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Two-dimensional maps at the edge of chaos: Numerical results for the Henon map
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~Received 26 April 2002; revised manuscript received 6 August 2002; published 20 December 2002!

The mixing properties~or sensitivity to initial conditions! of the two-dimensional Henon map have been
explored numerically at the edge of chaos. Three independent methods, which have been developed and used
so far for one-dimensional maps, have been used to accomplish this task. These methods are~i! the measure of
the divergence of initially nearby orbits,~ii ! analysis of the multifractal spectrum, and~iii ! computation of
nonextensive entropy increase rates. The results obtained closely agree with those of the one-dimensional cases
and constitute a verification of this scenario in two-dimensional maps. This obviously makes the idea of weak
chaos even more robust.
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The growing number of works presently addressing o
dimensional dissipative maps signals the increasing inte
in exploring the behavior of nonlinear dynamical systems
the edge of chaos@1–9#. This interest mostly stems from th
fact that the standard theory considers this special point~and
also all other points where the standard Lyapunov expon
vanishes! asmarginaland there is less work addressing the
marginal points directly than on other regions of the syste
Recent work addressing the behavior of dynamical syst
at these points is based on the conjecture that the diverg
of initially nearby trajectories, characterized by the sensi
ity function

j~ t !5 lim
Dx(0)→0

Dx~ t !

Dx~0!
~1!

@whereDx(0) andDx(t) are the discrepancies of the initia
conditions at times 0 andt], is not of exponential type a
these marginal points, but rather of power-law type, such
@2#

j~ t !5@11~12q!lqt#1/(12q) ~qPR!, ~2!

which comes from the conjecture that the controlling eq
tion becomesdj/dt5lqjq ~instead of the usual onedj/dt
5l1j). This result recovers the standard one in theq→1
limit and also defines a generalized version of the Lyapu
exponentlq , which inversely scales with time, but no
within a power law. Within this unified scheme, apart fro
the standard regimes where we have chaos and sensi
and insensitivity to the initial conditions, we also have we
insensitivity to the initial conditions forq.1, l150, lq
,0 and weak sensitivity to the initial conditions forq,1,
l150, lq.0. The last case also characterizes the most
teresting marginal point, the chaos threshold. This kind
asymptotic power-law sensitivity to the initial conditions w
already observed a long time ago@10–12#, but Eq.~2! pro-
vides a more complete description than that, since it is
pected to be valid not only at very large times but also
intermediate times as well~of course after a short transient!.
This equation in fact corresponds to power-law growth of
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upper bounds of a complex time dependence of the sens
ity function, which includes considerable and everlasti
fluctuations. These upper bounds@j(t)}t1/(12q)# allow us to
determine the proper value of theq index ~say q* ) for the
dynamical system under consideration.

The second method for the same purpose is based on
geometrical aspects of the critical attractor of the system
the edge of chaos. Due to the complexity of the critical d
namical attractor, a multifractal formalism is needed in ord
to reveal its complete scaling behavior. In this formalis
each moment of the probability distribution has a contrib
tion coming from a particular subset of points of the attrac
with fractal dimensionf. Using a partition containingM
boxes, the content of each contributing box scales asM 2a.
The multifractal measure is then characterized by the c
tinuous functionf (a) which reflects the fractal dimension o
the subset with singularity strengtha @13,14#. Using the scal-
ing behavior of the multifractal singularity spectrumf (a), a
different scaling relation has been proposed@3#:

1

12q*
5

1

amin
2

1

amax
~q* ,1!, ~3!

whereamin andamax are the vanishing points of the down
ward parabolalike concave curvef (a) and characterize the
scaling behavior of the most concentrated and most rare
regions on the attractor. This fascinating relation, which c
nects the power-law sensitivity of dynamical systems w
purely geometrical quantities, establishes another indep
dent method for estimating theq* value of the dynamical
system under study.

Finally, the third method of accomplishing the same ta
deals with the entropy increase rates@5,6#. For large classes
of dynamical systems, the rate of information loss in time
characterized by the Kolmogorov-Sinai~KS! entropy K1,
which is defined as the increase, per unit time, of the st
dard Boltzmann-Gibbs entropyS152( i 51

W pi ln pi , namely,

K1[ lim
t→`

lim
W→`

lim
N→`

S1~ t !

t
, ~4!
©2002 The American Physical Society12-1
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wheret is the time,W is the number of regions in the part
tion of the phase space, andN is the number of initial con-
ditions ~all chosen att50 within one region among theW
available ones! that are evolving in time. Although the KS
entropy is defined, in principle, in terms of a single trajecto
in phase space, it appears that, in almost all cases, it is
sible to replace it by one based on an ensemble of in
conditions. The third method basically depends on the
semble version of the generalized KS entropyKq , which
was introduced as the increase of a proper nonextensive
tropic form, namely,

Kq[ lim
t→`

lim
W→`

lim
N→`

Sq~ t !

t
. ~5!

HereSq is the Tsallis entropy defined as@15#

Sq~ t !5

12(
i 51

W

@pi~ t !#q

q21
, ~6!

whereW is the total number of configurations and$pi% are
the associated probabilities. It is clear that, consistently,
well-known Pesin equality is also expected to be genera
able asKq5lq if lq.0 andKq50 otherwise. Within this
scheme, it is conjectured that~i! a specialq* value exists
such thatKq is finite for q5q* , vanishes forq.q* , and
diverges forq,q* ; ~ii ! this specialq* value coincides with
that coming from the two other distinct methods explain
above. This also connects theq* values with the entropic
index q of the Tsallis entropy as mentioned in@16#. At this
point, it is worthwhile to clarify a subtlety related to th
generalized Pesin equality. In fact, theq-generalized Pesin
equality implies two things. First, the values ofq determined
through the entropy rates are the same as those mea
through the other two distinct methods; second, the slope
the entropy rates are the same as the generalized Lyap
exponents of the sensitivity to the initial condition
Throughout the present paper, we address and verify only
first point, not the second.

These three independent methods of obtainingq* values
have already been tested and verified with numerical ca
lations for a variety of one-dimensional dissipative~symmet-
ric and asymmetric! map families@1–9#, which strongly sup-
ports the idea that all these methods yield one and the s
properq* value of a given map. On the other hand, up
now ~to the best of our knowledge!, there exists no attempt a
testing these three methods in more general situations lik~i!
two- ~or higher-!dimensional dissipative maps,~ii ! conserva-
tive maps, and~iii ! high-dimensional dissipative and conse
vative systems. In this study, our aim is to analyze a tw
dimensional dissipative map along these lines, wh
hopefully constitutes an important step forward as, we
lieve, it will presumably stimulate further efforts addressi
the other general cases given above.

The two-dimensional map that we focus on here is
Henon map@17#,
06621
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F~x,y!:S x

yD→S 12ax21y

bx D , ~7!

wherea andb are map parameters. This map reduces to
standard logistic map whenb50, whereas it becomes con
servative whenb51. Between these two cases, it is a tw
dimensional dissipative map. Specifically, we focus on sm
values of theb parameter such asb50.001, 0.01, 0.1, etc.
since, for greater values ofb, the numerical procedures use
in the first and second methods do not allow us to anal
the map properly because of the increasing complexity of
system. To calculate the largest Lyapunov exponent of
system, among the numerical procedures like the Benettiet
al. @18# or Froyland@19# algorithms, we use the procedur
given in @20#.

Before introducing our numerical findings from the thr
methods discussed above, let us recall our expectati
Since the Henon map, for allb values, belongs to the sam
universality class as the logistic map~namely, it has the same
Feigenbaum numbers and box counting fractal dimensio
the edge of chaos as the logistic map, irrespective of thb
values, although the chaos threshold valueac decreases
monotonically for increasingb values!, the natural expecta
tion is to find aq* value for the Henon map that coincide
with the value of the logistic case (q* .0.24) for all b val-
ues. However, since the verification of these three meth
~employed so far to study only one-dimensional maps! in
higher-dimensional maps is quite valuable, it is better to
a test system with well-known critical behavior such as
Henon map. Within this reasoning, the present work w
hopefully give relevant information about the proper proc
dure to be used in investigating other high-dimensional s
tems belonging to distinct universality classes.

First method. Using the numerical procedure given
@20# for the calculation of the Lyapunov exponent, one c
determine the time evolution of the sensitivity function. T
procedure is the following. Using the derivative of th
Henon mapDF(x,y), one can compute how an infinites
mally small error in a point (x,y) of the attractor is trans-
formed by one iteration. For any arbitrary directio
@cos(f),sin(f)# of the error, one can compute the tran
formed error using the equation

DF~x,y!S cos~f!

sin~f!
D 5S 22ax cos~f!1sin~f!

b cos~f!
D . ~8!

Therefore the error amplification is measured by the fac
$@22ax cos(f)1sin(f)#21@bcos(f)#2%1/2. By iteration and
renormalizing this procedure one can obtain the larg
Lyapunov exponent. As is seen in Fig. 1, it exhibits a pow
law divergence (j}t1/(12q* )) at the edge of chaos and th
upper bound slope of this fractal structure allows us to c
culate theq* value. For the (x0 ,y0) pairs, we use the nu
merically determined extremum values ofx and its corre-
sponding y values for eachb parameter. For example
(x0 ,y0)5(1,0) for b50 ~logistic case!, (x0 ,y0)
5(1.000 8451 . . . ,20.000 000 1749 . . . ) for b50.001,
and (x0 ,y0)5(1.008 4814 . . . ,20.000 019 8735 . . . ) for
2-2
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b50.01. The values of the criticala parameter calculated a
the edge of chaos for someb values are the following:ac
51.401 155 18 . . . for b50, ac51.399 666 71 . . . for b
50.01, andac51.386 372 88 . . . for b50.01. From the
analysis of Fig. 1, although the fractal structure and the sl
seem to deteriorate with increasing values ofb, this does not
prevent us from concluding that the properq* value of the
Henon map, for allb values, isq* .0.24 since it is clearly
seen that the fractal structure and the slope coincide with
logistic case (b50) for smaller time steps~on a logarithmic
scale! asb values increase, whereas they start to deterio
for larger time steps. As the values ofb increase, the begin
ning of this deterioration shifts to smaller time steps. T
originates from the fact that one needsac values with greater
precision~in our calculations we have 10–11 digit precisio!
asb values increase, since the map becomes more com
More precisely, this effect is the same as the one that we
even for the logistic map if lower precision is used for theac
value ~for example, instead of 10–11 digit precision if on
uses 6–7 digits forac , then a similar type of deterioration i
the fractal structure is seen for smaller time steps for
logistic case as well!. This point will become more transpa
ent below when we discuss the second method for obtain
the properq* value of the Henon map.

Second method. Now we turn our attention to the multi
fractal singularity spectrumf (a) of the critical attractor. If
we can construct thef (a) curve for the Henon map, then
is evident from the scaling relation~3! that, using the end
points of the spectrum, we can determine the properq*
value of this map. In constructing thef (a) curve, we use the
well-known procedure of Halseyet al. @13#; however, it is
suitable here to mention that other algorithms such as tha
Cvitanovicet al. @21# can also be used for this purpose. B
fore giving our results for the Henon map, we believe it
better to reexamine the logistic map within this method
order to clarify the effect of the precision of theac values. To

FIG. 1. Time evolution of the sensitivity function in a log-lo
plot for various values of theb parameter.
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illustrate this point, in Fig. 2~a! we give three different case
for the logistic map. It is clearly seen that thef (a) curve
obtained using high precision forac ~circles! does not coin-
cide with the one obtained using less precision forac ~dotted
line! for the same number of iterations (I 51024). On the
other hand, we realize that it is possible to obtain the corr
curve with less precision inac if smaller values of iteration
numbers are used (I 5256), as is evident from Fig. 2~a! ~full
line!. The same kind of behavior for thef (a) curve has been
observed for the Henon map as shown in Fig. 2~b!. Analyz-
ing the results given in this figure, one can easily conclu
that for the Henon map (bÞ0) the precision of theac value
used in the calculations is not enough when a larger num
of iterations (I 51024) is used, whereas the curve coincid
with that of the logistic case~as expected! if a smaller num-
ber of iterations is used (I 5256). It is worth mentioning that

FIG. 2. Behavior of thef (a) curve~a! for the logistic map,~b!
for the Henon map.
2-3
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the correct value of the box counting fractal dimensiondf of
the critical attractor of the Henon map, which is the ma
mum value of thef (a) curve, is consistent with the abov
discussion~see Fig. 2!. Therefore, in light of this analysis
these results are quite convincing and allow us to concl
that theq* value of the Henon map that comes from t
second method is the same as the one obtained from the
method.

Third method. Finally, we shall use the third method~i.e.,
entropy increase rate procedure! to estimate the properq*
value of the Henon map in order to strengthen the result
the first and second methods. To do this, we implement
following procedure@5,6#: first, we partition the phase spac
into W equal cells (W5100031000); then we choose one o
these cells and selectN initial conditions all inside this cell.
As time evolves, theseN points spread within the phas
space, yielding a set of probabilities. At the beginning of
time, naturally Sq(0)50; then the entropy increase ra
gradually exhibits three successive regions. The entrop
almost constant in time in the first region, then it starts
creasing in the second~intermediate! region, and finally satu-
rates in the third one. Among these regions, the intermed
one is the region where the linear increase of the pro
entropy is expected to emerge@5,6#. The time evolution of
Sq(t) for the Henon map is given in Fig. 3. It is seen that,
the intermediate region, the linear increase of the entr
with time emerges only for a special value ofq, and this
value corresponds to theq* value ~within a good precision!
determined previously from the other two methods. Wh
qÞq* , the entropy curves upward~if q,q* ) or downward
~if q.q* ). In order to quantitatively support this picture, w
fitted the curves with the polynomialSq(t)5A1Bt1Ct2 in
the intermediate region@ t1 ,t2#. Since the nonlinearity coef
ficient R[C(t11t2)/B is a measure of the importance of th
nonlinear term, it should vanish for a strictly linear fit. In th
inset of Fig. 3, we present the behavior ofR from which we
estimate the proper value ofq as q* 50.25, which is the
value of theq index whenR is strictly zero.
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Summing up, we analyzed the mixing properties of a tw
dimensional dissipative map at the edge of chaos using t
distinct methods that have been developed and tested s
for many one-dimensional map families. This work nume
cally verifies the scenario in two-dimensional maps, and w
hopefully stimulate projects addressing more general ca
like high-dimensional dissipative and/or conservative d
namical systems. Along these lines, in an ongoing pro
which will be reported elsewhere, we analyze another tw
dimensional map, the Lozi-type map@20#, to provide addi-
tional support for the present scenario.

Financial support from the Turkish Academy of Scienc
from the TUBA/GEBIP Program is acknowledged. I als
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tion of the Lyapunov exponents.

FIG. 3. Time evolution of the Tsallis entropy forb50.1 for
three different values ofq. Inset: The nonlinearity coefficientR
versus q. The interval characterizing the intermediate region
@7,19#. The dotted line is a guide to the eye.
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