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Dynamics of “leaking” Hamiltonian systems
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In order to understand the dynamics in more detail, in particular for visualizing the space-filling unstable
foliation of closed chaotic Hamiltonian systems, we propose to leak them up. The cutting out of a finite region
of their phase space, the leak, through which escape is possible, leads to transient chaotic behavior of nearly all
the trajectories. The never-escaping points belong to a chaotic saddle whose fractal unstable manifold can
easily be determined numerically. It is an approximant of the full Hamiltonian foliation, the better the smaller
the leak is. The escape rate depends sensitively on the orientation of the leak even if its area is fixed. The
applications for chaotic advection, for chemical reactions superimposed on hydrodynamical flows, and in other
branches of physics are discussed.
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[. INTRODUCTION tions. In these investigations, the size of the leak is typically
small and its position is unchanged.

Opening up closed chaotic Hamiltonian systems by a Our aim here is to study whether the characteristics of
leak, i.e., by defining a finite region in their phase spacdransient chaos changes by changing the orientation of a
through which escape is possible, leads to the escape tdrge leak. In the chaotic region of closed Hamiltonian sys-
nearly all the trajectories, and to transiently chaotic behaviortems where the natural measure is uniform, one might expect
We emphasize that this behavior is always related to théhat the escape process depends on the area of the leaked
presence of a chaotic saddle which governs the motion of theegion only. Instead, we find that there is an essential depen-
long-lasting transients. The chaotic saddle, made visible byence on the orientation even if the area is fixed. This de-
the leaking, is necessarily a subset of the original invarianpendence can be considered as a fingerprint of the unstable
space-filling set and can thus be considered as a skeleton fafliation of the chaotic region, which is not visible as a
it. phase-space structure in the closed case but becomes observ-

The possibility of leaking a billiard to generate chaos withable by the smallest amount of leaking. We point out that the
a finite lifetime was already mentioned in the classical papeanisotropy of this foliationtogether with the finite size of
by Pianigiani and Yorke on transient chaldg. Later this the leak is responsible for the observed orientation depen-
problem was discussed in detail in the context of fractal exidence.
boundarie$2], of geometrical acoustidsg], as well as in the One motivation for considering finite leaks comes from
context of ergodicity{4] with fixed holes of exit. Another, hydrodynamics, from the so-called resetting algorithm for
more recent, reason for studying the motion in leaked sysstudying chaotic stirring in fluids as proposed by Pierrehum-
tems is the Ott-Grebogi-York€DGY) method of controlling bert [7]. Here one studies passive advection by two-
chaos[5], in which a control region is defined inside of dimensional incompressible closed flows, which leads to a
which the dynamics is changed to achieve conftédl Fur-  particle dynamics with a closed Hamiltonian phase space.
thermore, leaking can be relevant in many problems of ceResetting is realized by selecting two finite regions of the
lestial mechanics and cosmology, where gravitating bodiefiow. In any of them, a certain color is given the particle that
are considered to be point masses: by taking into accountill be carried until entering the other region where the color
their finite sizes, the probability of collisions becomes non-is changed again. This algorithm can be considered to be an
zero. The simplest way of discussing this effect is to take ouelementary model of chemical reactions, since the fluid par-
particles from the process after having hit other ones. Thigels can have certain properties that they will lose by reach-
corresponds to leaking the phase space around the centerinfy one of the preselected regions. After returning from
large bodies with arbitrary momenfa5]. A leaking method there, they therefore behave differently from the point of
has also been applied to analyzing the chaotic structure ofiew of chemical activity, which is marked by the change of
the mixmaster cosmological model6]. A problem of great their colors. This simple algorithm is sufficient to make clear
technological relevance is the design of heterostructure dddamentational patterns visible in the flow.
vices: in the ballistic regime, these nanoscale structures A recent discoveny8] in the field of realistic chemical
are—from the point of view of the electron’s motion— reactions superimposed on closed flows shows that the prod-
billiards, leaked at the positions of the leddg]. Character- uct distribution can be filamental in spite of the fact that the
istics of the transiently chaotic classical motion in these opemassive problem has a Hamiltonian chaotic dynamics. The
billiards (such as, e.g., the escape jaee known to be re- chemistry is visualizing in this case the unstable filamenta-
lated to the statistics of the measured conductance fluctudion. We claim that the leaking of the passive problem makes
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the same filamentation visible as the routes of particles thail g
are about to escape. The plots exhibiting the unstable mani T,
folds of the leaked system, therefore, show striking similari-
ties to those of the product distribution in unleaked flows
with reactions. o
The paper is organized as follows. In the next section, we0 & ;
summarize our numerical findings for three model systems: 0 X 1 0 X 1 Y X 1
the area-preserving baker map, the so-called sine map, an a b c
its random version. In all cases the dependence of the chaotiy e
saddle is investigated on the size and orientation of the leak

II. NUMERICAL PROCEDURE AND RESULTS

In contrast to previous studies, we investigate the effect of0 & —
large leaks and take a band crossing through the full phast 0 X 1
space as the leak. Its center is chosen to be the center of th. d e f
phase space. One fret;ly Changeableh'pz;l]ra:neter is then theFIG. 1. The stable manifold, the chaotic saddle, and the unstable
width & of the band in t e(_d'rec_tlon (W_ ICN alSO MEASUres  anifold of the leaked baker map with=0.1 in the case of a tilted
the areaand the angle of its axis relative to a fixed direc- ok with angled=25° [(@—(c)] and 6= — 25° [(d)—(f)]. The pa-
tion. o _ , N rameters of the simulations aMNy=10° andn=40. The different

The analysis is carried out in the spirit of the theory of contrast of the pictures is due to the different decays: the number of
transient chao$9]: the basic aim is to identify the set of yemaining particles iN,g=9537 (N4o=22 399) in the 257—25°)

never-escaping orbits, a nonescaping chaotic set, the Sgase so that the escape ratec{@5°)=0.11[ «(—25°)=0.09].
called chaotic saddle, along with its stable and unstable

manifolds. The characteristic number to be measured is thalong they axis by a factor of 2 so that the left lower corner,
escape ratec versuse and 6. The invariant sets are deter- the origin, is kept fixed. The upper half square is transformed
mined by means of the method described 16]. We start  in a similar way but the upper right corner, the pdibt 1), is
with a large numbeN, of particles initially distributed in the left unchanged during this process. The system is known to
full phase space uniformly. All the nonescaping particles arébe fully hyperbolic, all local Lyapunov exponents are In2,
followed over a large number of iterations, sayFor large  and therefore no stability islands are present. The natural
enoughNg andn, the initial coordinates of the nonescaping distribution is uniform on the full square.
particles should trace out the stable manifold, their final po- Figure 1 shows the saddle and its manifolds in the case of
sitions aftern steps of the unstable manifold, and the mid-a leak with a width and area ef=0.1 and located at angles
points at timen/2 of the chaotic saddle itself. The reason for §= = 25° relative to the vertical line going through the mid-
this is that [from regions outside of eventually existing point of the unit square. The leak is clearly visible as a white
Kolmogorov-Arnold-Moser(KAM) tori] all initial points  band. There are many more white bands present: in the plot
exit with the exception of a fractal set of measure zeroof the stable(unstabl¢ manifold, these are the preimages
Therefore, points spending a long time in the leaked systernimages of the leak, and in the plot of the saddle both the
must be those that came close to the chaotic set. The poinggeimages and the images are present. Although the baker
still inside aftern steps are thus either on the chaotic saddlemap is thought to be symmetric around the midpoint of the
or are already about to leave it. If so, they are practically orsquare, its action on full lines crossing the unit square is not.
the unstable manifold. A long timen(2 step$ earlier they  This is quite clear in the first images of the leddands of
must have been around the saddle, and initially around theecond largest width in Figs(& and If)], but the effect is
stable manifold. even stronger in the case of the first preimafesnds of
The basic quantity we use to measure the degree of opesecond largest width in Figs(d) and 1d)]. The preimages
ness is the escape ratérom the chaotic saddle. The number of left- and right-tilted bands are completely different. The
of N,—N.. of surviving points aftem steps (.. stands for inverse map transforms the leftight) half square on the
the never-escaping points due to the presence of KAM torilower (uppe) half square. Therefore, the lower part of the
should decrease after a large number of steps as-eap)(  25° leak is mapped on a band around the lower right corner,
The escape rate was determined by measuring the numbethile that of the—25° leak is mapped on a band around the
N,—N., of survivors and fitting a straight line to the M{  lower left corner of the second quadrant, etc. More impor-
—N.,) versusn curve. tantly, the first preimage of the 25° leak does not overlap
with the leak, but there is an overlap in the other case. Thus,
the total area of the leak and its first preimage is larger for
the positive angle case than for the negative one. This asym-
As a very simple example in which no KAM tori can be metry is kept by further iterations leading to different values
present, we take the area-preserving baker fidp The of the escape rate:x(25°)> «x(—25°). The difference in
dynamics is defined on the unit square. The lower half squarthe escape rate can be deducted from the darkness of the
is compressed along theaxis to its half and is stretched invariant sets, too, since we used the same number of initial

A. The baker map
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FIG. 2. The chaotic saddles of the leaked baker (0.1) at leak FIG. 4. The stable manifold, the chaotic saddle, and the unstable
angles6=0° (a), 45° (b), and 75°(c), and = —45° (d), —75° (e), manifold of the leaked sine map with=0.1 in the case of a tilted
and ¥90° (f). The parameters of the simulations &g=10° and leak under angl@=60° [(a)—(c)] and #= —60° [(d)—(f)]. Because
n=40. In order to ensure that the leak area is alwayst leak the particles are distributed over the full square initially, all plots
anglesf#= *45° [(b) and(d)] we added tiny leak pieces around the contain the KAM tori as very dark structures. In order to emphasize
corners not crossed by the main band, as if the map were periodignore strongly the stable and unstable foliation, in péaxs(c), (d),
Contrast differences can be observed again. and (f) we do not show the leak. The leak is, however, clearly
visible in the plots of the chaotic saddlgb) and(e)] as the widest
white band. The parameters of the simulations NMge=10° andn

conditions and therefore more pointsmaller escape rate —20

imply darker figures.

Figure 2 is an overview of the chaotic saddles for the
same width but at other angles The completely different
textures at angles of opposite signs are striking. Next we consider the sine map introduced ™. It is a

The dependence of the escape rate on both parametersdguble periodic map defined on the unit square whose action
summarized in Fig. 3. The escape rate belonging to verjs the subsequent application of two sinusoidal displace-
narrow leaks is nearly orientation-independent. In additionments, one in thes, the other one in thy direction. The
the value ofk is then close to the total relative area of the explicit form of the map is
leak, which ise in our case. Orientation dependence be-
comes considerable by=0.1, and the amount of fluctua-

B. The sine map

Xn+1=Xytasin2wy,+ ¢,) mod 1,

tions around the mean is increasing with increasing area. In @)
all cases, the naive expectatian= —In(1—e¢) is close to or Vis1=Yn+asin2mx, .1+ ¢,) mod 1.
below the average escape rate over all the angles.
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FIG. 5. The dependence of the escape rate on the tilt angle at
FIG. 3. The dependence of the escape rate on the tilt angle atifferent widthse =0.02 (+), 0.05 ), 0.1 (*), and 0.2(squarey
different widthse =0.02 (+), 0.05 ), 0.1 (*), and 0.2(squares Horizontal lines correspond to the valugs- —In(1—¢). The one
Horizontal lines correspond to the values: —In(1—¢). belonging toe =0.2 is beyond the frame.
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We will use the amplitude=0.6. 1

First, all the phase variables will be taken to be zero:
¢,=0. In this case, the map represents a typical, closec
Hamiltonian systeni7,12] containing islands of integrability
and broken KAM tori(cantory.

These regions are clearly visible in the invariant getg.

4) since due to the homogeneous initial distribution, points
starting in these regions escape very slowly or do not escap:
at all, hence the very dark structures appearing in the plots1
Again, the asymmetry due to the leak orientation is clear.

In the escape rate versasind 6 diagram of Fig. 5, we see
again that leaks with small area have the weakest orientatiot
dependence. The escape rate is then well approximated b
the areae of the leak. At larger areas, however, fluctuations 0
become stronger. It can be seen from Fig. 5 that leak angle:
coinciding with the slope of the local unstable and stable
foliation (#=—20° and 70° in the sine map, and 0° and FIG. 6. The same as Fig. 4 for the random sine map. The topo-
+90° in the baker mapalways belong to a local maximum logical structure is similar but the difference in contrast is greatly
of the escape ratévhich is a global one in the baker map diminished.

No simple rules have been found for predicting the angles of
the other local maxima. In this case, th@) diagram exhib-
its an invariance under translations with 90°.

0
0

C. The random sine map

The random version of the sine map is obtained by con-
The naive expectation = —In(1—) is now abovethe sidering random phases, i.e., by taking the valigof Eq.

1) at any instant of discrete time from a stationary en-
average escape rate over the angles. In the case of the larggstpie from the rangé—,7). The map remains area-

area investigated, it is much larger than any of the measure&eserving with these phases, too, but the presence of the
escape rates. We attribute this to the presence of the KAMandom perturbation leads to the disappearance of any in-
tori and cantori, and to their remnants after leaking. Thes&ariant tori[7,14]. This might, however, be observed in nu-
surfaces are known to be sticky and the long-time decaynerical simulations on long time scales only. In the fluid-
from their neighborhood is not even exponential, but ofdynamical context, the random version of the map represents
power-law type[13]. We are interested in the intermediate the advection problem in an incompressitdenooth, nontur-
time behavior, which is found to be still exponential, but thebuleny flow with an aperiodic(chaotig time dependence.
presence of these surfaces also makes the effective esca-bbe basic difference relative to the previous cases is that the
rate x smaller than in cases without tori. This is why the chaotic saddle and the manifolds are no longer independent
naive expectation now becomes an upper bound. In fact, a@f the numben of iterations taken, not even for large values
even larger upper bound follows if the total surface of all theof n. Their shapes are changing with(since the random
KAM regions is added te. phases do 9dout their fractal dimensions do not. Therefore,

Consider now what happens in the case of a gradua| ddhe plots look qualitatively similar irrespective of the value
crease of the width of (at fixed anglg The chaotic saddle ©f n used.

and its manifolds become denser and denser. In the limit
—0, the escape rate disappears, the chaotic saddle become
the full chaotic sea, and the stable and unstable manifolds
trace out theéarea-filling stable and unstable foliation of the
chaotic sea. The leaked system’s manifolds thus provide ar
approximant to the closed Hamiltonian foliation, the better
the smaller the leak is. The leaked systefoB)stable mani- 3
fold is a piece of the closed systensn)stable foliation. é
Furthermore, in a numerical approach, the manifolds fill in
the full square at a finite value afalready, due to the finite
width of the lines of the plot. Therefore, for a visually well
observable representation of the closed Hamiltonian folia-
tion, a small but finite value o is needed. Thus, for ex-
ample, Figs. &) and 4f) can be considered as a good ap-
proximant of the closed foliatiofwhile Figs. 4a) and 4c)
less accurate ongs

These qualitative findings are valid for any shape and lo-
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FIG. 7. The dependence of the escape rate on the tilt angle at

cation of the leak. We carried out numerical experiments alsdifferent widthss =0.02(+), 0.05(x), 0.1(*), and 0.2(squaresfor
with two-band leaks under various angles and at differenthe random sine map. Horizontal lines correspond to the vatues
locations. =—In(1—¢).
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o

X X X 0 4 1
(d), n=3 (e), leaked sine map (f), n=6

FIG. 9. Chemical concentration field of problé®) obtained by
FIG. 8. The shape of a square dropldly& 10%) at timen=0 jterating the sine map with random phasesat0.7. Bright areas
(@, n=1 (b), n=2 (c), n=3 (d), andn=6 (f) in the nonrandom indicate regions of high concentration.
sine map. Parfe) is the unstable manifold of the chaotic saddle
(No=7x10") obtained by leaking the map with two identical pretation of transient droplet patterns in closed flows. The
bands parallel to they axis of width £=0.1 and midpoints at jnjtial droplet is compact; its dimension is 2. As time goes
(0.25,0.5 and(0.75,0.5. on, the droplet is stretched and foldéts area is unchanggd
and becomes elongated along the unstable filamentation of
Figure 6 shows the invariant sets. The former dark spotgne flow. There might be an instant of time at which the
are no longer present because of the disappearance of cohgrape of the droplet is similar to the unstable manifold of the
ent phase-space structures. leaked flow with a certain width and orientation of the leak
Considering the dependence of the escape rate on the ofFig. 8(d) is quite similar to Fig. 8)]. This does not mean,
entation, we find(Fig. 7) that the fluctuations are reduced. however, that the droplet's shape is the samalbscales as
This can be interpreted by observing that the random phasege unstable manifold. It does not have, in any instant, a
indicate a shift of the filamentation in a certain direction. well-defined fractal dimensiofiL3]. In fact, its form appears
Since the leak is fixed, the filamentation under it is time-to be denser already after three more stgfig. 8f)]. The
dependent, and hence an averaging procedure is carried oghly stage where its dimension is well defiffdd] is that of
This leads to a much weaker orientation dependence than e asymptotic state reached after an infinitely long time,
the nonrandom case. when it fills the full chaotic regior(and its dimension is 2
In addition, the value of the escape rate comes closer tggain.
the naive expectation= —In(1—-¢) since sticky phase-space In a general hydrodynamical problem, it is natural to find
surfaces are efficiently destroyed by the randomness of thegions of qualitatively different flow featurésuch as, e.g.,
phase. jets, recirculating regions, eddies, ¢t®ne can then select
Note that there are two minima of theversus tilt angle  one of these regions and consider all others as leaks in order
curve shown in Fig. 7 obtained from simulations carried outto determine the escape rate, which is a measure of material
over 20 time steps. By following ensembles of particles ovelexchange of this region with its surroundings. Small values
longer times and deducingas the asymptotic decay rate, we of the escape rate mark regions with large lifetimes of water
observe that the minimum values become closer to eaciyhich might therefore be of specific biological relevance.
other, and to the naive expectation as well; the curve be- The next property we discuss is the relation to filamental
comes better smoothed out. It is worth mentioning that bychemical or biological product distributions in closed flows.
randomly choosing the position of the center of the leakwe have considered a very simple chemical reaction, the
along thex or y axis (at fixed tilt anglg and by using the decay of the concentratiof of some chemical constituent
nonrandom sine map, the orientation dependence of the efowards a background value superimposed on the random
cape rate fully vanishes and this can already be seen oveine map as a hydrodynamical flow. The chemical field

short time scales. C(x,y) is generated by the mapping
IIl. CONCLUSIONS Ch+1=S(Xn,Yn) TGy,
From the point of view of the application of the resetting Xni1=[Xp+asin2my,+¢,)] mod 1,
algorithm[7] described in the Introduction, our results imply
that the patterns depend not only on the size of the resetting VYni1=LYnt+asin2@x,,1+ é,)] mod 1, 2

region but on its orientation, too. This dependence disap-

pears, however, if the flow is sufficiently random, or suffi- whereS=Sy+ S, sin(2wx)sin(2my) is a fixed source distribu-

ciently chaotic. tion and the parametdr (b<<1) is a measure of the decay
Another implication of our findings can be a proper inter-rate. In each step, the chemical concentration decays by a
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the unstable foliation, by which one can reconstruct struc-
tures traced out by active processes, for example structures
related to phytoplankton distributions in the Gulf Stream
[8,18].

In conclusion, the geometric structure of the unstable fo-
liation of a closed Hamiltonian problem is the origin of the
strong dependence of the escape rate on the orientation of the
leak. Local maxima of this function correspond to the direc-
tion of the unstable or the stable foliation. The randomness
of the dynamics is smoothening out the orientation depen-

FIG. 10. Left picture: The concentration distribution of problem dence. The method can also be used to indicate the presence
(2) in the random sine map after 10 steps of iteration starting fronPf KAM islands since the effective escape rate in nonrandom
an initially homogeneous distribution. Black regions correspond tocases is then smaller than the naive expectation. Measuring
concentrations higher than the threshold valljg=1. Right pic- the escape rate of leaked area-preserving systems can give a
ture: The unstable manifold of the chaotic saddle in the leakediseful piece of information about the unstable foliation of the
passive problem obtained by using the same random sequence. Toksed system, whose fingerprints otherwise only appear as
width of the leak is taken as 0.1. instantaneous droplet shapes.

_ _ _ Our findings might have relevance beyond the field of
factor b (in our caseb=0.5) and receives an inp&(x,y)  hydrodynamics, in all the examples mentioned in the Intro-
according to the local source concentration. Then the fluiGyyction (billiard, acoustic, control, celestial mechanics, ketc.
parcels are advected by the random sine n&p@.7). Fig- | particular, for mesoscopic devices in the ballistic regime,
ure 9 shows the concentration distribution obtained in thisye predict a strong dependence of the escape rate and hence

way. It has a striking filamental structure since the parametesf conductance fluctuations on the actual position of the
values correspond to a state beyond the smooth-filamentgdads(at fixed width along the wall of the billiard.

transition defined and described[i8]. Because the concen-
tration is smooth along the unstable direction only, directions
corresponding to low gradients trace out a part of the un-
stable foliation. In the left picture of Fig. 10, only the regions
of high concentration@>1) are plotted. The boundary be-  Useful discussions are acknowledged with H. Buljan, R.
tween black and white regions, corresponding to an isoconborfman, P. Grassberger, C. Grebogi, H. Kantz and K. G.
centration surface, shows a subset of the unstable foliation. Bzabo This research has been supported by the Hungarian
is therefore not surprising that the unstable manifolds of thdResearch Foundatiof@TKA T032423. J.S. is thankful for
leaked passive system, which is also a subset of the unstalfi@ancial support from the DAAD, the Max Planck Research
foliation [right picture of Fig. 1Qb)], trace out a similar School for Biomimetic System@dMPRS), and the Society
structure. Freunde der TU. T.T. is thankful to Professor E. Star

Leaking the underlying Hamiltonian system provides akind hospitality. J.S. and T.T. were supported by the DAAD
computationally cheap and efficient method for visualizing324/PPP-Ungarn-ssch.
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