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Front and pulse solutions for the complex Ginzburg-Landau equation with higher-order terms

Huiping Tian,* Zhonghao Li,† Jinping Tian,‡ and Guosheng Zhou‡
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We investigate one-dimensional complex Ginzburg-Landau equation with higher-order terms and discuss
their influences on the multiplicity of solutions. An exact analytic front solution is presented. By stability
analysis for the original partial differential equation, we derive its necessary stability condition for amplitude
perturbations. This condition together with the exact front solution determine the region of parameter space
where the uniformly translating front solution can exist. In addition, stable pulses, chaotic pulses, and attenu-
ation pulses appear generally if the parameters are out of the range. Finally, applying these analysis into the
optical transmission system numerically we find that the stable transmission of optical pulses can be achieved
if the parameters are appropriately chosen.
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I. INTRODUCTION

Problems in dynamics have fascinated physical scien
and mankind in general for thousands of years@1#. Coherent
structures are an important element in the long-time dyn
ics of pattern forming systems and have attracted a great
of attention in recent years@2#. Several kinds of coheren
structures such as fronts, pulses, sources and sinks have
studied@2–4# and identified in many experiments, such
thermal convection@2#, Taylor-Couette flow@5–7#, paramet-
ric surface waves in fluids@8#, plane Poiseuille flow@9#,
nonlinear light-wave propagation in fibers@10,11# and oscil-
latory chemical reactions@12#. The one-dimensional com
plex Ginzburg-Landau equation~CGLE! and its different
modifications have been employed to describe these
nomena in laser physics@13#, fluid dynamics@14# and non-
linear optics@15–18#.

Spatially extended nonequilibrium systems often sh
coherent structures formed from the spatial juxtaposition
different types of solutions, particularly near subcritical b
furcations where the different solutions are individua
stable @19#. Examples are moving fronts formed when
stable state invades an unstable one or fronts between s
states. Depending on parameter values these coherent s
tures are found to vary either periodically or chaotically
time, and to have spatial envelopes which may be station
or uniformly moving, or may undergo chaotic motion. Th
comprehensive analytic and numerical studies of the o
dimensional CGLE near a subcritical bifurcation have be
presented in Refs.@20–23#.

Noting that all these analysis of the multiplicity of solu
tions were based on CGLE. But the CGLE with higher-ord
terms has less extensively been analyzed except that
sissler and Brand@24# have numerically investigated the e
fect of a nonlinear gradient term recently. However, they
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worth investigating further as mentioned by Saarloos a
Hobenberg@2#, since the more general model is useful f
understanding various experimental phenomena. Ano
useful example, from the standpoint of possible applicatio
is the optical pulse transmission line. The propagation
picosecond optical pulses in optical fibers is approximat
governed by nonlinear Schro¨dinger equation~NLSE!. When
frequency- and intensity-dependent gain and loss have t
taken into account for a long distance communication,
governing equation should be replaced by cubic CGLE@5#.
For intensive and short optical pulse in the subpicosecon
femtosecond regime, several new effects, such as third-o
dispersion~TOD!, self-steepening and self-frequency-sh
~SFS! arising from stimulated Raman scattering, greatly
fluence their propagation properties@25#. When TOD is com-
pensated, the equation to describe the propagation of
trashort pulses will reduce to the CGLE with higher-ord
terms@2#.

The objective of this work is to analyze the CGLE wi
the higher-order terms by using a particular exact anal
front solution as an ansatz and to understand the multipli
of the front solution of this equation, and to elucidate t
ensuing selection problem: which solution will be reach
starting from specified initial conditions. We generaliz
‘‘linear and nonlinear marginal stability’’ criteria to the gen
eral case with the help of the methods mentioned in R
@2,26#. Our main result is the discovery of an exact ‘‘s
lected’’ front solution which allows us to predict analytical
whether a pulse or a front will be preferred, and in the lat
case what the front velocity will be. Another result is that t
pulse is always unstable to front generation in the param
range where front is selected, while out of the range we
obtain stable pulses, chaotic pulses, and attenuation pu
by numerical simulation.

II. THE MODEL AND THE EXACT FRONT SOLUTIONS

The generalized Ginzburg-Landau equation for the co
plex functionA(x,t) in one-dimension space has the follow
ing form @2#:

cn
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] tA5~b11 ic1!]x
2A1 f 1~ uAu2!A1]x@ f 2~ uAu2!A#

1@]xf 3~ uAu2!#A, ~1!

whereb1 and c1 are real constants and thef l are generally
complex functions of the real argumentuAu2 with:

f l5 f lr 1 i f l i ~ l 51,2,3!.

Here f 2 and f 3 correspond to the higher-order terms. Furth
if we set

f 15e2~b32 ic3!uAu22~b52 ic5!uAu4,

f 25~mr1 imi !uAu2,

f 35~nr1 ini !uAu2,

whereb, c, m, andn are real constants, then Eq.~1! becomes
as follows:

] tA5eA1~b11 ic1!]x
2A2~b32 ic3!uAu2A

2~b52 ic5!uAu4A1~mr1 imi !]x~ uAu2A!

1~nr1 ini !]x~ uAu2!A. ~2!

If the last two terms on the right-hand side are neglect
Eq. ~2! reduce to CGLE, whose dynamical behaviors ha
extensively been investigated~see, for example,@2,3,19#!.
However, there is little corresponding study in the prese
of the higher-order termsf 2 and f 3. Noting that the model
parameters are generally dependent on the selected phy
systems. For propagation of nonlinear light pulses in opt
systems,A(z,t) is the complex envelope of the electric fiel
t is the normalized propagation distance, andx is the retarded
time. e.0(,0) represents linear gain~loss!, c1 is group
velocity dispersion~GVD!, c3 is nonlinear Kerr effect,b1
describes the effect of spectral limitation due to ga
bandwidth-limited amplification and~or! spectral filtering
~which are inversely proportional to gain and~or! spectral
filtering bandwidth, respectively!, b3 accounts for nonlinea
gain @and ~or! absorption# processes,b5 andc5 describe the
saturable effects of nonlinear gain@and ~or! absorption# and
nonlinear refractive index,mr is the nonlinear dispersion
term,nr andni are the nonlinear gradient term which resu
from the time-retarded induced Raman process. In fact,ni is
usually responsible for the SFS. Usually,mi and nr are ne-
glected in optical transmission systems because they
much smaller thanmr andni .

Similar to Ref.@2#, we separateA(x,t) into the following
uniformly translating profiles:

A~x,t !5e2 ivta~j!eif(j),

wherej5x2vt. Inserting this ansatz into Eq.~2! and intro-
ducing

q5]jf, k5a21]ja,

we get three ordinary differential equations~ODE! in the
forms
06620
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]ja5ka, ~3a!

]jq5Q, ~3b!

]jk5K, ~3c!

with Q5Q01Q1 , K5K01K1, where

Q052b̃1~v1vq!1 c̃1~e1vk!22kq

2~ b̃1c31 c̃1b3!a22~ b̃1c51 c̃1b5!a4

and

K052 c̃1~v1vq!2b̃1~e1vk!1q22k21~ b̃1b32 c̃1c3!a2

1~ b̃1b52 c̃1c5!a4,

which result from the part of CGLE given by Ref.@2#, and
K1 and Q1 are presented by the new higher-order term
which can be written by

Q152c̃1~mr1nr !ka21 c̃1mrka22b̃1mrqa222b̃1nika2

2 c̃1miqa223b̃1mia
2k,

K1522b̃1~mr1nr !ka22b̃1mrka22 c̃1mrqa222c̃1nika2

1b̃1miqa223c̃1mia
2k,

whereb̃15b1(c1
21b1

2)21, c̃15c1(c1
21b1

2)21.
Obviously, for the case of CGLE namely when the high

order terms are omitted (Q15K150), the ODE has the
symmetry under the following transformation:

v→2v, j→2j, k→2k, q→2q, a→2a.

However, in the presence of higher-order terms this symm
try cannot be kept because of the asymmetry ofQ1 andK1.

Corresponding to uniformly translating solutions of th
Eq. ~2!, there are two classes of fixed points in the thr
variable dynamical system~3!. They are so-called ‘‘nonlin-
ear’’ fixed points~N! with aN5” 0, qN5” 0, kN50, and ‘‘lin-
ear’’ ones ~L! with aL50, qL5” 0, and kL5” 0. The linear
fixed-point solutions withkL.0 (kL,0) can be denoted by
L1(L2). Besides the fixed pointsN and L, there exist so-
called ‘‘coherent structures’’ which are uniformly translatin
solutions of Eq.~2! with spatially varying envelopes. Thes
coherent structures correspond to~heteroclinic! trajectories
of Eq. ~3! joining different fixed points, which have bee
distinguished from three types of coherent structures@2#:
pulses going fromL1 to L2 ; fronts going fromN to L2 ~or
L1 to N); and domain walls which join differentN fixed
points. In the following we will concentrate on discussin
the characteristics of the front solution for the higher-ord
CGLE ~2!.

We make the following ansatz@2# for a front solution of
Eq. ~2!:

q~a2!5qN1e0~a22aN
2 !, ~4a!
4-2
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k~a2!5e1~a22aN
2 !, ~4b!

with constantsqN ,aN ,e0 ,e1 to be determined. By inserting
the ansatz into the three ordinary differential equations~3!
and setting the coefficients of two quadratic polynom
equations equal to zero, we find six relations among the
rametersqN , aN , e0 , e1 , v, andv:

v5v152vq1c1qN
2 2c3aN

2 2c5aN
4 2mrqNaN

2 , ~5a!

e5b1qN
2 1b3aN

2 1b5aN
4 1miqNaN

2 , ~5b!

3e1
22e0

25b̃1b52 c̃1c523e1~mrb̃11mic̃1!

22e1~nrb̃11ni c̃1!2e0~mrc̃12mib̃1!, ~5c!

4e1e052 c̃1b52b̃1c52e0mrb̃113e1mrc̃112e1nrc̃1

22e1ni b̃123e1mib̃12e0mic̃1 , ~5d!

05b̃1c31 c̃1b32~ c̃1e12b̃1e0!v12qNe126e0e1aN
2

2aN
2 e0mrb̃1mrqNb̃113aN

2 e1mrc̃112aN
2 e1nrc̃1

23aN
2 e1mib̃12aN

2 e0mic̃12miqNc̃122aN
2 e1ni b̃1 ,

~5e!
06620
l
a-

05 c̃1c32b̃1b31~ b̃1e11 c̃1e0!v22qNe01~2e0
224e1

2!aN
2

23aN
2 e1mrb̃123aN

2 e1nrb̃12aN
2 e0e1mr1mrqNc̃1

22aN
2 e1ni c̃11aN

2 e0mib̃12miqNb̃123aN
2 e1mic̃1 . ~5f!

After some algebraic calculation, the front paramet
qN

1 ,v1,(aN
2 )1,v1 can be rewritten in an explicit form

qN5qN
15e21e3aN

2 , ~6a!

v5v15e41e5aN
2 , ~6b!

aN
4 1e6aN

2 1e750, ~6c!

kL5kL
152e1aN

2 , ~6d!

v5v152vq1c1qN
2 2c3aN

2 2c5aN
4 2mrqNaN

2 , ~6e!

with

e25
2~ b̃1

21 c̃1
2!~b3e01c3e1!

2b̃1~e0
21e1

2!1e1mr~ b̃1
21 c̃1

2!1e0mi~ b̃1
21 c̃1

2!
,

e35
2~e0

21e1
2!~e0b̃112e1c̃1!2@2e0e1~mr1nr !22e1

2ni2mi~e0
213e1

2!#~ b̃1
21 c̃1

2!

2b̃1~e0
21e1

2!1e1mr~ b̃1
21 c̃1

2!1e0mi~ b̃1
21 c̃1

2!
,

e45
22e0~c3b̃11b3c̃1!12e1~b3b̃12c3c̃1!1b3mr~ b̃1

21 c̃1
2!2c3mi~ b̃1

21 c̃1
2!

2b̃1~e0
21e1

2!1e1mr~ b̃1
21 c̃1

2!1e0mi~ b̃1
21 c̃1

2!
,

e55
8e1~e0

21e1
2!1~3e1mr12e1mrnr13e1mi

212e1mini !~ b̃1
21 c̃1

2!

2b̃1~e0
21e1

2!1e1mr~ b̃1
21 c̃1

2!1e0mi~ b̃1
21 c̃1

2!

1
~e1

2b̃12e0e1c̃1!~10mr14nr !1~4e1ni110e1mi !~e0b̃11e1c̃1!

2b̃1~e0
21e1

2!1e1mr~ b̃1
21 c̃1

2!1e0mi~ b̃1
21 c̃1

2!
,

e65

2e2e31
b3

b1

e3
21

b5

b1

,

e75

e2
22

e

b1

e3
21

b5

b1

,

and the other two parameterse0 , e1 can be determined from
Eqs.~5c! and~5d!. For the parametere1 we find that it has to
satisfy

ae1
41be1

31ce1
21de11e50 ~7!

with:

a5248,

b5272mrb̃1232nrb̃1272mic̃1232ni c̃1 ,
4-3
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c516b5b̃123mi
2b̃1

2227mr
2b̃1

214mini b̃1
214ni

2b̃1
2

216mrnrb̃1
2216c5c̃1248mimrb̃1c̃1220mrni b̃1c̃1

220minrb̃1c̃128ninr b̃1c̃1227mi
2c̃1

223mr
2c̃1

2

216mini c̃1
214mrnrc̃1

214nr
2c̃1

2 ,

d52c5mib̃1
218b5mrb̃1

214c5ni b̃1
223mi

2mrb̃1
323mr

3b̃1
3

22mimrni b̃1
322mr

2nrb̃1
3110b5mib̃1c̃1210c5mrb̃1c̃1

14b5nib̃1c̃124c5nrb̃1c̃123mi
3b̃1

2c̃123mimr
2b̃1

2c̃1

22mi
2ni b̃1

2c̃122mimrnrb̃1
2c̃128c5mic̃1

222b5mrc̃1
2

24b5nrc̃1
223mi

3mrb̃1
2c̃123mr

3b̃1c̃1
222mimrni b̃1c̃1

2

22mr
2nrb̃1c̃1

223mi
3c̃1

323mimr
2c̃1

322mi
2ni c̃1

3

22mimrnr c̃1
3 ,

e5c5
2b̃1

22c5mimrb̃1
31b5mr

2b̃1
312b5c5b̃1c̃12c5mi

2b̃1
2c̃1

1b5mimrb̃1
2c̃11b5

2c̃1
22c5mimrb̃1c̃1

21b5mr
2b̃1c̃1

2

2c5mi
2c̃1

31b5mimrc̃1
3 .

Then the parametere0 can easily be determined by substitu
ing the value ofe1 into Eq. ~5d!.

From the coefficient expressions of parametere1 we see
clearly that the coefficientsb andd are only related with the
higher-order terms. It means that Eq.~7! have single positive
root in the case of CGLE. The corresponding negative
only leads to an equivalent front because of the symm
mentioned above. However, in the presence of higher-o
effects Eq.~7! may exist four real roots as the symmetry
broken. Therefore, the higher-order effects will lead to m
front solutions, which are dependent strongly on the sys
parameters.

III. STABILITY ANALYSIS AND NUMERICAL RESULTS

As mentioned by Saarloos@2,3#, the condition for exis-
tence of a heteroclinic trajectory is that the stable and
stable manifolds of the fixed points in question should jo
up. It is thus possible to determine the multiplicity of th
aforementioned coherent structures by studying the lin
stability of the fixed points in the dynamical system of E
~3!.

The linear stability of theN fixed point in the original
partial differential equation~PDE! shown by Eq.~2! can be
obtained by the standard linearization. Let

A~x,t !5ã~x,t !ei f̃(x,t),

then the amplitude and phase satisfy the following t
PDEs:
06620
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] tã5eã1b1@]x
2ã2ã~]xf̃ !2#2c1@2~]xã!~]xf̃ !1ã]x

2f̃#

2b3ã32b5ã51~3mr12nr !ã
2]xã2mia

3]xf̃, ~8a!

ã] tf̃5b1@2~]xã!~]xf̃ !1ã]x
2f̃#1c1@]x

2ã2ã~]xf̃ !2#

1c3ã31c5ã51~3mi12ni !ã
2]xã1mra

3]xf̃.

~8b!

Further introducing

ã~x,t !5aN1ã1 ,

f̃~x,t !5qNx2vNt1f̃1 ,

ã15ã01exp@ iPx1lt#,

f̃15f̃01exp@ iPx1lt#,

and linearizing Eq.~8! for ã01 and f̃01, we can get the en-
suing characteristic equation forl:

l21bl1g50 ~9!

with

b52aN
2 b314aN

4 b512b1P214ic1PqN23iaN
2 mr P

2 iaN
3 mr P22iaN

2 nr P2aN
2 miqN ,

and

g52aN
2 b1b3P214aN

4 b1b5P222aN
2 c1c3P224aN

4 c1c5P2

1b1
2P41c1

2P414iaN
2 b3c1PqN18iaN

4 b5c1PqN

14iaN
2 b1c3PqN18iaN

4 b1b5PqN24b1
2P2qN

2 24c1
2P2qN

22iaN
5 b3mr P24iaN

7 b5mr P23aN
5 mr

2P222aN
5 mrnr P

2

23iaN
2 b1mr P

32 iaN
3 b1mr P

322iaN
3 c1ni P

3

22iaN
2 b1nr P

316aN
2 c1mr P

2qN2aN
3 c1mr P

2qN

24aN
3 b1ni P

2qN14aN
2 c1nr P

2qN16iaN
3 b1mr PqN

2

1 iaN
5 mimr PqN2aN

2 b1mi P
2qN22iaN

2 c1mi PqN
2 .

For stability we have to require that the solutionsl(P) of
Eq. ~9! satisfy

Rel~P!,0 ~10!

for all P. Applying this condition forP→0, we get the nec-
essary stability condition

4aN
2 b512b32miqN.0 ~11!

for amplitude perturbations. From this one can easily eva
atel(P) numerically and check the stability of any partic
lar solutionaN , qN for given parameters.
4-4
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The most interesting question about fronts and pulse
their dynamical behavior as solutions of Eq.~2!. Now let us
investigate the ‘‘selection’’ problem of the front solution o
tained from the ansatz~4!. Here we use the rules develope
earlier@2# to elucidate the selection problem. The basic id
is that the selected frontv1,v1 is the entity which controls
the behavior of the system. From Eq.~6b! we can analyti-
cally calculate the parametersv1 of the selected front. As
shown in Ref.@3#, whenv1.0, a localized initial condition
will lead to a positive front described by the solution~4!, and
pulses will be unstable. In contrast, whenv1,0, or when no

FIG. 1. ~a! Bifurcation diagrams (an as a function of control
parametere) and the regions for different evolution results when
certain initial condition is given. The parameter values other th
those for e are chosen asb1520.3, c150.5, b3520.5, c3

51, b550.34, c550, mr520.02, mi50, nr50, ni520.05,
respectively.~b! Front velocity as a function of control parametere,
wherev* is given by the linear-marginal-stability criterion andv1

is obtained from Eq.~6b!.
06620
is

a

solution of Eq.~4! exists, the outcome is somewhat mo
dependent on initial conditions. In such cases, a locali
initial condition may lead to an attenuation pulse, or a ch
otic pulse. Alternatively, stable stationary pulses may yi
for some appropriate parameter range. The latter is of po
tial applications in optical telecommunication systems. In
following numerical investigations we will concentrate o
discussing optical transmission system.

Figure 1 illustrates the different regimes for a set of sp
cial parameters as a function of the parametere. Here we
have chosen the values of the parameters from optical tr

n

FIG. 2. Contour plots of the stable pulse transmission. The c
trol parametere is selected as20.05 and the other parameters a
as same as those in Fig. 1.~a! the result whenmr50 andni50,
namely, the higher-order terms are omitted;~b! the result when the
higher-order terms are considered.
4-5



n

n
c
ly

a
5 ond

h
a

he
rs

TIAN et al. PHYSICAL REVIEW E 66, 066204 ~2002!
mission systems presented in Refs.@25,27,28#. Figure 1~a!
shows the bifurcation diagrams (aN as a function of control
parametere), where dashed line refers to unstable solutio
and solid line refers to stable ones. Figure 1~b! shows the
front velocity as a function of the control parametere, where
v* is given by the linear-marginal-stability criterion@26# and
v1 is obtained from Eq.~6b!. From these figures we ca
clearly see that there exist saddle-node bifurcation, spe
value bifurcation, and subcritical bifurcation, respective
The corresponding bifurcation valuese are 1.471 64,
2.696 52, and 4.268 17. When the higher-order terms
omitted, these values are 1.304 96, 2.370 49, and 3.84
respectively. According to Ref.@3# the selected front velocity

FIG. 3. Contour plots of the chaotic pulse transmission. T
control parametere is selected as 0.05 and the other parameters
as same as those in Fig. 1,~a! the result whenmr50 andni50,
namely, the higher-order terms are omitted;~b! the result when the
higher-order terms are considered.
06620
s

ial
.

re
29

is max (v1,v* ). By calculation, we find that when
1.471 64 (1.304 96),e,2.274 09 (1.894 17), the velocity
of the front solution~4! satisfiesv1,v* . Therefore, the lin-
ear front will be selected. When 2.274 09 (1.89417),e
,14.8309 (8.480 76), the velocityv1 is larger than the ve-
locity v* and the front with velocityv1 is selected. How-
ever, fore.14.8309 (8.480 76), althoughv1.v* is satis-
fied, the linear front is still selected because ofuku1,uku*
@2,3#. The values mentioned above in the bracket corresp
to the case where the higher-order terms are omitted.

e
re

FIG. 4. Contour plots of the attenuation pulse transmission. T
control parametere is selected as20.09 and the other paramete
are as same as those in Fig. 1,~a! the result whenmr50 andni

50, namely the higher-order terms are omitted;~b! the result when
the higher-order terms are considered.
4-6
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FRONT AND PULSE SOLUTIONS FOR THE COMPLEX . . . PHYSICAL REVIEW E66, 066204 ~2002!
Further, whene,1.471 64 (1.304 96), solution~4! does
not exist any more. As predicted above, in this case th
may exist attenuation pulses, chaotic pulses and st
pulses. By numerical simulation, we found stable pulses
certain parameter regimes both in the case without hig
order terms and in the case with higher-order terms. T
parameter regimes are shown in Fig. 1. The numer
method used here is symmetrized split-step Fourier met
@25#. The step size inx direction is 0.1 and the number o
discrete points is 1024. The step size int direction is 1/125.
We have checked our results with different step size al
the t direction and with different point numbers along thex
direction to ensure that the results contain no numerical a
facts. Figure 2~a! plots the contour of stable propagation
optical pulse for given initial condition in the absence
higher-order effects, wheree520.05. When the higher
order effects exist, as shown in Fig. 2~b!, the stable optical
pulse has not been destroyed except it moves at a defi
speed. The reason is that the symmetry in the case of CG
cannot be kept when the higher-order terms are not
glected.

Out of the front and the pulse regimes, a localized init
condition may decay to zero or lead to a chaotic pulse. T
regimes for the attenuation pulse and chaotic pulse are
shown in Fig. 1, the contours of every kinds of evoluti
results are shown in Fig. 3 and Fig. 4. As shown in the F
3~a! and 3~b!, where the control parametere50.05, Chaotic
pulse which started from a stationary localized initial con
tion has complex shapes. After a while from the beginni
small ripples appeared on its ‘‘slopes,’’ then with the ripple
increasing in size, other ripples appeared. At last the ripp
can not be distinguished and chaotic pulse come into be
As explained in the stable pulse case, the higher-order te
ds

hy
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will lead to moving of the chaotic pulse. And when the val
of « is too small, the attenuation pulses are observed. Th
because the loss is too large to keep the propagation of
tical pulses. The results are shown in Fig. 4~a! and 4~b!,
where the control parametere520.09.

IV. CONCLUSION

In conclusion, based on the CGLE with higher-ord
terms, we have investigated their influences on the multip
ity of solutions and obtained an exact analytic front solutio
By linearized stability analysis for the original partial diffe
ential equation, we derive its necessary stability condition
amplitude perturbations. This condition together with the e
act front solution determines the region of parameter sp
where the uniformly translating front solution can exist.
the control parametere is out of the range, stable pulse
chaotic pulses, and attenuation pulses appear gene
which are greatly dependent on the localized initial con
tions. We have applied these analysis into the optical tra
mission system and found the stable evolution of opti
pulses by solving partial differential equation numerical
The numerical results are in agreement with the analytic p
dictions. The higher-order effects will mainly break the sym
metry in the case of CGLE and result in moving of the o
tical pulses. It may be expectable to apply these results
high-capacity optical telecommunications.
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@7# M. Niklas, M. Lücke, and H. Mu¨ller-Krumbhaar, Phys. Rev. A

40, 493 ~1989!.
@8# J. Wu, R. Keolian, and I. Rudnick, Phys. Rev. Lett.59, 2744

~1987!; S. Douady, J. Fluid Mech.221, 383 ~1990!.
@9# M. J. Landman, Stud. Appl. Math.76, 187 ~1987!.

@10# A. Hasegawa,Optical Solitons in Fibers~Springer, New York,
1989!.

@11# J. V. Moloney and A. C. Newell, Physica D44, 1 ~1990!.
s.

@12# G. S. Skinner and H. L. Swinney, Physica D48, 1 ~1991!.
@13# L. C. Crasovan, B. A. Malomed, D. Mihalache, D. Mazilu, an

F. Lederer, Phys. Rev. E62, 1322 ~2000!, and reference
therein.

@14# P. Kolodner, Phys. Rev. A44, 6448~1991!.
@15# K. J. Blow, N. J. Dorran, and D. Wood, J. Opt. Soc. Am. B5,

381 ~1988!.
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