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Front and pulse solutions for the complex Ginzburg-Landau equation with higher-order terms
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We investigate one-dimensional complex Ginzburg-Landau equation with higher-order terms and discuss
their influences on the multiplicity of solutions. An exact analytic front solution is presented. By stability
analysis for the original partial differential equation, we derive its necessary stability condition for amplitude
perturbations. This condition together with the exact front solution determine the region of parameter space
where the uniformly translating front solution can exist. In addition, stable pulses, chaotic pulses, and attenu-
ation pulses appear generally if the parameters are out of the range. Finally, applying these analysis into the
optical transmission system numerically we find that the stable transmission of optical pulses can be achieved
if the parameters are appropriately chosen.
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[. INTRODUCTION worth investigating further as mentioned by Saarloos and
Hobenberg[2], since the more general model is useful for
Problems in dynamics have fascinated physical scientistanderstanding various experimental phenomena. Another
and mankind in general for thousands of yddrs Coherent  useful example, from the standpoint of possible applications,
structures are an important element in the long-time dynamis the optical pulse transmission line. The propagation of
ics of pattern forming systems and have attracted a great depicosecond optical pulses in optical fibers is approximately
of attention in recent yearg?]. Several kinds of coherent governed by nonlinear Schiimger equatiofNLSE). When
structures such as fronts, pulses, sources and sinks have bq%’quency- and intensity-dependent gain and loss have to be
studied[2-4] and identified in many experiments, such astaken into account for a long distance communication, the
thermal convectioi2], Taylor-Couette flow5-7], paramet-  governing equation should be replaced by cubic CGEE
ric surface waves in fluid$8], plane Poiseuille flowS],  For intensive and short optical pulse in the subpicosecond or
nonlinear light-wave propagation in fibeirs0,11 and oscil-  femiosecond regime, several new effects, such as third-order
latory chemical reaction§l2]. The one-dimensional com-  yisnersion(TOD), self-steepening and self-frequency-shift
plex. Qin_zburg—Landau equatio(CGLE) and Its different (SF9 arising from stimulated Raman scattering, greatly in-
modifications have b(_aen empioyed to .describe these phGf’l'uence their propagation propertigzb]. When TOD is com-
nomena in laser physidd.3], fluid dynamics{14] and non- pensated, the equation to describe the propagation of ul-

linear optics[15-18. . : ;
Spatially extended nonequilibrium systems often ShOWtrashort pulses will reduce to the CGLE with higher-order

coherent structures formed from the spatial juxtaposition OFerms[Z].

different types of solutions, particularly near subcritical bi- . 1€ objective of this work is to analyze the CGLE with
furcations where the different solutions are individually the higher-order terms by using a particular exact analytic

stable [19]. Examples are moving fronts formed when a front solution as an ansatz_ and to imderstand the multiplicity
stable state invades an unstable one or fronts between statk the front solution of this equation, and to elucidate the
states. Depending on parameter values these coherent str@?suing selection problem: which solution will be reached
tures are found to vary either periodically or chaotically instarting from specified initial conditions. We generalized
time, and to have spatial envelopes which may be stationarilinear and nonlinear marginal stability” criteria to the gen-
or uniformly moving, or may undergo chaotic motion. The eral case with the help of the methods mentioned in Refs.
comprehensive analytic and numerical studies of the ond=2,26]. Our main result is the discovery of an exact “se-
dimensional CGLE near a subcritical bifurcation have beerected” front solution which allows us to predict analytically
presented in Ref§20-23. whether a pulse or a front will be preferred, and in the latter
Noting that all these analysis of the multiplicity of solu- case what the front velocity will be. Another result is that the
tions were based on CGLE. But the CGLE with higher-orderpulse is always unstable to front generation in the parameter
terms has less extensively been analyzed except that Deange where front is selected, while out of the range we can

sissler and Bran{i24] have numerically investigated the ef- optain stable pulses, chaotic pulses, and attenuation pulses
fect of a nonlinear gradient term recently. However, they argyy numerical simulation.
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A= (by+icy) A+ T1(|AID)A+a,fo(|A[D)A]
+[axfa(|AIP)A, &)

whereb; andc; are real constants and tligare generally
complex functions of the real argumgt|? with:

f|:f|r+if|i (|:1,2,3)

Heref, andf; correspond to the higher-order terms. Further,

if we set
f1=e—(bz—icg)|A]*—(bs—ics)|A[*,
fo=(m +im;)|A]?,
f3=(n,+in)|AJ%,

whereb, ¢, m, andn are real constants, then Ed) becomes
as follows:

9A=eA+ (by+ic,)d2A—(bz—icy)|AlPA
—(bs—icg)|A[*A+(m,+im;)dy(|Al?A)

+(nr+ini)‘9x(|A|2)A- (2)

If the last two terms on the right-hand side are neglected,
Eqg. (2) reduce to CGLE, whose dynamical behaviors have

extensively been investigatedee, for example[2,3,19).

However, there is little corresponding study in the presence

of the higher-order term$, and f;. Noting that the model

parameters are generally dependent on the selected physical
systems. For propagation of nonlinear light pulses in optical
systemsA(z,t) is the complex envelope of the electric field,

tis the normalized propagation distance, anslthe retarded
time. e>0(<0) represents linear gaifioss, ¢, is group
velocity dispersion(GVD), c3 is nonlinear Kerr effectp,
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J:a=ka, (33
3:0=0Q, (3b)

with Q=Qy+Q;, K=Ky+K,, where
Qo=—by(w+vq)+Cy(e+vk)—2kq
—(byc3+¢4bz)a?~(b;cs+c bs)a
and
Ko=—"Ci(w+vq)—by(e+vk)+9°—k?+ (bybs—c;cs)a?
+(bybs—c,c5)a’,

which result from the part of CGLE given by RéR], and
K, and Q; are presented by the new higher-order terms,
which can be written by

Q,=2¢c,(m,+n,)ka?+¢c;mka?—b,m,qa’—2b,n;ka?
—¢,;mqa®—3b;m;a’k,
K,=—2b,(m,+n,)ka?—b;m,ka’®—c;m,qa?— 2¢,n;ka?
+b,;m,ga?—3c;m;ak,
whereb,=b,(ci+b3) ", ci=c,(ci+b3) .
Obviously, for the case of CGLE namely when the higher-

order terms are omittedQ;=K;=0), the ODE has the
symmetry under the following transformation:

v——v, é—~—-§ k——-k, g——q, a——a.

describes the effect of spectral limitation due to gainHowever, in the presence of higher-order terms this symme-

bandwidth-limited amplification andor) spectral filtering
(which are inversely proportional to gain aitdr) spectral
filtering bandwidth, respectivelyb; accounts for nonlinear
gain[and (or) absorption processeshs andcs describe the
saturable effects of nonlinear gdiand (or) absorptiori and
nonlinear refractive indexm, is the nonlinear dispersion

try cannot be kept because of the asymmetrpefandK ;.
Corresponding to uniformly translating solutions of the
Eq. (2), there are two classes of fixed points in the three
variable dynamical systerf8). They are so-called “nonlin-
ear” fixed points(N) with ay#0, qy#0, ky=0, and “lin-
ear” ones(L) with a, =0, q_#0, andk_ #0. The linear

term,n, andn; are the nonlinear gradient term which results fixed-point solutions wittk, >0 (k, <0) can be denoted by

from the time-retarded induced Raman process. In fadg
usually responsible for the SFS. Usualty, andn, are ne-

L. (L_). Besides the fixed pointsl and L, there exist so-
called “coherent structures” which are uniformly translating

glected in optical transmission systems because they ailutions of Eq.(2) with spatially varying envelopes. These

much smaller tham, andn; .
Similar to Ref.[2], we separaté\(X,t) into the following
uniformly translating profiles:

A(x,t)=e “q(§)e ¢8),

whereé=x—wvt. Inserting this ansatz into E€2) and intro-
ducing

q=d:¢, k=a 14,

we get three ordinary differential equatiof®DE) in the
forms

coherent structures correspond (tteteroclinig trajectories
of Eq. (3) joining different fixed points, which have been
distinguished from three types of coherent structUr@ls
pulses going fromL , to L _; fronts going fromN to L _ (or
L, to N); and domain walls which join differer fixed
points. In the following we will concentrate on discussing
the characteristics of the front solution for the higher-order
CGLE (2.

We make the following ansaf2] for a front solution of
Eq. (2):
(4a)

q(a?)=qy+eg(@®-ag),
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k(a®)=ey(a’~ay), (4b) 0=c,c3—b;bs+ (bie,+Cie0)v — 2qnep+ (285 — 4€2)aZ

with constantsyy,ay ,€p,€; to be determined. By inserting
the ansatz into the three ordinary differential equati(®)s
and setting the coefficients of two quadratic polynomial ~ —2aZe;n/c,+aZe,mb,;—mgyb,—3age;mc;. (5f)
equations equal to zero, we find six relations among the pa-

rametersgy, ay, €y, €1, @, andov:

—3aZe;m,b; —3aZe;n,b; —aege;m, + m.quc,

After some algebraic calculation, the front parameters
an v, (@d) " 0" can be rewritten in an explicit form

o=0"=-vq+Cci0f—Csay—Csay— M guay, (58
+ 2
On=0n =€t ezay, (6a)
e=by0§ +bsag + bsay + mguay, (5b) NN TN
~ ~ ~ ~ 4 2
3e?—e3=b;bs— ¢ c5—3e,(mb;+m;cy) VU =8t esay, (6b)
—2e;(n/b;+nicy) —eg(m,c;—miby), (50 ay+egas+e;=0, (60
4eleO: - Clb5_ blcs_ eomrbl+ 3€1mr01+ 261an1 kL: kz— - _ elaﬁl , (Gd)
—2e;nb;—3e;mb;—eymcy, (5d)
o w=0"=—vg+ci0y—csag—csay—manay, (68
O:b1C3+Clb3_(Clel_bleo)U+2qul_6€0e1a,%|
2 ~ ~ ) ~ ) ~ with
—aneom,b+m.qyb;+3aye;m,c; +2aye;n,c,
T = = = "2 | R2
—3aZe;mb;— adegm;c,— mgnC, — 2ae;n;by, . —(bi+c7)(bseg+csey)
T 2. 2 =2 =2 T2 =2,
(5 2b,(ep+e7) +e m(bf+c3)+eym;(bi+cy)

_ 2(ef+ed)(eohs +2e1C1) —[2eges (M, +n,) — 2e5n; — m;(ef + 3ef) ](bi+c))

es_ ~ ~ ~ ~ ~ L
2b,(e3+e?)+e,m(b2+¢c?) +e,m;(b3+c3)
o 2€(C3by+b3Cy) +2€4(bgb; — cgCy) +bymy (BT +¢F) — camy(bf+c5)
* 2b,(e3+e?)+e,m,(b3+c2)+e,m;(b2+c?) ’
o 8e,(e3+e?) +(3e;m, +2e;m;n, + 3e;m?+ 2e;mn;) (b2 +¢?)
° 2b,(e2+e?)+e;m(b2+¢?) +e,mi(b3+¢c?)
(e7b;—epe;C1)(10m, +4n,) + (4e;n;+ 10e,m;) (egb; +€1C;)
+ ~ ~ ~ ~ ~ ]
2b,(e5+e9) +e,m,(bi+<c)) +e,m;(b2+7¢c?)
|
bs and the other two parametesg, e; can be determined from
2e,e;5+ b, Egs.(5¢) and(5d). For the parametes; we find that it has to
fg=——— satisfy
b
2+ =2
by ael+bel+cel+de +e=0 7
with:
€
2_
62 bl a= _48,
67_ y
e3+ Bs ~ ~ ~ ~
by b=—72mb,;—32n,b;—72m;c,—32n,c,,
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c=16bsb; —3m?b?— 27m?b?+ 4m;n;b7 + 4nb? da=ea+b[d2a—a(dyd)?]—ci[2(d4a)(dyp) +ad2 ]
—16m,n,b%—16c5c; —48m;m,b,c; — 20mn;b;c; —bzad—bsa®+(3m,+2n,)a%da—madd.p, (8a
- ~ - ~ 2=2 2=2 ~ o~ ~ ~ ~ o~ ~ ~
—20min;b,¢; —8nin;b, ¢, = 27mici —3m; cy ad p=ba[2(05a)(9x}) +ad; ]+ cal dia—a(dxh)?]

-2 =2 222 ~ ~ ~ ~ ~
—16m;n;ci+4m.n,c3+4nycy, +czal+cga’+ (3m+2n;)a%da+m,ai .

~ ~ ~ ~ (8b)
d=2csmb?+ 8bgm, b3+ 4csn;b?— 3m?’m,b3—3m?b3
_ _ o L Further introducing
- 2m| mrn,bi— 2mr2nrbi+ 1(1)5mib101— 10C5mrb1C1

-~ -~ a(x,t)=ay+ay,
+4bgn;b; ¢, —4csn, b, ¢, — 3mPbZc, — 3mm?bZc,

~ omen B2, - 2mm,n %, — Bsmici— 2bym,E2 PO =ax—ont+ by,
—4bgn,cs—3m’m,bZc, — 3m?b,c2— 2mm,n;b,c? a;=ag; exliPx+\t],
—2m¢n,b;ci—3mict - 3mm7ct— 2m¢n;c; $1=orexiPx+1t],
—2mm.n,c3, and linearizing Eq(8) for ay; and ¢o;, We can get the en-

suing characteristic equation far.
2R2 "3 2R3 - 2R27
e= C5b1_C5mimrbl+ b5mr bl+ 2b5C5b1C1_C5mi blcl )\2+ﬂ)\+ ’y:O (9)
+bgm;m,bZc, + baci— csmm, b, ¢+ bsm?b,c3 with
2=3 =3
—Csmc{+bsmm,c7. . .
ST B=2aZbs+4agbs+2b, P2+ 4ic,Pqgy—3iaZm,P
Then the parametas, can easily be determined by substitut- —ia3m,P—2ia?n,P—aimqy.,
ing the value ofe; into Eq. (5d).
From the coefficient expressions of parametgemwe see  and
clearly that the coefficients andd are only related with the
higher-order terms. It means that @) have single positive  y=2aZb,bsP?+ 4agb,bsP?— 2afc,csP2—4afc,csP?
root in the case of CGLE. The corresponding negative one Pad . D a2 . a
only leads to an equivalent front because of the symmetry 1 P1P"+CiP"+4iaybsc,Pay+8iaybsc,Pay
mentioned above. However, in the presence of higher-order +4ia o4 22,2 2p2
: . aybiczPay+ 8iaybibsPay—4biP°qy—4ciP
effects Eq.(7) may exist four real roots as the symmetry is ND1C3T N et R

broken. Therefore, the higher-order effects will lead to more  —2ja3bsm, P—4iajbsm,P—3a3m?P?—2a3m,n, P2
front solutions, which are dependent strongly on the system
parameters. —3iaZb;m,P3—iadb,m,P3—2iadc,n,P®

—2iaZb,n,P3+6a3c,m,P%qy—azc,m,P2qy
I1l. STABILITY ANALYSIS AND NUMERICAL RESULTS 5 5 5 5 3 )
—4aybn;P gqy+4agcin,P-qy+6iayb;m,Pq
As mentioned by Saarlod®,3], the condition for exis- NE NEET NFL N

tence of a heteroclinic trajectory is that the stable and un-  +iaymm,Pgy—aib,m;P?qy— 2iaZcimP o3 .

stable manifolds of the fixed points in question should join

up. It is thus possible to determine the multiplicity of the For stability we have to require that the solutiongP) of

aforementioned coherent structures by studying the linedeq. (9) satisfy

stability of the fixed points in the dynamical system of Eq.

). Re\(P)<0 (10
The linear stability of theN fixed point in the original _ ) N

partial differential equatioiPDE) shown by Eq.(2) can be  for all P. Applying this condition forP—0, we get the nec-

obtained by the standard linearization. Let essary stability condition

2 —_— .
A(x,t)="é(x,t)e“75(x"), 4aybs+2b;—m;qny>0 (12)

for amplitude perturbations. From this one can easily evalu-
then the amplitude and phase satisfy the following twoate\(P) numerically and check the stability of any particu-
PDEs: lar solutionay, qy for given parameters.

066204-4



FRONT AND PULSE SOLUTIONS FOR THE COMPLEX. .. PHYSICAL REVIEW &b, 066204 (2002

100

48]

4.4 3 2>
4‘0-_ a g g g E 80
3618 3 32 s é
32] g K % 5 5
“ls 8 § o0 selected front with v*
zz_a_ﬁgg £ £ . 801
g L. 2
2 241 4 §
Q. 1 o h o
Eah gt § «
1.6 L -
1.2
08 C
0.4
00 . —T— T Tl ' J ' 0 T T T T T T T
0 2 4 6 8 10 20 15 -0 5 0 5 10 15 20
control parameter & x (arb. units)
@
(@
1059 § >
91 2 £s .
s]lc8 883 selected front with v .
133 € v 100
{8255 ¢
{30 90 s
64 53 § 2 5
ZRLE SR
4] " . 80 -
> 3] * .
1
o 1 60 |
] N 5
2 ~. =
3] \.\\ g 40
44 Sl
-5 \.§"'\
sl  Tr=l 20
T T T T T T T
0 2 4 6 8 10
control parameter & 0
®) -20 20
X (arb. units)
FIG. 1. (a) Bifurcation diagrams &,, as a function of control
parameter) and the regions for different evolution results when a ®)

certain initial condition is given. The parameter values other than

those for e are chosen a;=-03, ¢;=0.5, b3=-05, cg FIG. 2. Contour plots of the stable pulse transmission. The con-

=1, bs=0.34, cs=0, m;=-0.02, m=0, n;=0, nj=—0.05, 4 parametere is selected as-0.05 and the other parameters are
respectively(b) Front velocity as a function of control parameter as same as those in Fig. (&) the result wherm,=0 andn,=0
. r I H

yvhereg* is given by the linear-marginal-stability criterion and namely, the higher-order terms are omittéo); the result when the
is obtained from Eq(6h). higher-order terms are considered.

The most interesting question about fronts and pulses isolution of Eq.(4) exists, the outcome is somewhat more
their dynamical behavior as solutions of Eg8). Now let us  dependent on initial conditions. In such cases, a localized
investigate the “selection” problem of the front solution ob- initial condition may lead to an attenuation pulse, or a cha-
tained from the ansat#). Here we use the rules developed otic pulse. Alternatively, stable stationary pulses may yield
earlier[2] to elucidate the selection problem. The basic ideafor some appropriate parameter range. The latter is of poten-
is that the selected front™,w* is the entity which controls tial applications in optical telecommunication systems. In the
the behavior of the system. From E@b) we can analyti- following numerical investigations we will concentrate on
cally calculate the parametets™ of the selected front. As discussing optical transmission system.
shown in Ref[3], whenv* >0, a localized initial condition Figure 1 illustrates the different regimes for a set of spe-
will lead to a positive front described by the solutigh, and  cial parameters as a function of the parameteiHere we
pulses will be unstable. In contrast, wheh<0, or whenno  have chosen the values of the parameters from optical trans-
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FIG. 3. Contour plots of the chaotic pulse transmission. The
control parametee is selected as 0.05 and the other parameters are ®
as same as those in Fig. () the result wherm,=0 andn;=0,
namely, the higher-order terms are omittéul; the result when the FIG. 4. Contour plots of the attenuation pulse transmission. The
higher-order terms are considered. control parametee is selected as-0.09 and the other parameters

are as same as those in Fig.(&) the result wherm,=0 andn;
=0, namely the higher-order terms are omitté);the result when
mission systems presented in Ref85,27,28. Figure 18  the higher-order terms are considered.
shows the bifurcation diagramsy( as a function of control

parametefe), where dashed line refers to unstable solutions
and solid line refers to stable ones. Figur@)lshows the is max @*,0*). By calculation, we find that when

front velocity as a function of the control parametéemwhere  1.47164 (1.304 96Y €<2.27409 (1.89417), the velocity

v* is given by the linear-marginal-stability criterip@6] and  of the front solution(4) satisfiesv " <v*. Therefore, the lin-

v*' is obtained from Eq(6b). From these figures we can ear front will be selected. When 2.27409 (1.8941%)
clearly see that there exist saddle-node bifurcation, speciat 14.8309 (8.480 76), the velocity" is larger than the ve-
value bifurcation, and subcritical bifurcation, respectively.locity v* and the front with velocityw * is selected. How-
The corresponding bifurcation values are 1.47164, ever, fore>14.8309 (8.48076), although™>uv* is satis-
2.69652, and 4.26817. When the higher-order terms arfied, the linear front is still selected because|kff” <|k|*
omitted, these values are 1.30496, 2.37049, and 3.84542,3]. The values mentioned above in the bracket correspond
respectively. According to Reff3] the selected front velocity to the case where the higher-order terms are omitted.
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Further, whene<1.47164 (1.304 96), solutiotd) does  will lead to moving of the chaotic pulse. And when the value
not exist any more. As predicted above, in this case theref ¢ is too small, the attenuation pulses are observed. This is
may exist attenuation pulses, chaotic pulses and stableecause the loss is too large to keep the propagation of op-
pulses. By numerical simulation, we found stable pulses in dical pulses. The results are shown in Figa)dand 4b),
certain parameter regimes both in the case without highemwhere the control parameter= —0.09.
order terms and in the case with higher-order terms. The
parameter regimes are shown in Fig. 1. The numerical
method used here is symmetrized split-step Fourier method
[25]. The step size i direction is 0.1 and the number of In conclusion, based on the CGLE with higher-order
discrete points is 1024. The step sizetidirection is 1/125. terms, we have investigated their influences on the multiplic-
We have checked our results with different step size alongty of solutions and obtained an exact analytic front solution.
thet direction and with different point numbers along the By linearized stability analysis for the original partial differ-
direction to ensure that the results contain no numerical artiential equation, we derive its necessary stability condition for
facts. Figure 2a) plots the contour of stable propagation of amplitude perturbations. This condition together with the ex-
optical pulse for given initial condition in the absence of act front solution determines the region of parameter space
higher-order effects, where=—0.05. When the higher- where the uniformly translating front solution can exist. If
order effects exist, as shown in Figb®, the stable optical the control parametee is out of the range, stable pulses,
pulse has not been destroyed except it moves at a definitthaotic pulses, and attenuation pulses appear generally,
speed. The reason is that the symmetry in the case of CGL&hich are greatly dependent on the localized initial condi-
cannot be kept when the higher-order terms are not netions. We have applied these analysis into the optical trans-
glected. mission system and found the stable evolution of optical

Out of the front and the pulse regimes, a localized initialpulses by solving partial differential equation numerically.
condition may decay to zero or lead to a chaotic pulse. Th&he numerical results are in agreement with the analytic pre-
regimes for the attenuation pulse and chaotic pulse are algtictions. The higher-order effects will mainly break the sym-
shown in Fig. 1, the contours of every kinds of evolution metry in the case of CGLE and result in moving of the op-
results are shown in Fig. 3 and Fig. 4. As shown in the Figtical pulses. It may be expectable to apply these results into
3(a) and 3b), where the control parameter=0.05, Chaotic  high-capacity optical telecommunications.
pulse which started from a stationary localized initial condi-
tion ha; complex shapes. _After a while from _the begllnnlng, ACKNOWLEDGMENTS
small ripples appeared on its “slopes,” then with the ripples’
increasing in size, other ripples appeared. At last the ripples This research was supported by National Natural Science
can not be distinguished and chaotic pulse come into beindg-oundation of China Grant No. 10074041 and the Shanxi
As explained in the stable pulse case, the higher-order ternfrovince Youth Science Foundati¢@rant No. 20011015
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