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Two-dimensional maps at the edge of chaos: Numerical results for the Henon map
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The mixing propertiegor sensitivity to initial conditionsof the two-dimensional Henon map have been
explored numerically at the edge of chaos. Three independent methods, which have been developed and used
so far for one-dimensional maps, have been used to accomplish this task. These metfipdseanecasure of
the divergence of initially nearby orbitséii) analysis of the multifractal spectrum, akid) computation of
nonextensive entropy increase rates. The results obtained closely agree with those of the one-dimensional cases
and constitute a verification of this scenario in two-dimensional maps. This obviously makes the idea of weak
chaos even more robust.
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The growing number of works presently addressing oneupper bounds of a complex time dependence of the sensitiv-
dimensional dissipative maps signals the increasing interedty function, which includes considerable and everlasting
in exploring the behavior of nonlinear dynamical systems afluctuations. These upper bourfdgt) «t¥(*~97 allow us to
the edge of chadal—9]. This interest mostly stems from the determine the proper value of thpindex (say g*) for the
fact that the standard theory considers this special gamd  dynamical system under consideration.
also all other points where the standard Lyapunov exponent The second method for the same purpose is based on the
vanishegasmarginaland there is less work addressing thesegeometrical aspects of the critical attractor of the system at
marginal points directly than on other regions of the systemthe edge of chaos. Due to the complexity of the critical dy-
Recent work addressing the behavior of dynamical systemsamical attractor, a multifractal formalism is needed in order
at these points is based on the conjecture that the divergente reveal its complete scaling behavior. In this formalism,
of initially nearby trajectories, characterized by the sensitiv-each moment of the probability distribution has a contribu-
ity function tion coming from a particular subset of points of the attractor

with fractal dimensionf. Using a partition containingv
Ax(t) 1 boxes, the content of each contributing box scaleMas.
@ The multifractal measure is then characterized by the con-
tinuous functionf («) which reflects the fractal dimension of
[whereAx(0) andAx(t) are the discrepancies of the initial the subset with singularity strength[13,14. Using the scal-
conditions at times 0 ant{, is not of exponential type at ing behavior of the multifractal singularity spectrififw), a
these marginal points, but rather of power-law type, such adifferent scaling relation has been propo$ad

(2]
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which comes from the conjecture that the controlling equa-
tion becomesié/dt=\ &9 (instead of the usual onéé/dt

=\1£). This result recovers the standard one in ¢fie 1 where a i, and @,y are the vanishing points of the down-
limit and also defines a generalized version of the Lyapunov min max gp

exponent\... which inversely scales with time. but now ward parabolalike concave curd¢«) and characterize the
XpC ar Versely o ' scaling behavior of the most concentrated and most rarefied
within a power law. Within this unified scheme, apart from

) _..regions on the attractor. This fascinating relation, which con-
the standard regimes where we have chaos and sensitivi o . X
: o N . ects the power-law sensitivity of dynamical systems with
and insensitivity to the initial conditions, we also have weak

insensitivity to the initial conditions fog>1, \;=0, A, purely geometrical quantities, establishes another indepen-

o o S dent method for estimating thg* value of the dynamical
<0 and weak sensitivity to the initial conditions fgr 1, system under study.

N1=0, \¢>0. The last case also characterizes the most in=""_. . i
teresting marginal point, the chaos threshold. This kind of Finally, the third method of accomplishing the same task

. s Is with the entr incr r . For lar I
asymptotic power-law sensitivity to the initial conditions was deals with the entropy increase raf&sf]. For large classes

; of dynamical systems, the rate of information loss in time is
e b ot e CDTSEEFEG by e KOMogoro-SNES) enony K.

mp P ) which is defined as the increase, per unit time, of the stan-

pected to be valid not only at very large times but also at

i =—3% ninp
intermediate times as welbf course after a short transient dard Boltzmann-Gibbs entrogf, = ==, pjln p, namely,
This equation in fact corresponds to power-law growth of the

o Si(Y)
Ki=lim lim lim & , 4)
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wheret is the time,W is the number of regions in the parti-
tion of the phase space, aitis the number of initial con-
ditions (all chosen at=0 within one region among the/
available onesthat are evolving in time. Although the KS
entropy is defined, in principle, in terms of a single trajectory
in phase space, it appears that, in almost all cases, it is po
sible to replace it by one based on an ensemble of initi

conditions. The third method basically depends on the en

semble version of the generalized KS entrdgy, which
was introduced as the increase of a proper nonextensive e
tropic form, namely,

o Syt
Kgq=Ilim lim lim ——. (5)
t—oW—oN—-x©
Here S, is the Tsallis entropy defined 5]
w
1-2, [pi(0)]°
Sy(t)= =1 (6)

whereW is the total number of configurations afd;} are
the associated probabilities. It is clear that, consistently, th
well-known Pesin equality is also expected to be generaliz
able asKy=\q if A\;>0 andK,=0 otherwise. Within this
scheme, it is conjectured thét a specialg* value exists
such thatK, is finite for g=qg*, vanishes forg>q*, and
diverges forg<<g*; (ii) this specialy* value coincides with

al
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wherea andb are map parameters. This map reduces to the
§§andard logistic map whelm=0, whereas it becomes con-
ervative wherb=1. Between these two cases, it is a two-
dimensional dissipative map. Specifically, we focus on small
values of theb parameter such as=0.001, 0.01, 0.1, etc.,
l$1i_nce, for greater values &f the numerical procedures used
In the first and second methods do not allow us to analyze
the map properly because of the increasing complexity of the
system. To calculate the largest Lyapunov exponent of the
system, among the numerical procedures like the Benettin
al. [18] or Froyland[19] algorithms, we use the procedure
given in[20].

Before introducing our numerical findings from the three
methods discussed above, let us recall our expectations.
Since the Henon map, for dil values, belongs to the same
universality class as the logistic mapamely, it has the same
Feigenbaum numbers and box counting fractal dimension at
the edge of chaos as the logistic map, irrespective ofbthe
values, although the chaos threshold value decreases
monotonically for increasing values, the natural expecta-
tion is to find ag* value for the Henon map that coincides

fith the value of the logistic casey{=0.24) for allb val-

ues. However, since the verification of these three methods
(employed so far to study only one-dimensional mains
higher-dimensional maps is quite valuable, it is better to use
a test system with well-known critical behavior such as the
Henon map. Within this reasoning, the present work will

that coming from the two other distinct methods explal_nedhopefu”y give relevant information about the proper proce-
above. This also connects tig values with the entropic  qyre to be used in investigating other high-dimensional sys-
index g of the Tsallis entropy as mentioned [ib6]. At this  {oms belonging to distinct universality classes.

point, it is worthwhile to clarify a subtlety related to the  Fjrst method Using the numerical procedure given in
generalized Pesin equality. In fact, taegeneralized Pesin [50] for the calculation of the Lyapunov exponent, one can
equality implies two things. First, the values@tletermined  getermine the time evolution of the sensitivity function. The

through the entropy rates are the same as those measurgdhcedure is the following. Using the derivative of the

through the other two distinct methods; second, the slopes Gfignon mapDF(x,y), one can compute how an infinitesi-
the entropy rates are the same as the generalized Lyapun@y, iy small error in a pointx,y) of the attractor is trans-

exponents of the sensitivity to the initial co_nditions. formed by one iteration. For any arbitrary direction
Throughout the present paper, we address and verify only trﬁ:os@),sin(d;)] of the error, one can compute the trans-

first point, not the second. . formed error using the equation
These three independent methods of obtaimjfigvalues

have already been tested and verified with numerical calcu- cog &) —2axcod ¢)+sin( ¢)
lations for a variety of one-dimensional dissipatiggmmet- DF(x,y)( ) ) = (8)
ric and asymmetricmap familieg1—9], which strongly sup- sin(¢) bcog #)

ports the idea that all these methods yield one and the same S

properg* value of a given map. On the other hand, up to I herefore the error an;pllﬂcatlon |515721easur_ed by the factor
now (to the best of our knowledgethere exists no attempt at 1l —2axcos(p)+sin(¢)*+[bcos@) '}~ By iteration and
testing these three methods in more general situationgilike "eénormalizing this procedure one can obtain the largest
two- (or higher)dimensional dissipative mapéi) conserva- Lyapunov exponent. As is seen in Fig. 1, it exhibits a power-
tive maps, andiii ) high-dimensional dissipative and conser- law divergence §xt¥(1=9")) at the edge of chaos and the
vative systems. In this study, our aim is to analyze a two-upper bound slope of this fractal structure allows us to cal-
dimensional dissipative map along these lines, whictculate theg* value. For the Xq,yo) pairs, we use the nu-
hopefully constitutes an important step forward as, we bemerically determined extremum values xfand its corre-
lieve, it will presumably stimulate further efforts addressingspondingy values for eachb parameter. For example,

the other general cases given above. (X0,Yo)=(1,0) for b=0 (logistic casg (Xg,Yo)
The two-dimensional map that we focus on here is the=(1.0008448L...,—0.000000174...) for b=0.001,
Henon mag17], and (Xp,yo)=(1.008484 ...,—-0.000019875...) for
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FIG. 1. Time evolution of the sensitivity function in a log-log 0.6
plot for various values of the parameter. d=0.54 (b)
b=0.01. The values of the critical parameter calculated at .
the edge of chaos for sontevalues are the followinga, | # + % | ::;0;011:.]?3024
=1.4011558... for b=0, a,=1.3996667... forb 0.4 . b=0:00]f1=256
=0.01, anda.,=1.3863728... for b=0.01. From the -
analysis of Fig. 1, although the fractal structure and the slope ~
seem to deteriorate with increasing valuebothis does not 3
: =
prevent us from concluding that the propgt value of the
Henon map, for alb values, isq* =0.24 since it is clearly 02 4
seen that the fractal structure and the slope coincide with the '
logistic case §=0) for smaller time step&n a logarithmic
scalg asb values increase, whereas they start to deteriorate
for larger time steps. As the values Ioincrease, the begin-
ning of this deterioration shifts to smaller time steps. This 3
originates from the fact that one neegjsvalues with greater 0.0 — T R T
precision(in our calculations we have 10—11 digit precision 0.4 0.6 08 1.0
asb values increase, since the map becomes more complex. o
More precisely, this effect is the same as the one that we face
even for the logistic map if lower precision is used for the FIG. 2. Behavior of thef (@) curve(a) for the logistic map(b)

value (for example, instead of 10—11 digit precision if one for the Henon map.
uses 6—7 digits foa., then a similar type of deterioration in
the fractal structure is seen for smaller time steps for theallustrate this point, in Fig. @) we give three different cases
logistic case as well This point will become more transpar- for the logistic map. It is clearly seen that tfiéx) curve
ent below when we discuss the second method for obtainingbtained using high precision far; (circles does not coin-
the properg* value of the Henon map. cide with the one obtained using less precisionaptdotted
Second methodNow we turn our attention to the multi- line) for the same number of iteration$=f1024). On the
fractal singularity spectrunfi(a) of the critical attractor. If other hand, we realize that it is possible to obtain the correct
we can construct th&(«) curve for the Henon map, then it curve with less precision ia, if smaller values of iteration
is evident from the scaling relatio(8) that, using the end numbers are used € 256), as is evident from Fig.(@ (full
points of the spectrum, we can determine the proger line). The same kind of behavior for tH€«) curve has been
value of this map. In constructing tH€«) curve, we use the observed for the Henon map as shown in Figp) 2Analyz-
well-known procedure of Halsegt al. [13]; however, it is  ing the results given in this figure, one can easily conclude
suitable here to mention that other algorithms such as that dhat for the Henon mapb( 0) the precision of the, value
Cvitanovicet al. [21] can also be used for this purpose. Be-used in the calculations is not enough when a larger number
fore giving our results for the Henon map, we believe it isof iterations (=1024) is used, whereas the curve coincides
better to reexamine the logistic map within this method inwith that of the logistic caséas expectedif a smaller num-
order to clarify the effect of the precision of thg values. To  ber of iterations is used € 256). It is worth mentioning that
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the correct value of the box counting fractal dimensigrof i
the critical attractor of the Henon map, which is the maxi- 45 104 w=1000x1000 b=0.1
mum value of thef(«) curve, is consistent with the above o N=W
discussion(see Fig. 2 Therefore, in light of this analysis, 054 %
these results are quite convincing and allow us to conclude R "‘:.. .
that theg* value of the Henon map that comes from the 00 ”‘...._ "
second method is the same as the one obtained from the first _ 807 =025 Rl SN B =0.05
method. :ts- 0.5 T T T T T u

Third method Finally, we shall use the third methde., “ et e U
entropy increase rate procedute estimate the propeg* - "
value of the Henon map in order to strengthen the results of 15 - a" Y Y Y
the first and second methods. To do this, we implement the . o®® 9=0.24 (g%
following procedurd5,6]: first, we partition the phase space 2" _o® i
into W equal cells (W=1000x 1000); then we choose one of m ; o : AAAAAAAALL AqA=0A.5A
these cells and selebt initial conditions all inside this cell. al piz2a

T T T

As time evolves, thes®l points spread within the phase
space, yielding a set of probabilities. At the beginning of the
time, naturally S;(0)=0; then the entropy increase rate 4
gradually exhibits three successive regions. The entropy is
almos.t anStam in time in the. first re_gion, the.n it starts in'three different values of. Inset: The nonlinearity coefficierR
creasing in the secor(mtermedlatézreglon, and flnglly satu-. versusg. The interval characterizing the intermediate region is
rates' in the thqu one. Among these regions, the mtermedlat{ai,lg]_ The dotted line is a guide to the eye.

one is the region where the linear increase of the proper

entropy is expected to emer¢®,6]. The time evolution of Summing up, we analyzed the mixing properties of a two-
Sy(t) for the Henon map is given in Fig. 3. It is seen that, indimensional dissipative map at the edge of chaos using three
the intermediate region, the linear increase of the entropglistinct methods that have been developed and tested so far

20

FIG. 3. Time evolution of the Tsallis entropy fdr=0.1 for

with time emerges only for a special value @f and this
value corresponds to thgg® value (within a good precision
determined previously from the other two methods. Whe
g#q*, the entropy curves upwar@ q<q*) or downward
(if g>qg*). In order to quantitatively support this picture, we
fitted the curves with the polynomid&,(t) =A+Bt+ Ct?in
the intermediate regioft,,t,]. Since the nonlinearity coef-
ficientR=C(t,+1t,)/B is a measure of the importance of the
nonlinear term, it should vanish for a strictly linear fit. In the
inset of Fig. 3, we present the behavior®from which we
estimate the proper value af as g* =0.25, which is the
value of theq index whenR is strictly zero.

for many one-dimensional map families. This work numeri-
cally verifies the scenario in two-dimensional maps, and will
opefully stimulate projects addressing more general cases
ike high-dimensional dissipative and/or conservative dy-
namical systems. Along these lines, in an ongoing project
which will be reported elsewhere, we analyze another two-
dimensional map, the Lozi-type ma@0], to provide addi-
tional support for the present scenario.
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