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Wave chaos in the elastic disk
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The relation between the elastic wave equation for plane, isotropic bodies and an underlying classical ray
dynamics is investigated. We study, in particular, the eigenfrequencies of an elastic disk with free boundaries
and their connection to periodic rays inside the circular domain. Even though the problem is separable, wave
mixing between the shear and pressure component of the wave field at the boundary leads to an effective
stochastic part in the ray dynamics. This introduces phenomena typically associated with classical chaos as, for
example, an exponential increase in the number of periodic orbits. Classically, the problem can be decomposed
into an integrable part and a simple binary Markov process. Similarly, the wave equation can, in the high-
frequency limit, be mapped onto a quantum graph. Implications of this result for the level statistics are
discussed. Furthermore, a periodic trace formula is derived from the scattering matrix based on the inside-
outside duality between eigenmodes and scattering solutions and periodic orbits are identified by Fourier
transforming the spectral density.
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I. INTRODUCTION focus here on the in-plane vibrations for which the wave
equation is still vectorial, which makes it more complex
In the beginning of the 20th century, Debye studied thethan, say, the scalar Helmholtz equation. The wave field can
density of vibrational modes in a solid body in the context ofbe decomposed into two polarizations, that is, pressure and
his work on the heat capacity. He found that the averagshear waves, which have different wave speeds. The two
density is, in leading order, proportional to the volume of thepolarizations couple at the boundary for physically relevant
body times the third power of the frequency. Corrections toboundary conditions. An underlying ray dynamics emerging
Debye’s result were found later, involving contributions dueat high frequencies has similarly two types of rays traveling
to the surface of the bodyL,2]. The density of eigenfrequen- at different speeds and conversion between polarizations
cies of a solid body contains apart form these smooth termtakes place at the boundary. Ray conversion introduces a
also oscillatory contributions, which build up the discretestochastic component into the dynamics and may lead to a
spectrum of individual eigenmodes. These oscillatory correclarge increase of possible ray trajectories compared to deter-
tions have been studied intensively over the last decade or sainistic billiards for the same domain shaf&s.
in the context of the Helmholtz and the Schimger equa- We shall discuss mainly the case of a circular disk here, a
tions. In the high-frequency limit they are known to be re-separable problem due to the spherical symmetry. The case
lated to periodic orbits of an underlying classical dynamicsof elastic bodies without symmetries and fully chaotic clas-
that is, the ray dynamics in a billiard in the former or the sical ray dynamics has been discussed in ffincluding a
Hamiltonian dynamics of the corresponding classical systengomparison with the semiclassical quantization of chaotic
in the latter casd3,4]. It was, in particular, observed that systemq3]. The scattering from two circular cavities in an
different formulas apply when the classical dynamics is in-elastic medium has been treated in Ré0]. The common
tegrable[5] or chaotic[6]. The relation between the wave idea is to write the spectral density as the trace of the Green’s
equation and a related deterministic ray dynamics is less olfunction which can, in turn, be expressed as sum over clas-
vious in elasticity. The wave equations are vectorial and difsical periodic orbits. We shall derive such a trace formula for
ferent wave modes with differing wave velocities coexist.the elastic disk and compare the results with the numerically
The notion of chaos or integrability needs to be reexaminedalculated spectrum. We will furthermore show that the wave
here, which is the main purpose of this paper. equation as well as the classical ray dynamics still possess a
In what follows, we shall assume that the elastic bodydegree of “randomness” due to the wave mixing at the
consists of an isotropic material. To reduce the dimensionalboundary, even though angular momentum is conserved.
ity of the problem, we will furthermore consider only bodies  The quantum spectra of systems whose classical dynam-
of the form of a thin plate or an infinite rod with constant ics is chaotic has been found to follow random matrix theory
cross section. The vibrations in the plate or rod decoupl¢RMT) originally developed in nuclear physics, see, for ex-
then into two classes, the in-plane and the antiplane vibraample, Refs[11,12. In the elastic case, spectral statistics
tions [7] (for plates, this is only true as long as the wave-coinciding with RMT has been observed in experiments for
length is much smaller than the thickness of the platbe  monocrystalline quartz blocks and three-dimensional Sinai
problem is thus reduced to two spatial dimensions. We willilliards[13], as well as, in experimental and numerical stud-
ies of flexural mode§l14,15 and in-plane modesl6,17] for
stadium-shaped plates. Recent experimental results using
*Email address: niels.sondergaard@nottingham.ac.uk fused quartz plates reveal that even seemingly regular geom-
"Email address: gregor.tanner@nottingham.ac.uk etries such as rectangular plates lead to spectral statistics
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following RMT for in-plane modeg18]. This is attributed
here to the mode mixing between pressure and shear waves
at the boundary which breaks the continuous symmetry of
the underlying classical ray dynamics. The elastic wave
equation is indeed nonseparable for rectangular boundaries.
Recently, spectra of graphs have also been shown to be-
have quite similar to chaotic systerff,2Q; they possess a
trace formula for the spectral density and show random ma-
trix statistics. We will make a connection between the ray
dynamics in an elastic disk and the dynamics on a simple FIG. 1. Wave splitting for in-plane waves at the boundary.
Markov graph, and will show how mode conversion affects
the correlations in the eigenfrequency spectrum of the diskNote that the pressure wave speed is always larger than the
The paper is organized as follows. We shall first introduceshear wave velocity. It is this difference in wave speed which
the elastic wave equation and a high-frequency approxima€ads to the phenomenon of wave splitting in the ray dynam-
tion of its boundary element kernel in Sec. II. Next, the clasICs on impact with a boundary, see Fig. 1. The two wave
sical ray dynamics in a disk is discussed in Sec. IlI. In Sec€quations3) couple at the boundary, the details of the cou-
IV, the exact solution of the wave equation for circular sym-Pling depend on the boundary conditions. We shall, in the
metries is derived and high-frequency approximations ardollowing, always consider free boundaries, that is, no forces
diskussed. We will then study the so-called nearest neighbgict on the surface of the body. Forces acting on general sur-
spacing distribution for the disk spectrum in more detail. Anface elements are described in terms of the stress tensor
expression for the oscillatory part of the level density in
terms of periodic orbits will be derived from the scattering
matrix in Sec. V.

Tij =\ &kukéij +,U,(ﬁiuj'+&jui),

where the summation convention is used. Free boundary

conditions correspond to
Il. THE ELASTIC WAVE EQUATION AND SHORT

WAVELENGTH APPROXIMATIONS t(uy=o(u)-n=0 4

We shall consider the propagation of elastic deformationgo; the displacement field at the boundary, wherdenotes
through an isotropic bogly. The_ partial dlf_ferentlal equatlon_m»[he normal to the boundary. The operataefers to the trac-
the frequency domain is the linear Navier-Cauchy equatioRion, The traction operatdor traction matrix after represent-
[7.21], ing it in a particular basjsfor a circular boundary will be
P needed later to calculate the eigenfrequency spectrum of an
pAWFA+w)V(V-U)+pou=0, @) elastic disk, and is explicitly derived in Appendix A.
whereu(X) is the displacement field in the body,u are the Waves propagate freely inside the medium, that is, the
pressure and shear components are decoupled and travel

material dependent Lameefiicients, andb is the density. along straight lines. Wave splitting occurs at the boundar
We shall restrict ourselves to two-dimensional problems in 9 9 ' P 9 y

what follows. A generalization of the results in this section thCCOI‘dIng to Snell’s law,
three dimensions is, however, straightforward. The two-
dimensional wave equation describes in-plane deformations
in plates or wave propagation in cylindrical bodies extending
to infinity along one axis.

Introducing elastic potential® andW¥ by using standard
Helmholtz decomposition of the displacement fie|dhat is,

cp _sin 0
Cs Sinég’

®

where ¢, and 65 denote the angle of incident or reflection of
the pressure and shear wave, respectively, measured with re-
spect to the normal to the surface, see Fig. 1. No mode con-
version takes place farwaves coming in at incident angles
(2 " : .
larger than a critical anglé.=arcsings/c,). The reflection
the Navier-Cauchy equation reduces to two Helmholtz equacoefficients at impact with a plane interface for free bound-
tions for the potentials ary conditions can be given in terms of an orthogonal2
coefficient matrixa [9],

u=up+us with u,=Va®, us=VxXWw,

(A+K2)D=0, (A+k3)W=0. 3
sin 205 sin 26,— x* cos’ 265
Here, k, andks are the wave numbers for the press(me RIS 20,5in 20, + x? co2 20, ©®
longitudina) and sheartor transversalwave component, re-
spectively. The wave velocities relating the wave numbers to
the frequencyw via the dispersion relatiok, ;= w/c, s are
different for the two different polarizations, one obtains

Fss™ App,

- 2 2 _
aps= —asp and apptap =1,
c = /)“Lzr“ c— \/E where « .., relates an incoming wave of polarization
P p p’ e{s,p} to an outgoing wave of polarizationr’ and «
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=C,/Cs. In the literature, often only the reflection coefficients
for the displacement field are given[7] related to the co-
efficient matrixa above by

/ C,CO0sé .
Arnpr = - Qg
C,+ COSO ./
Here, |a,.,/|? is equivalent to the proportion of the energy
density of the wave function undergoing transition frerh
—r, wheread e, |? is the ratio of the corresponding en-
ergy fluxes normal to the boundafwith normal velocity

C,.C0sf,). The unitarity ofe thus implies flux conservation
normal to the boundary. The tangential energy flux is, how

()
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frequencies is discrete and the solutions depend on the shape
of the domain and on the boundary conditions. The wave
equation is nonseparable for typical domain shapes and nu-
merical schemes, as, for example, boundary element meth-
ods(BEM's), have to be employed to calculate the eigenfre-
quencies and corresponding wave functions. The BEM is
typically less straightforward in the elastodynamical case
compared to applying it to the scalar Helmholtz equation.
The integral kernels become hypersingular for common
boundary conditions as, for example, free boundaries and the
displacement field is vectorial. Standard techniques to apply
BEM to the Navier-Cauchy equation are described in Ref.
[24].

A relatively simple expression for the boundary integral

ever, not conserved for free boundary conditions due to th&ernels can, however, be obtained when considering the

nonvanishing tangential stress,; giving rise to surface
waves(whereasor,,= o,;= 01,=0 at the boundan{22,23.

high-frequency limit. A generalization of Bogomolny’s trans-
fer operator method25], derived originally for the Helm-

We are interested here in solutions of the wave equationBoltz equation in bounded domains, yields in two dimensions
(1) in bounded domains in two dimensions. The set of eigena boundary kernel in the form of aX2 matrix, that is,

Gpp  Aps

- oo 0] 9L [
(9.9%0)=\5 -\ P

o

Asp  Ugg

whereq, q’ denote points on the boundary of the domain.

L(g, q') is the distance betweeqg and q’ in the two-
dimensional X,y) plane and the reflection coefficients are
defined in Eq.(6). The additional phases, s are Maslov

\/Czeika(q,q’)—in(w/Z)

0

\/Ieiksl-(qq/)i vs(ml2)
c

S

p

0

ing corrections. It is, however, a natural starting point to
investigate the connection between the wave dynamics in
elastic media of finite size and an underlying ray dynamics
that includes ray splitting.

indices that count the number of caustics along the path for In the following, we shall study the billiard with probably

each polarizatiorf3]. Approximations to the eigenfrequen-
cies are then obtained by solving
def1-T(w)]=0. 9

The transfer operata8) can be viewed as a discrete wave

the most simple geometry, namely, an elastic disk. Even

though the wave equation is separable for this particular

shape, there is some degree of wave chaos in this system,
which can be traced back to chaotic components of an un-

derlying ray dynamics.

propagator acting on boundary wave functions by mapping

outgoing two-component wave vectors at a painon the
boundary into outgoing wave vectors@t Wave mixing at
the boundary enters through the matni¢q). Snell’'s law(5)

is obtained by considering the two-step operator,

T%(q,9";0)= jgdq’T(q,q’;w)T(q’,q”;w)

in stationary phase approximation. Considenmstep opera-
tors T", one can derive periodic orbit trace formulas as pre
sented in Ref[9], see also Sec. V.

The transfer operator is in many respects a fairly crude.

Ill. CLASSICAL RAY DYNAMICS FOR CIRCULAR
DOMAINS

In this section, we shall discuss in more detail the ray
dynamics in isotropic media of general shape and, in particu-
lar, for two-dimensional circular domains.

We will adopt the following convention for a ray trajec-
tory in an elastic isotropic medium: a trajectory is at any
instant in time given by its position and momentum as well
as its polarization being either gfor s type. We may iden-
tify the wave numberg .= w/c,., me{p,s} as the momenta
f polarization7 with ks= «k,. A ray travels along straight
ines between impacts with the boundary. At the boundary;, it

approximation of the true BEM. It is the leading order term
in a 1o expansions of the exact boundary integral kerne
and does, in particular, not contain evanescent contributiond!
It can therefore not reproduce boundary effects such as sur-
face waves as well as diffraction or higher-order mode mix-

stays in a given polarization or undergoes mode conversion
ith probability

tpp:tss:|app|21 tps:tsp:|aps|21 (10
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a) g b) NpAg,+NAes=2mm, ny+ng=n=2m. (12
Here, Ap,, is the change in the azimuthal angle for a ray
with polarization between two reflections. The azimuthal

- boundary angle and the angle of incidence are related through the re-
lation Ap,.=m7—26,. The integer indices . correspond to

p the number of ray segments with polarizatierandm is the

number of rotations around the center. The nuni@r) of

E—— periodic orbits withn reflections(including permutations of

eET the polarizationsincreases thus exponentially like

T

FIG. 2. (a) Radial dynamics in the disk takes place on two
energy sheetEp:kg andE = kﬁz KzEp; transitions take place at
the boundaryr=a. (b) The boundary map is equivalent to the
probabilistic dynamics of a Markov process on a binary graph.

n
N(m)~ 52"

The fact that these orbitapart from then=0 case all form
where the reflection coefficients are given in E). The  continuous families is, however, a feature known from inte-
angle of reflection depends on whether mode conversiograble dynamics.
takes place or not via Snell's law and so does the momen- The dynamics becomes particularly simple when we re-
tum. A trajectory is uniquely determined after fixing its ini- strict our considerations to the motion in the radial coordi-
tial position and momentum and an infinite sequence ohate only. The dynamics inis one dimensional in each sheet
polarizations 7,75, ...,m,...e{s,p} reflecting the and bound away from the center due to the centrifugal po-
probabilistic nature of the dynamics. The dynamics in antential L2/2r?, see Fig. 2a). Transitions between the sheets
elastic isotropic medium is thus taking place on two differentoccur at the boundary=a for |b,|<1. The boundary map
energy sheets with energié‘sp:kf) and E;=k? with E, for the radial dynamics for fixet, is thus a simple stochas-
<E,. The dynamics on each sheet is deterministic, jumpgic process that may be described in terms of a graph with
from one sheet to the other may occur at the boundaries. two loops of the form shown in Fig.(B). The transition rates

We shall now turn to the dynamics in a circular disk with (10), which again depend only on the parametessand «,
radiusa. The angular momenturh is conserved at impact define a Markov process on this graph with topological en-
with a boundary both for rays staying in a given polarizationtropy h;=In2 and exponential decay of correlation fy,
and those undergoing mode conversion which follows di-#0 or 1. The chaotic component of the dynamics in the
rectly from Eq.(5), that is, elastic disk is thus a two-level stochastic process.

L =2, sin 6= zssin 6= const, (11) IV. THE ELASTIC DISK: EXACT RESULTS

. AND THE HIGH-FREQUENCY LIMIT
where we setz,=ak, and z;=aks. The maximal angular

momentum possible for a fixed frequen@yis |L ,a{=2; No The wave equation for a disk of radiwsis separable
wave splitting occurs foz,<|L|<z;. The dynamics in a independent of the boundary conditions. We will briefly dis-
disk follows a simple scaling relation and can be charactercuss the exact solutions in the case of free boundaries and
ized in terms of the dimensionless impact parametgrs make a connection between the eigenfrequencies of the inte-
=L/z, with b,= xbs. The mode splitting regime is charac- rior problem and the_spectrum of the s;_cattering maFrix for the
terized by|bp|<1; pures rays exist for l<|bp|<:<. A tra- corre_spondlng exterior prot_)lem. D_eta|ls are given in the Ap-
jectory takes on at most two different angles of reflectign pendixes A and B. It will, in particular, be shown that the
and 6, with sin6_=b_. scattering matrix is gqg|valent to the transfer oper&8iin

In the language of dynamical systems theory, one may saij!® nigh-frequency limit.
that the dynamics on each energy sheet is integrable, that is,
trajectories for fixed. and a given polarization are confined A. The scattering matrix
to a two-dimensional manifold in phase space with the topol-  The elastic wave equation can, for circular domains in
ogy of a torus. Mode conversion couples two specific toriyyg dimensions, be solved in terms of the basis functions
characterized byg,,L) and (Es,L) and transitions are pos- _
sible between these two tori only, see Figa)2 The total h(r,e)=J,(k,re'e, (13
dynamics is thus not ergodic.

For |bp|<1, the same initial condition in phase spacewhereJ,(k,r) is thelth order Bessel function witkr=p or
does, however, lead to an exponentially increasing number af and ¢ is the azimuthal angle. The separability of the wave
possible solutions due to the transitions between the energgquation reflects the conservation of angular momentum in
sheets. This leads, for example, to an exponential increase the classical ray dynamics; we obtain, as usual, that the an-
the number of periodic ray trajectories with increasinggular momentum takes on only integer vallies
length, a phenomenon usually associated with classical Applying free boundary conditions to a displacement
chaos. The latter follows directly from the periodic orbit con- wave vector obtained from the potentidls3) for fixed |
dition leads to the secular equation, see Appendix A,
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dett)(w)=0, (14) where the traction matrik is given as
|
2 1 2 ’ H !
I _EZS Ji(zp) —2pd (zp) i1131(zp) = zpdy (zp) ]
4= 1 (15
i1[31(29) ~ 259/ (29)] sz(<zS>—(|2— Ezi)amzs)
|
andz,=k_a. The condition(14) can be rewritten in terms of e i 0 e i 0
the scattering matrix for the outside problem, that is, for S%( 0 e ids] ¥ e—i¢s) (19
in-plane wave scattering in an infinite plate with a circular
hole. This connection is known as the inside-outside dualit)<Ni,[h
[26] between eigensolutions of the interior problem and
transparent scattering solutions. The scattering matrix for -
fixed angular momenturhis given ag22] ¢,=2,[V1—-b2—b_arccosb,)]— 7 (20)

S=-t (t) 4 (16) . . . . . .
and ¢ is the unitary matrix of reflection coefficients defined

in EqQ. (6) with angles of incidence fixed by the angular mo-
mentum conditior(11) with L=1. We thus obtain for transi-
tions between polarizations, 7',

see also Appendix B, wherg',t; are obtained from the
traction matrix(15) by replacing the Bessel function and its
derivatives by incoming and outgoing Hankel functions. Us-
ing J,(2)=[H{")(2) +H{)(2)]/2, which implies the same

AP , —i(¢p t+dbnr)
identity for the corresponding traction matrices, that is, S(rom)~azme ' @D

1 Note that the unitarity of thé matrix is preserved in this
== (4 +t), (17)  approximation. This is not true, in general, for short wave-
2 length approximations and results here from the quasi-one-
dimensionality of the dynamics.
the eigenfrequency conditiafi4) can be written as
Regime of no mode conversion<|b,|<#

o:de(tl):Ede(tﬁ)de(lﬂf.(tf)*l] For angular momenta corresponding to incident angles
4 larger than the critical angle ¢b,|>1, a somewhat differ-
ent treatment needs to be employed. Here the exponential
dett,")de(1-9). (18 Debye expansion must be used for the pressure wave leading
to an S matrix of the form

NS

The zeros of the first factor in Eq18) are related to the

resonances for exterior scattering at a circular cavity and are S’“(
all in the lower complexz plane. An eigenfrequency for the

interior problem of the disk implies that the scattering matrix . L .
at the same frequency has an eigenvalue 1. That is, a Scz_yy_lth a reflection coefficientin agreement with the plane
tering solution exists for which the obstacle, here the disk, idnterface resujt
transparent. This principle holds for general sha2&s.

A

0 age™ 2igs (22)

_ . . . Ass=— 7= (23
B. The scattering matrix in the high-frequency limit

In the following, we shall derive an approximation to the 5ng
scattering matrix in the high-frequency limit.
The mode conversion regimby|<1 Z,=1+cos 49+ i8 cosb Sir? Os\/sin’ 0s— 1/k>. (24)
In the energy—angular momentum regime for which theHere, the boundary conditions lead to a pure phase shift de-
impact parametejb,|=|L|/z,<1, the Hankel functions en- pendent on the angle of incidence. There is no attenuation
tering t= may be split in terms of phases and amplitudesassociated with this reflection, contrary to the wave splitting
using the oscillatory Debye approximation; one obtains tacase. The phase shift is due to a coupling to a surface longi-
leading orderAppendix B), tudinal wave[21].
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The transfer matrix for | bp|< 1

By parametrizing the boundary in terms of the azimuthal

anglee, one obtains for the transfer operaf8y in a circular

domain,
) 1) a  Ag
Tle.@i0)=\ 5= ESIHTCV(NP)
\/Telkpd 0
c

p

C

S

X (25

where Ap=|¢—¢'| and d is the distance between two
points ¢, ¢’ on the boundary, that is,

AY
d((p,(p')=2aSIn7.

The transfer operator depends only on the differehigeand
block diagonalizes with respect to the Fourier balis
=exp(l ¢)/\27 for integerl. One obtains, after evaluating
the second integral by stationary phase,

el 0

<||T||’>:5||/a|< 0 e2i¢s)' (26)
where the phases
L dag—1282 L 2

¢7T_§ T ( (P’TT) 2 Zﬂ- ( 7)

are taken at the stationary phase point

Ap, .

ak,cos——=ak,sinf_=lI, (28

2

which is the angular momentum conditi¢hl). The phases
¢, in Eq. (27) coincide with Eq.(20) after inserting the
stationary phase conditiahp . /2=arccod .., Eq.(28). The

S matrix in the approximatiori19) is thus equivalent to the
Hermitian conjugate of th& matrix up to a simple transfor-

mation in terms of a unitary diagonal matrix. In particular,

the eigenfrequency conditions dét{ T)~det(1—S)=0 co-
incide in the high-frequency limit.

The mean density of eigenfrequencies for fixed |

The mean density of eigenfrequencigdor fixed| can be
obtained from the scattering matr§ [26], that is,

_ 1 d
d(kp) = |dk Indets

Inserting the high-frequency limit of th& matrix (19) for
|bp|<1 one obtains to leading order,

PHYSICAL REVIEW E56, 066211 (2002

— 1d a
(ko) = Gr (@ b5 = (V1= b w1,
(29

Note that the mean level density dependskgnand| only
via the impact parametets,. Equivalently, we obtain from
Eq. (22), for 1<|bp|<«,

1 d
(k)= g da= T (30

C. Statistical properties of the eigenspectrum

We saw in the preceding section that a transition takes
place afb,|=|L|/kpa=1 between a pure shear wave regime
with |by, |>1 and a mode mixing regime witl,|<1. This
transmon is reflected in the ray dynamics, see Sec. lll.
Whereas only one family ofsheay trajectories exists for
fixed b, with [b,|>1, there are infinitely many such families

for |bp|<1 and their number increases exponentially with
the length of the trajectories. Such a phenomenon is reminis-
cent to the behavior typically found for chaotic classical dy-
namics. It was observed in Sec. Il that the dynamics in the
mode mixing regime can indeed be described by a stochastic
Markov process on a two-loop graph, see F|Q))2In the

limit b,—0, however, the transition rateg,=tss approach
one and the two modes decouple again leaving only two
possible ray trajectories.

All these regimes should manifest themselves also in the
spectrum of the elastic disk. Spectral correlations are known
to be particularly sensitive to the degree of chaos present in
an underlying classicafray) dynamics[11,12. A popular
statistical measure is the so-called nearest neighbor spacing
distribution P(s) giving the probability of finding two adja-
cent eigenvalues of the spectrumnfolded to mean level
separation onea distances apart. P(s) follows a Poisson
distribution for completely uncorrelated spectra, but has been
conjectured to coincide with the results obtained for en-
sembles of random Hermitian matrices for completely cha-
otic dynamics.

In Fig. 3, the spectrum obtained from the exact eigenfre-
guency conditior(15) for an aluminum disk withc«=2.05 is
shown. Here, the wave numbeg=ak, of an eigenvalue
with angular momenturhis plotted. One notices a difference
in the mean density of eigenvalues for fixedbove and
below the diagonalb,|=[l|/z,=1, see Eqs(29) and(30).

The lowest eigenfrequency in eatkeries can be attributed
to a surface(or Rayleigh wave. Mode mixing occurs for
|bp|<1 orak,>L.

First we look atP(s) for the total spectrum which is
obtained by projecting the differehteigenfrequency series
in Fig. 3 onto thez,, axis. One finds indeed good agreement
with Poisson statistics as shown in Figay This reflects the
fact that the ray dynamics in the elastic disk is not ergodic
but restricted to manifolds with fixed angular momentum
which have the form of a single torus fob,|>1 or two
coupled tori forlbp|<1. The elgenfrequenC|es for differeint
series are thus uncorrelated which leads to vanishing corre-
lations in the full spectrum for largg, after projection onto
the z, axis.

In order to see the influence of wave mixing on the spec-
trum, we need to study spectral correlations within a given
series. Indeed, the wave dynamics for fixad given by the
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L=0 few bonds[27]. One notices, however, that a gap is opening
wave . . .

no wave splitting up in P(s) for smalls asby, increases from zero. This can be

splitting interpreted as level repulsion due to mode mixing which in-

creases as,, deviates from 1. Fob,—1 a different effect
sets in; the pressure mode is suppressed and we witness the

transition form a two mode to a one mode wave dynamics
with equidistant eigenfrequencies.
S = waves

only V. EIGENFREQUENCY DENSITY AND A PERIODIC
ORBIT TRACE FORMULA

So far, we have shown that the traction matrix as well as
the scattering and transfer matrices can be brought into block
Raleigh- diagonal form where each>22 block produces the spectrum
wave for fixed angular momenturh In this section, we will make
an explicit connection between the full spectrum and peri-

odic trajectories in the elastic disk by looking at the total
spectral density

d(w)=2 S0 w),

FIG. 3. The eigenspectrum of the disk for aluminum with '
=2.05; the wave numbex,=ak, of an eigenfrequency is plotted \yhere the sum runs over all eigenfrequencirgerms of the
versus the angular momentumEigenfrequencies witlak,<I (or angular velocityw) of the disk.
Ibp|>1) are pure Shiar states, m?jde mlxmgfoccursfqél:al.l'l'_hﬁ The spectral density can quite generally be written in
OWeS; states in eachseries are due to surface wavayleigh o/ m5 of 4 smooth part and oscillatory contributions, the lat-
waves. ter containing the period orbit contributions, that is,

2x 2 transfer matrix Eq(26) [or the equivalent matrix for d(®)=dgmoot{ @) + dgsd ®).

|by|>1 obtained from Eq(22)] being of the form _ _ ]
The smooth part gives the mean density of states which

eiZpdp(bp) 0 may be obtained using

0 Zpds(bp)

TI(Zp):al(bp)( ) . (31

dN
dsmoot{ @) = (sj—n(:)ooth’
The transfer matrix, consisting of a unitary transition ma-
trix a times a diagonal matrix is typical for propagation on WhereNgmqorhis the mean part of the spectral counting func-
quantum graphs as studied in Reff$9,20. The phases in tion N(w) giving the number of levels below. General

the diagonal matrix&r,,?;bp are thereby interpreted as the resu_lts for t.he smqoth_part of the counting fur_]_ction of iso-
lengths of the bonds in the graph, here the two loops in FigFr.OD'C elastic m¢d|a with free boundary conditions can be
2(b). As we changez,,, we expect the correlations within a given[1,2], that is,

given | series to change according to the degree of wave c-24¢-2 B

mixing possible, that is, to the degree, thgi deviates from Ngmoot{ @)~ —————Sw?+ Lot+o(w) (32

0 or 1. Note that the transition amplitudgs allowing for 4m 4mCs

transitions betweep ands waves goes to zero both in the with

limit b,—0 andb,—1, see Eq(6); the wave modes de-

couple in these limits. We expect, furthermore, that correla- 1 4l

tions are locally the same for differehseries withb,, fixed, B=4n—3+ P + e

that is, along straight lines in Fig. 4 with,=const. We
therefore study the nearest neighbor spacing distributiomnd
P(s) for eigenfrequencies lying in a window given by the

intersection of the conb,+Ab, and the lineL =|=const; I fl arctan (2—1/8%)? de
the observed distributior3(s,b,) are indeed independent of Uk B 1 1 '
| and we may average(s,b,) over differentl series. 4 \/ 1-—— |24

The result is shown in Fig.(8) for three different values K282) \ g2

of b, andAb,=0.01. In addition, the value df,, as a func-

tion of b, is given; maximal mixing corresponds tp, HereS,L are the surface area and the perimeter of the do-
=0.5. The distributions are neither similar to the Poissonmain and finallyp= cg/cg with cg the Rayleigh wave veloc-
distribution, nor to any of the random matrix distributions. ity [7]. The leading term corresponds to the available phase
This nonuniversal behavior is typical of graphs with only aspace volume, whereas the next order term contains correc-
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a)
Pia)
1
0.
0.
0.
0.
£
5 6
FIG. 4. Statistical properties of
the eigenspectrum for aluminum
b) with k=2.05. (a) the nearest
_ a neighbor spacing distribution
P | b=012 P lb=055 ] po[B=12 (NNS) for all levels; (b) NNS dis-
* L ] L ) tributions for fixed impact param-
=r T a | h | eterb, together with the transition
+ ac |- - probabilitiest,, as a function of
Wik ] T ] an | 1 b,. The NNS is obtained for
- F-—J “rmE . E & stretches of eigenvalues lying in a
ol R WL Ir' 8 T range b,*Ab,, for angular mo-
T ' . menta froml =300-3000.
tpp 1 - g
0.8 —
0.6 —
O.4 |
s k=205
: (Aluminium)
(] 1 1 L L L
0O 02 04 06 08 1 1.2
b
tions due to surface states. In contrast to the scalar Helmholtz ~ A. Oscillatory part of the density of eigenfrequencies
equation for which the expansion Bk, can be worked We will first derive a periodic orbit expression forgrin
out to arbitrary order, in principl¢28], only the first two e high-frequency limitv>1 using the block-diagonal form
terms are known in elastodynamics at present. of the scattering matrix and the approximatid®), that is,

The fluctuating part of the density of states which con-

tains all the information about individual eigenfrequencies of Zi2
; . . . . = ~ (Npdptnsds)
the interior problem can be written in terms of the scattering 17> (@) I | 2 2 Ag e Hwlprnstd,

. . . II < max Ilslm X n
matrix of the outside problerf26,29. One obtains : o (34)
1 S 1d ‘ Here,| ,ax~ Zs denotes the maximal angular momentum and
dosc(w):;Ileﬁd_wTr[Sn(w)] : (33 the second sum runs over all binary symbol strings
" =11y, . . .,y Of lengthn with 7, e {p,s}. The amplitude
In the high-frequency limit this term is related to periodic ray A=, iS obtained as product over reflection coefficie(@

trajectories in the disk as will be shown below. that is,
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n
A’Tn:i[[l a”i”iﬂ’

¢, are the phases defined in EQO) andn,, ngs equal the
number of times the symbgi, s appears inm,. The sum
over binary symbol strings for fixeldis equivalent to a sum

over all periodic paths in the binary graph Fig. 2. Note that

the reflection coefficients as well as the phadesdepend
explicitly on | and w.

Next, we use Poisson summation to write the sum dver . ")
as aw 1
d(w)~\ —2
T n=1

TIS'=>, > A, e 2pdptnsdd
n

T “Islmax

” [
:E E maxdlAﬂnefzi(np¢p+nS¢>s)72frriml.

m M=—% J—lnay

(35
Evaluating the integrals by stationary phase using
de Ao,
ilz —arccosl/z,)=— ;p , (36

PHYSICAL REVIEW E66, 066211 (2002

Apo

po—

NpChp NeCs

cos6h®  cos6t’
By taking the complex conjugate and the derivative with

respect tow of Eq. (40), we finally obtain the spectral den-
sity to leading order in 14 as

= ApoTpoCOS 0T po—N7/2:+ /)

N po
[ © r
aa)E Tppo E Appo
T ppo r3/2

NyCp nes "1
+
cos6h®  cos6t’

Xcogr(wTppe—Nppem/2) + 7/4]. (42
The last expression is obtained after summing over orbits
related by cyclic permutations of the symbol coglend the
sum is now taken over all primitive periodic orbifspo of
arbitrary length, that is, over orbits not including repetitions

whereA ¢ is the angle spanned by a ray segment with poand cyclic permutations. The second sum owehen in-
larizations between two reflections, we obtain the stationarycludes the repetitions.

phase condition

A@iotal=NpA @+ NA pg=27m. (37

This is precisely the periodic orbit conditiofi2), that is,

only those angular moment&d =z, cos;A¢ contribute sig-
nificantly, for which a periodic orbit exists at frequeney
The second derivative of the phases in BBp) is

B d(A @iota—27M) _ Ny Nsg
dl z,Cc0s86, Z5C0SH;

(38)

with @, the angle of incident and c#s=sinzA¢,,.
After evaluating the phaseB , in Eq. (35) at the station-
ary phase point*, one obtains for the total phase

a
2(np®p+ngdy) + 27 * m=nykpd,+ngkgds—n >

o
=wT-n, (39

with n=n,+ng andd,, = 2asin3A¢, the length of a ray seg-

ment of polarizationr between reflections. Furthermoreis
the period of the periodic orbit. We finally obtain

()

TrS"~\/raw E Apoe—inp0+inq-r/2—iﬂ-/4, (40)
po

where the sum is taken over all periodic rays witheflec-
tions and

We note in passing that the res(#tl) can also be derived
from a generalization of thébelian trace formuld 30,31
valid for systems with continuous symmetries. Here the sym-
metry is used to integrate over families of orbits Due to
the rotational symmetry in the disk, one obtains

AFTF % an 77)
d ~\2/ — . _cod wTr—or5 ——|,
OSC(w) WOI%F ar |(90l(9|_| & r o'l" 2 4

(42

where T is the period of the orbitg=u—1 with x the
Maslov index,ar the order of the(possibly discrete sym-
metry group of the orbit and finally; the product of the
plane wave reflection coefficients for scattering at the bound-
ary. Finally, 26/ L (also called the anholonomy matrjde-
scribing the negative change of perimeter angle due to a
change of impact parameter is

a6 Ny Ng
R +
JL Z,C086, Z5COSHg

in agreement with Eq(38).

B. Periodic orbit spectrum

Equation(41) gives an explicit connection between peri-
odic ray trajectories in the disk and the eigenfrequencies of
the system. By taking a Fourier transform dfw) one
should be able to recover the periodic ray solutions including
orbits that change polarization along their path. To suppress
high-frequency oscillations in the signal, we convolute Eq.
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— long periods show up as comparatively high peaks in the
O spectrum. This is due to the lack of mode conversion when
the shear segments turn towards tangential incidence with a
reflection coefficient becoming a pure pha@3). Surface
orbits such as the pure Rayleigh orbittat 12.2 msec can
also be identified.

VI. SUMMARY AND DISCUSSION

FFT of level density

We have studied the in-plane eigenfrequency spectrum for
the elastic wave equation in two spatial dimensions with cir-
cular boundaries. It was shown that the eigenmodes can be
expressed in terms of periodic rays of an underlying billiard-
like classical dynamics. The ray dynamics conserves angular
momentum, the wave equation becomes separable in polar
= coordinates, accordingly. It was pointed out, however, that

the existence of two wave modes with different velocities

FIG. 5. FFT of oscillating level density. The orbits are depicted partially destroys the integrability of the problem; the ray
with thin/(thick) lines for pressur@hear polarizationand are posi-  dynamics for fixed angular momentum takes place on two
tioned according to their period. The periodic orbit the@p.o.t.” ) different energy manifolds in phase space for the two p0|ar-
refers to Eq.(41). The smoothing parameter in E@3) is chosen  jzations. The dynamics on each manifold is one dimensional
here as;=0.2. The actual material corresponds to polyethyleneang thus integrable, transitions between the energy sheets at
with ¢,=1950 m/s and:s=540 m/s. Finally, the disk radius 8 the phoundary introduce a purely probabilistic component.
=1m. The classical dynamics corresponding to the elastic wave

equation is therefore not deterministic and thus not inte-
(41) on both sides by a Gaussian test function as was alsgrable in the sense of Hamiltonian dynamics.

used in Ref[4]. The smoothing depends on a paramejer By solving the wave equation explicitly and deriving
proportional to the width, high-frequency approximations employing both the scatter-
ing matrix and the transfer operator, a connection between
W(z,)= 1 @m? , —ka (43  the wave dynamics in the disk for fixed angular momentum
P o S and the unitary propagation on a simple quantum graph
could be established. Spectral correlations due to wave mix-

ing manifest themselves in a gap in the nearest neighbor

Figure 5 shows a comparison between a numerically calCugy, ing distribution and thus strong level repulsion. Finally,
lated period spectrum obtained from the first 23 000 eigeng,q 1| level density was expressed in terms of periodic or-

values of a disk using Eq14) and the approximative result i \hich could be identified explicitly in the Fourier trans-
(41), here for polyethylene witk =3.61. The smooth part of _form of the exact density of eigenstates.
the spectrum is removed and the density of eigenfrequencies The main corrections omitted in the high-frequency ap-

is then Fourier transformed. The thus obtained period Spegsqyimations derived here occur for nearly tangential orbits
trum shows numerous peaks that fall roughly into thre&,qi, for pressure and shear components. This regime calls
classes: orbits being of pure pressure, pure shear, and mix a more refined approximation of the Bessel functions
polarization types. In general, the first class consists of th%ccurring in the traction matrid5) as, for example, uniform
shortest orbits since the pressure waves have the fastest Vg5, imations. Furthermore, periodic orbits accumulate at
locity. At t~3.2 msec, we have an infinite number of pres-yqe poyndary and the stationary phase approximation used to
sure orbits accumulating at the boundary; orbits of highely, e the integral§3s) breaks down. These corrections give

winding number such as the pentagrantﬁﬂ-9 MSEC can  rise to surface waves typical of free boundary conditions.
also be resolved. Next, orbits with segments of both pressure Furthermore, higher-order terms in the reflection coeffi-

and shear polarization type arise. Again, one finds accUmysionts become im
lation towards a limit orbit with the pressure segments be

coming tangential to the boundary aroutw5.5 msec. We —.0. Periodic orbits aL. =0 having bothp ands segments

note here clear deviations of the actual numerical perio_ an indeed identified in the Fourier spectrum Fig. 5. A de-

spectrum from periodic orbit theory. Shear waves have inCigyjieq analysis of these effects will be discussed elsewhere.
dence angles close to the critical angle and surface contribu-

tions become relevant.

We note that periodic orbits changing polarization along
their paths could clearly be identified here in a Fourier spec-
trum of an eigenspectrum of an elastic body. Quite charac- Financial support by the EPSRC and the EU research
teristic is the decay of peak height as the orbits increase itraining network Mechanics and Symmetry in Europe
length. Note, however, that the class of pure shear orbits wit(MASIE)is gratefully acknowledged.

t (sec)

portant whenever the leading tegyvan-
ishes, that is, for normal incidert— /2 corresponding to
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APPENDIX A: IN-PLANE EIGENFREQUENCY To fulfill the free boundary condition, the traction of has
SPECTRUM FOR AN ELASTIC DISK to vanish at the boundary, that is,
Due to the rotational symmetry of the disk, the wave t(u|)=alt(uL,)+a2t(u'S)=0. (A2)

equation separates in an angular and a radial part. The eigen-
functions regular at the origin may be expressed in terms o¥Vriting the traction in terms of its radial and angular direc-

Bessel functions; one writes the displacement fi@)das tion, one obtains
up=V[J (ke "], ug=Vx7z[J(ksr)e "¢] 0=ay t,(uy)+ast(uy)
andp ands refer to pressure and shear polarization, as usual 0= altw(u'p) +a, t(P(u's). (A3)

(also called “primary” and “secondary” wave in seismology, ) ) ,
referring to the time of arrival of these waye# general ~EXPressed as a matrix equation, this becomes
interior eigenfunction can be expanded in these displacement

a;ay)t =0, A4
fields, that is, (@:3,)t A4)
| | where we have collected the coordinates of both polariza-
U=as Uy +asUs. (A1) tions in a matrix
2 1 2 12 . !
I _Ezs ‘JI(Zp)_ZpJI(Zp) ||[JI(Zp)_ZpJ|(Zp)]
t=[thi]= (A5)

i1[3)(2e) — 23| (9] 24| (z9) — ( 12— %zﬁ) Ji(zo)

with i=r or ¢ and7=p or sand thust ;=t;(u,). We set, The operato2(u) may be represented in matrix form
as usualz,.=ak, with a the radius of the disk. A superpo-
sition of these two polarizations fulfills the boundary condi- [Q(u) ]y, (B4)

tion only when where the index represents the component of the vector

dett,)=0 (A6) field u andj denotes the vector component of the operator
’ Q, (thatis,X, y or r, ¢ in two dimensions
which is the eigenfrequency conditi¢h4). For more details In our casef2(u) is given by the tractiom(u) (4) in polar
see, for example, Ref32], in which an expression equiva- coprdln?lt)es.(;r)he analytic form is obtained from E45)
lent to Eq.(A5) is derived. usingH;™,H;*’ instead ofJ; .
APPENDIX B: S MATRIX 2. The high-frequency limit @>1 for by=1/z,<1

Starting from the Eq(16), expressing the scattering ma-

1. S matrix in terms of traction operators . - - . .
P trix § in terms of traction matrices, we will employ the

Assume a general boundary condition oscillatory Debye approximation for the Hankel functions
Q=0 81 enteringt™, that is,
. . . . : (1) 7)~ i i (2)(7) ~ i —i¢
with u ann-dimensional vector wave function a¥ a linear H\"(2) TrQe , H¥(2) wQe ,
operator. Denotey; the wave field being nonzero in itsh
component only with e{1, ... n}. The scattering process , Q
of an incoming puréwave,u; , may then be described as HY (z)~i ;Hfl)(z) (B5)
- + with
u=u +§j: STIVAR (B2
|
_52_ 12 —O_ _
where u denotes outgoing pure polarizations. Equation Q=vz"-1* and ¢=Q—7/4- arccos;. (B6)
(B2) must satisfy the boundary conditigB1) for all i. Solv-
ing for the scattering matrix, one obtains Here,zis eitherz, or z; with z,=ak, as usual. The traction
matricest™ are obtained from Eq(15) by replacing the
S=—Q(u)-[Qut)] L. (B3) Bessel functions in terms of outgoing and incoming Hankel
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functions, respectively. Inserting the Debye approximation

and separating in amplitude and phase, we obtd83]

eii¢>p 0
ti=( 0 e+i¢s)ei-zi. (B7)
Here
NEA
G = Qe 5 (B8)
0 \FQ
and
(12222 -iQ,  il(1-iQ,)
+:( i1(1-i1Qy) iQS—(|2—z§/2))’ (B9)

whereasZ~ has the same form a&* apart from replacing
Q. by —Q_. Hence,

PHYSICAL REVIEW E56, 066211 (2002

e % 0 e 0
S= 0 et 0 e it (B10)
with the unitary matrixa defined as
a=—G -Z7/(G"-Z"). (B11)

A straightforward but tedious expansion @fin terms of the
wave numberk ., expressind andQ_, in terms of the inci-
dence angle®,,, that is,|=—z_sing,. andQ,=z,cosé,,
one obtains indeed the reflection coefficief@s in leading
order. The limit taken corresponds to lettikg—c and|l|
—oo but keeping their ratio fixed. As discussed above, this
ratio corresponds to fixed impact parameter/incidence angle.
This finally reproduces formul&l9). All the formulas are
given here for negative angular momentum; choosing
=z.sinf, positive changes the sign of the off-diagonal
components in Eq(15). This does not alter the eigenfre-
quency conditior(14) reflecting the degeneracy of the spec-
trum with respect to the sign changelin
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