changed to achieve control@6#. Fur-
thermore, leaking can be relevant in many problems of
lestial mechanics and cosmology, where gravitating bod
are considered to be point masses: by taking into acco
their finite sizes, the probability of collisions becomes no
zero. The simplest way of discussing this effect is to take
particles from the process after having hit other ones. T
corresponds to leaking the phase space around the cen
large bodies with arbitrary momenta@15#. A leaking method
has also been applied to analyzing the chaotic structur
the mixmaster cosmological model@16#. A problem of great
technological relevance is the design of heterostructure
vices: in the ballistic regime, these nanoscale structu
are—from the point of view of the electron’s motion—
billiards, leaked at the positions of the leads@17#. Character-
istics of the transiently chaotic classical motion in these o
billiards ~such as, e.g., the escape rate! are known to be re-
lated to the statistics of the measured conductance fluc
1063-651X/2002/66~6!/066218~6!/$20.00 66 0662
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tions. In these investigations, the size of the leak is typica
small and its position is unchanged.

Our aim here is to study whether the characteristics
transient chaos changes by changing the orientation o
large leak. In the chaotic region of closed Hamiltonian s
tems where the natural measure is uniform, one might exp
that the escape process depends on the area of the le
region only. Instead, we find that there is an essential dep
dence on the orientation even if the area is fixed. This
pendence can be considered as a fingerprint of the uns
foliation of the chaotic region, which is not visible as
phase-space structure in the closed case but becomes ob
able by the smallest amount of leaking. We point out that
anisotropy of this foliation~together with the finite size o
the leak! is responsible for the observed orientation dep
dence.

One motivation for considering finite leaks comes fro
hydrodynamics, from the so-called resetting algorithm
studying chaotic stirring in fluids as proposed by Pierrehu
bert @7#. Here one studies passive advection by tw
dimensional incompressible closed flows, which leads t
particle dynamics with a closed Hamiltonian phase spa
Resetting is realized by selecting two finite regions of t
flow. In any of them, a certain color is given the particle th
will be carried until entering the other region where the co
is changed again. This algorithm can be considered to b
elementary model of chemical reactions, since the fluid p
cels can have certain properties that they will lose by rea
ing one of the preselected regions. After returning fro
there, they therefore behave differently from the point
view of chemical activity, which is marked by the change
their colors. This simple algorithm is sufficient to make cle
filamentational patterns visible in the flow.

A recent discovery@8# in the field of realistic chemica
reactions superimposed on closed flows shows that the p
uct distribution can be filamental in spite of the fact that t
passive problem has a Hamiltonian chaotic dynamics. T
chemistry is visualizing in this case the unstable filamen
tion. We claim that the leaking of the passive problem ma
©2002 The American Physical Society18-1
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the same filamentation visible as the routes of particles
are about to escape. The plots exhibiting the unstable m
folds of the leaked system, therefore, show striking simila
ties to those of the product distribution in unleaked flo
with reactions.

The paper is organized as follows. In the next section,
summarize our numerical findings for three model syste
the area-preserving baker map, the so-called sine map,
its random version. In all cases the dependence of the cha
saddle is investigated on the size and orientation of the le

II. NUMERICAL PROCEDURE AND RESULTS

In contrast to previous studies, we investigate the effec
large leaks and take a band crossing through the full ph
space as the leak. Its center is chosen to be the center o
phase space. One freely changeable parameter is the
width « of the band in thex direction ~which also measure
the area! and the angleu of its axis relative to a fixed direc
tion.

The analysis is carried out in the spirit of the theory
transient chaos@9#: the basic aim is to identify the set o
never-escaping orbits, a nonescaping chaotic set, the
called chaotic saddle, along with its stable and unsta
manifolds. The characteristic number to be measured is
escape ratek versus« and u. The invariant sets are dete
mined by means of the method described in@10#. We start
with a large numberN0 of particles initially distributed in the
full phase space uniformly. All the nonescaping particles
followed over a large number of iterations, sayn. For large
enoughN0 andn, the initial coordinates of the nonescapin
particles should trace out the stable manifold, their final
sitions aftern steps of the unstable manifold, and the m
points at timen/2 of the chaotic saddle itself. The reason f
this is that @from regions outside of eventually existin
Kolmogorov-Arnold-Moser~KAM ! tori# all initial points
exit with the exception of a fractal set of measure ze
Therefore, points spending a long time in the leaked sys
must be those that came close to the chaotic set. The p
still inside aftern steps are thus either on the chaotic sad
or are already about to leave it. If so, they are practically
the unstable manifold. A long time (n/2 steps! earlier they
must have been around the saddle, and initially around
stable manifold.

The basic quantity we use to measure the degree of o
ness is the escape ratek from the chaotic saddle. The numb
of Nn2N` of surviving points aftern steps (N` stands for
the never-escaping points due to the presence of KAM t!
should decrease after a large number of steps as exp(2kn).
The escape rate was determined by measuring the num
Nn2N` of survivors and fitting a straight line to the ln(Nn
2N`) versusn curve.

A. The baker map

As a very simple example in which no KAM tori can b
present, we take the area-preserving baker map@11#. The
dynamics is defined on the unit square. The lower half squ
is compressed along thex axis to its half and is stretche
06621
at
ni-
-

e
s:
nd
tic
k.

f
se
the
the

f

o-
le
he

e

-
-

.
m
nts
e
n

e

n-

i

er

re

along they axis by a factor of 2 so that the left lower corne
the origin, is kept fixed. The upper half square is transform
in a similar way but the upper right corner, the point~1, 1!, is
left unchanged during this process. The system is known
be fully hyperbolic, all local Lyapunov exponents are ln
and therefore no stability islands are present. The nat
distribution is uniform on the full square.

Figure 1 shows the saddle and its manifolds in the cas
a leak with a width and area of«50.1 and located at angle
u5625° relative to the vertical line going through the mi
point of the unit square. The leak is clearly visible as a wh
band. There are many more white bands present: in the
of the stable~unstable! manifold, these are the preimage
~images! of the leak, and in the plot of the saddle both t
preimages and the images are present. Although the b
map is thought to be symmetric around the midpoint of
square, its action on full lines crossing the unit square is n
This is quite clear in the first images of the leak@bands of
second largest width in Figs. 1~c! and 1~f!#, but the effect is
even stronger in the case of the first preimages@bands of
second largest width in Figs. 1~a! and 1~d!#. The preimages
of left- and right-tilted bands are completely different. Th
inverse map transforms the left~right! half square on the
lower ~upper! half square. Therefore, the lower part of th
25° leak is mapped on a band around the lower right cor
while that of the225° leak is mapped on a band around t
lower left corner of the second quadrant, etc. More imp
tantly, the first preimage of the 25° leak does not over
with the leak, but there is an overlap in the other case. Th
the total area of the leak and its first preimage is larger
the positive angle case than for the negative one. This as
metry is kept by further iterations leading to different valu
of the escape rate:k(25°).k(225°). The difference in
the escape rate can be deducted from the darkness o
invariant sets, too, since we used the same number of in

FIG. 1. The stable manifold, the chaotic saddle, and the unst
manifold of the leaked baker map with«50.1 in the case of a tilted
leak with angleu525° @~a!–~c!# and u5225° @~d!–~f!#. The pa-
rameters of the simulations areN05106 and n540. The different
contrast of the pictures is due to the different decays: the numbe
remaining particles isN4059537 (N40522 399) in the 25°~225°!
case so that the escape rate isk(25°)50.11 @k(225°)50.09#.
8-2
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DYNAMICS OF ‘‘LEAKING’’ HAMILTONIAN SYSTEMS PHYSICAL REVIEW E 66, 066218 ~2002!
conditions and therefore more points~smaller escape rate!
imply darker figures.

Figure 2 is an overview of the chaotic saddles for t
same width but at other anglesu. The completely different
textures at angles of opposite signs are striking.

The dependence of the escape rate on both paramete
summarized in Fig. 3. The escape rate belonging to v
narrow leaks is nearly orientation-independent. In additi
the value ofk is then close to the total relative area of t
leak, which is« in our case. Orientation dependence b
comes considerable by«50.1, and the amount of fluctua
tions around the mean is increasing with increasing area
all cases, the naive expectationk52 ln(12«) is close to or
below the average escape rate over all the angles.

FIG. 2. The chaotic saddles of the leaked baker («50.1) at leak
anglesu50° ~a!, 45° ~b!, and 75°~c!, andu5245° ~d!, 275° ~e!,
and 790° ~f!. The parameters of the simulations areN05106 and
n540. In order to ensure that the leak area is always«, at leak
anglesu5645° @~b! and~d!# we added tiny leak pieces around th
corners not crossed by the main band, as if the map were peri
Contrast differences can be observed again.

FIG. 3. The dependence of the escape rate on the tilt ang
different widths«50.02 ~1!, 0.05 (x), 0.1 ~* !, and 0.2~squares!.
Horizontal lines correspond to the valuesk52 ln(12«).
06621
s is
ry
,

-

In

B. The sine map

Next we consider the sine map introduced in@7#. It is a
double periodic map defined on the unit square whose ac
is the subsequent application of two sinusoidal displa
ments, one in thex, the other one in they direction. The
explicit form of the map is

xn115xn1a sin~2pyn1fn! mod 1,
~1!

yn115yn1a sin~2pxn111fn! mod 1.

ic.

at

FIG. 4. The stable manifold, the chaotic saddle, and the unst
manifold of the leaked sine map with«50.1 in the case of a tilted
leak under angleu560° @~a!–~c!# andu5260° @~d!–~f!#. Because
the particles are distributed over the full square initially, all plo
contain the KAM tori as very dark structures. In order to emphas
more strongly the stable and unstable foliation, in parts~a!, ~c!, ~d!,
and ~f! we do not show the leak. The leak is, however, clea
visible in the plots of the chaotic saddles@~b! and~e!# as the widest
white band. The parameters of the simulations areN05105 andn
520.

FIG. 5. The dependence of the escape rate on the tilt ang
different widths«50.02 ~1!, 0.05 (x), 0.1 ~* !, and 0.2~squares!.
Horizontal lines correspond to the valuesk52 ln(12«). The one
belonging to«50.2 is beyond the frame.
8-3
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We will use the amplitudea50.6.
First, all the phase variables will be taken to be ze

fn[0. In this case, the map represents a typical, clo
Hamiltonian system@7,12# containing islands of integrability
and broken KAM tori~cantori!.

These regions are clearly visible in the invariant sets~Fig.
4! since due to the homogeneous initial distribution, poi
starting in these regions escape very slowly or do not esc
at all, hence the very dark structures appearing in the p
Again, the asymmetry due to the leak orientation is clear

In the escape rate versus« andu diagram of Fig. 5, we see
again that leaks with small area have the weakest orienta
dependence. The escape rate is then well approximate
the area« of the leak. At larger areas, however, fluctuatio
become stronger. It can be seen from Fig. 5 that leak an
coinciding with the slope of the local unstable and sta
foliation (u5220° and 70° in the sine map, and 0° an
690° in the baker map! always belong to a local maximum
of the escape rate~which is a global one in the baker map!.
No simple rules have been found for predicting the angle
the other local maxima. In this case, thek~u! diagram exhib-
its an invariance under translations with 90°.

The naive expectationk52 ln(12«) is now above the
average escape rate over the angles. In the case of the la
area investigated, it is much larger than any of the measu
escape rates. We attribute this to the presence of the K
tori and cantori, and to their remnants after leaking. Th
surfaces are known to be sticky and the long-time de
from their neighborhood is not even exponential, but
power-law type@13#. We are interested in the intermedia
time behavior, which is found to be still exponential, but t
presence of these surfaces also makes the effective es
rate k smaller than in cases without tori. This is why th
naive expectation now becomes an upper bound. In fact
even larger upper bound follows if the total surface of all t
KAM regions is added to«.

Consider now what happens in the case of a gradual
crease of the width of« ~at fixed angle!. The chaotic saddle
and its manifolds become denser and denser. In the lim«
→0, the escape rate disappears, the chaotic saddle bec
the full chaotic sea, and the stable and unstable manif
trace out the~area-filling! stable and unstable foliation of th
chaotic sea. The leaked system’s manifolds thus provide
approximant to the closed Hamiltonian foliation, the bet
the smaller the leak is. The leaked system’s~un!stable mani-
fold is a piece of the closed system’s~un!stable foliation.
Furthermore, in a numerical approach, the manifolds fill
the full square at a finite value of« already, due to the finite
width of the lines of the plot. Therefore, for a visually we
observable representation of the closed Hamiltonian fo
tion, a small but finite value of« is needed. Thus, for ex
ample, Figs. 4~d! and 4~f! can be considered as a good a
proximant of the closed foliation@while Figs. 4~a! and 4~c!
less accurate ones#.

These qualitative findings are valid for any shape and
cation of the leak. We carried out numerical experiments a
with two-band leaks under various angles and at differ
locations.
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C. The random sine map

The random version of the sine map is obtained by c
sidering random phases, i.e., by taking the valuesfn of Eq.
~1! at any instant of discrete timen from a stationary en-
semble from the range~2p,p!. The map remains area
preserving with these phases, too, but the presence of
random perturbation leads to the disappearance of any
variant tori @7,14#. This might, however, be observed in nu
merical simulations on long time scales only. In the flui
dynamical context, the random version of the map repres
the advection problem in an incompressible~smooth, nontur-
bulent! flow with an aperiodic~chaotic! time dependence
The basic difference relative to the previous cases is that
chaotic saddle and the manifolds are no longer indepen
of the numbern of iterations taken, not even for large value
of n. Their shapes are changing withn ~since the random
phases do so! but their fractal dimensions do not. Therefor
the plots look qualitatively similar irrespective of the valu
of n used.

FIG. 6. The same as Fig. 4 for the random sine map. The to
logical structure is similar but the difference in contrast is grea
diminished.

FIG. 7. The dependence of the escape rate on the tilt ang
different widths«50.02~1!, 0.05~x!, 0.1~* !, and 0.2~squares! for
the random sine map. Horizontal lines correspond to the valuek
52 ln(12«).
8-4
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DYNAMICS OF ‘‘LEAKING’’ HAMILTONIAN SYSTEMS PHYSICAL REVIEW E 66, 066218 ~2002!
Figure 6 shows the invariant sets. The former dark sp
are no longer present because of the disappearance of c
ent phase-space structures.

Considering the dependence of the escape rate on the
entation, we find~Fig. 7! that the fluctuations are reduce
This can be interpreted by observing that the random ph
indicate a shift of the filamentation in a certain directio
Since the leak is fixed, the filamentation under it is tim
dependent, and hence an averaging procedure is carried
This leads to a much weaker orientation dependence tha
the nonrandom case.

In addition, the value of the escape rate comes close
the naive expectationk52 ln(12«) since sticky phase-spac
surfaces are efficiently destroyed by the randomness of
phase.

Note that there are two minima of thek versus tilt angle
curve shown in Fig. 7 obtained from simulations carried o
over 20 time steps. By following ensembles of particles o
longer times and deducingk as the asymptotic decay rate, w
observe that the minimum values become closer to e
other, and to the naive expectation as well; the curve
comes better smoothed out. It is worth mentioning that
randomly choosing the position of the center of the le
along thex or y axis ~at fixed tilt angle! and by using the
nonrandom sine map, the orientation dependence of the
cape rate fully vanishes and this can already be seen
short time scales.

III. CONCLUSIONS

From the point of view of the application of the resettin
algorithm@7# described in the Introduction, our results imp
that the patterns depend not only on the size of the rese
region but on its orientation, too. This dependence dis
pears, however, if the flow is sufficiently random, or suf
ciently chaotic.

Another implication of our findings can be a proper inte

FIG. 8. The shape of a square droplet (N05104) at timen50
~a!, n51 ~b!, n52 ~c!, n53 ~d!, andn56 ~f! in the nonrandom
sine map. Part~e! is the unstable manifold of the chaotic sadd
(N0573105) obtained by leaking the map with two identic
bands parallel to they axis of width «50.1 and midpoints at
~0.25,0.5! and ~0.75,0.5!.
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pretation of transient droplet patterns in closed flows. T
initial droplet is compact; its dimension is 2. As time go
on, the droplet is stretched and folded~its area is unchanged!
and becomes elongated along the unstable filamentatio
the flow. There might be an instant of time at which t
shape of the droplet is similar to the unstable manifold of
leaked flow with a certain width and orientation of the le
@Fig. 8~d! is quite similar to Fig. 8~e!#. This does not mean
however, that the droplet’s shape is the same onall scales as
the unstable manifold. It does not have, in any instant
well-defined fractal dimension@13#. In fact, its form appears
to be denser already after three more steps@Fig. 8~f!#. The
only stage where its dimension is well defined@13# is that of
the asymptotic state reached after an infinitely long tim
when it fills the full chaotic region~and its dimension is 2
again!.

In a general hydrodynamical problem, it is natural to fi
regions of qualitatively different flow features~such as, e.g.,
jets, recirculating regions, eddies, etc.!. One can then selec
one of these regions and consider all others as leaks in o
to determine the escape rate, which is a measure of mat
exchange of this region with its surroundings. Small valu
of the escape rate mark regions with large lifetimes of wa
which might therefore be of specific biological relevance.

The next property we discuss is the relation to filamen
chemical or biological product distributions in closed flow
We have considered a very simple chemical reaction,
decay of the concentrationC of some chemical constituen
towards a background value superimposed on the ran
sine map as a hydrodynamical flow. The chemical fie
C(x,y) is generated by the mapping

Cn115S~xn ,yn!1bCn ,

xn115@xn1a sin~2pyn1fn!# mod 1,

yn115@yn1a sin~2pxn111fn!# mod 1, ~2!

whereS5S01S1 sin(2px)sin(2py) is a fixed source distribu-
tion and the parameterb (b,1) is a measure of the deca
rate. In each step, the chemical concentration decays b

FIG. 9. Chemical concentration field of problem~2! obtained by
iterating the sine map with random phases ata50.7. Bright areas
indicate regions of high concentration.
8-5
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SCHNEIDER, TÉL, AND NEUFELD PHYSICAL REVIEW E66, 066218 ~2002!
factor b ~in our caseb50.5) and receives an inputS(x,y)
according to the local source concentration. Then the fl
parcels are advected by the random sine map (a50.7). Fig-
ure 9 shows the concentration distribution obtained in t
way. It has a striking filamental structure since the param
values correspond to a state beyond the smooth-filame
transition defined and described in@8#. Because the concen
tration is smooth along the unstable direction only, directio
corresponding to low gradients trace out a part of the
stable foliation. In the left picture of Fig. 10, only the regio
of high concentration (C.1) are plotted. The boundary be
tween black and white regions, corresponding to an isoc
centration surface, shows a subset of the unstable foliatio
is therefore not surprising that the unstable manifolds of
leaked passive system, which is also a subset of the uns
foliation @right picture of Fig. 10~b!#, trace out a similar
structure.

Leaking the underlying Hamiltonian system provides
computationally cheap and efficient method for visualizi
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Lópezet al., Phys. Chem. Earth26, 313 ~2001!.

FIG. 10. Left picture: The concentration distribution of proble
~2! in the random sine map after 10 steps of iteration starting fr
an initially homogeneous distribution. Black regions correspond
concentrations higher than the threshold valueCth51. Right pic-
ture: The unstable manifold of the chaotic saddle in the lea
passive problem obtained by using the same random sequence
width of the leak is taken as 0.1.
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the unstable foliation, by which one can reconstruct str
tures traced out by active processes, for example struct
related to phytoplankton distributions in the Gulf Strea
@8,18#.

In conclusion, the geometric structure of the unstable
liation of a closed Hamiltonian problem is the origin of th
strong dependence of the escape rate on the orientation o
leak. Local maxima of this function correspond to the dire
tion of the unstable or the stable foliation. The randomn
of the dynamics is smoothening out the orientation dep
dence. The method can also be used to indicate the pres
of KAM islands since the effective escape rate in nonrand
cases is then smaller than the naive expectation. Measu
the escape rate of leaked area-preserving systems can g
useful piece of information about the unstable foliation of t
closed system, whose fingerprints otherwise only appea
instantaneous droplet shapes.

Our findings might have relevance beyond the field
hydrodynamics, in all the examples mentioned in the Int
duction~billiard, acoustic, control, celestial mechanics, etc!.
In particular, for mesoscopic devices in the ballistic regim
we predict a strong dependence of the escape rate and h
of conductance fluctuations on the actual position of
leads~at fixed width! along the wall of the billiard.
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