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The master equation approach to Lyapunov spectra for many-particle systems is applied to nonequilibrium
thermostated systems to discuss the conjugate pairing rule. We consider iso-kinetic thermostated systems with
a shear flow sustained by an external restriction, in which particle interactions are expressed as a Gaussian
white randomness. Positive Lyapunov exponents are calculated by using the Fokker-Planck equation to de-
scribe the tangent vector dynamics. We introduce another Fokker-Planck equation to describe the time-reversed
tangent vector dynamics, which leads to the calculation of the negative Lyapunov exponents. Using the
Lyapunov exponents provided by these two Fokker-Planck equations we show the conjugate pairing rule is
satisfied for thermostated systems with a shear flow in the thermodynamic limit which allow us to replace the
friction coefficient with a constant number. We also give an explicit form to connect the Lyapunov exponents
with the time correlation of the interaction matrix in a thermostated system with a color field.
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[. INTRODUCTION the master equation approach are specified by the form of
time correlation functions of the matrix expressing the par-
The Lyapunov exponent is an essential concept to expredigle interactions, whereas models in the deterministic
the instability of orbits and the amount of the information in Hamiltonian dynamics are specified by the form of a poten-
a dynamical system. It is introduced as an exponential extial function, or more generally, of the Hamiltonian. In this
pansion(or contraction rate of an infinitesimal perturbation Sense, using the master equation approach we move away
of orbits, and its positivity implies that the system is chaotic.from considering particular Hamiltonian model systems. Un-
In general there is a Lyapunov exponent for each independer the assumption thgt the _random particle interactions are
dent direction of the infinitesimal perturbation of the orbit, €XPressed by a Gaussian white randomness, the master equa-

and the sorted set of such Lyapunov exponents is called t nis 5|mp_ly attrlbuted_to a Fokker-Planck equation, and
Lyapunov spectrum, and has been the subject of study i ads to a direct connection between the Lyapunov exponents

. . : nd the time correlation of the particle interaction matrix.
many-particle systems. For example, the existence of its thefz stematic investigations to justify the Gaussian white ran-
modynamic limit{1-3], an effect of the rotational degrees of y g ]

freed f leculedd] its st ) iruct d th dom assumption for particle interactions using a determinis-
reedom of moleculeg ]I',kl S stepwise shruc ure an € tic many-particle Hamiltonian model have not been done yet
Lyapunov modesa wavelike structure in the tangent SpRCE [1¢] pt it is expected that a Gaussian behavior of the inter-

[5], and a tracer particle effe¢6] have been observed and ,ction matrix may be justified by the central limit theorem as
discussed in the Lyapunov spectra of many-particle chaotighe number of particles goes to infinity, namely, in the ther-
systems. modynamic limit. In order to justify the white random prop-
Some algorithms for numerical computations of erty of the time-correlations of the interaction matiithat is
Lyapunov spectra are well know.g., the algorithm due to  their s-function relaxations as a description of a determin-
Benettinet al. [7,8] and the constraint methd®]), and so istic chaotic system whose characteristic correlation time
far full Lyapunov spectra have been calculated mainly usingscale is not infinitesimal, it may be necessary to modify the
numerical approaches. On the other hand, analytical calculaime scale. Such a change of the time scale multiplies the
tions of the full Lyapunov spectra for many-particle systemsLyapunov exponents by a factor, but if we only consider
still remain as a difficult task at present. The master equationatios of Lyapunov exponents, for example the Lyapunov
approach, which was recently proposed, is one of the methexponents divided by the largest Lyapunov exponent, then
ods that can be used to calculate the full Lyapunov spectrthe problem of the time scale no longer appears explicitly.
for many-particle systemfgl0]. This method is applied to Under the assumption of this Gaussian white random inter-
systems with random particle interactions, and uses a masteaction, the master equation approach reproduced the step-
equation to describe the tangent space dynamics, which alvise structure of the Lyapunov spectrum and the Lyapunov
lows the calculation of all individual positive Lyapunov ex- mode, which were actually observed in the numerical simu-
ponents through the average of the magnitude of the tangetdtion of a deterministic many-hard-disk system.
vector. A characteristic of the Lyapunov spectrum that is known
The master equation approach is characterized by usinig Hamiltonian systems, is that the Lyapunov exponents ap-
random patrticle interactions, like in the other random matrixpear as a pair, namely, any positive Lyapunov exponent ac-
approachegl1-15 to the Lyapunov spectrum, and this char- companies a negative Lyapunov exponent with its opposite
acteristic distinguishes this approach from approaches usingign[17]. This characteristic, which is based on the symplec-
deterministic many-particle models. Especially, models intic structure of the Hamiltonian mechanics, is not correct in
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non-Hamiltonian systems, but it is interesting to know how it This paper has two main purposes. First we generalize the
is modified in quasi-Hamiltonian systems such as a Hamilimaster equation approach to the Lyapunov spectrum to non-
tonian system coupled to a thermodynamic reservoir. Thigquilibrium thermostated systems. Such a generalization of
problem has been considered in some thermostated dynami#§s approach to nonequilibrium systems is not known. As
where a term to extract the heat produced in the system b{ie second purpose of this paper we discuss the conjugate
external force fields is included, and led to the proposal ofairing rule of the Lyapunov spectrum for the iso-kinetic
the conjugate pairing rulefor thermostated systems, which thermostated system with a shear field by using this general-
claims that the sum of any Lyapunov exponent feiclud- ized master equation apprpach._ In this paper we concentrate
ing zero exponeniss not zero but a constant regardless of " the case where the partlgles interact Wlth a.Gaqssmn white
the exponent numbéL8,19. This conjecture was confirmed randomne_ss._V\(e glso restrict our cons_lderatlon in the_ ther-
by many following numerical calculatiofi@0—23. This also modynamic limit, in which the fluctuations of the friction

led to the discovery that some thermostated systems contafiPefficient can be neglectd@7]. In this case the friction
hidden Hamiltonian structurk23,24). The pairing rule is not coefficient in the iso-kinetic thermostated system is simply

only interesting as a mathematical structure of the thermot€placed by a constant. This is actually the case considered in

stated system but is also valuable for a practical use; th&€f-[39], but the proof of the conjugate pairing rule for the

conjugate pairing rule for the thermostated system allows us!/0d dynamics has not known even in this simplified case.
to calculate non-equilibrium transport coefficietgsg., con- One of difficult problems in the proof of the conjugate pair-

ductivity and viscosity from only one pair of the Lyapunov ing rule for the Sllod dynamics is that this dynamics does not

exponents, such as the largest and smallest Lyapunov expBaVve theu-symplectic structure, which is a generalized sym-
nents only[19,22,25,2% plectic structure and have been essential in the past trials to

A problem is that the necessary and the sufficient condiP™OVe the conjugate pairing rule for the thermostated sys-
tions for the conjugate pairing rule to hold for thermostated€MS- On the other hand, as will be shown in this paper, in
systems is not clearly known. The conjugate pairing rule foPfder to discuss the conjugate pairing rule using the master

the iso-kinetic thermostated system with a color field wasgduation approach a structure like fhesymplectic structure
proved for the soft core interaction potentf@7] and the 'S not necessary, and this is the reason why the master equa-

hard core interaction potentidP4,28, regardless of the ton approach allows us to access to the problem of the con-
number of particles. A similar discussion was done in NosdU9ateé pairing rule for the Sllod dynamics, for which deter-
Hamiltonian dynamic$29]. These works give the sufficient Ministic approaches have not been successful. However a

conditions for the conjugate pairing rule. On the other handProblem in the master equation approach is that the time-
it was suggested numerically that it can be violated in th orward master equation for the tangent space dynamics can

presence of a magnetic fie[®0] and in inhomogenously 9iVe the only positive branch of the Lyapunov spectriah
thermostated systems such as a system under temperatlf@St in the equilibrium cagealthough we need the negative
gradient31] or a system in which the peculiar momenta arePranch of the Lyapunov spectrum to discuss the conjugate
thermostated32]. Another numerical work also suggested P&iring rule for thermostated systems. To overcome this
that it is not exact in the iso-energetic thermostat with a finite?roPlem in this paper we introduce another master equation
number of particle$33], although the iso-energetic thermo- to describe the time-reversed tangent vector dynamics, and
stat should be equivalent to the iso-kinetic thermostat in th@0Pose & method to calculate the negative branch of the
thermodynamic limit[34,35. A special interest is the iso- Lyapunov spectrum using this time-reversed master equa-
kinetic thermostated system with a shear field, which is delion- Under the assumptions of the Gaussian white random
scribed by the Sliod equation for the planar Coutte f[86]. interactions and the constant friction coefficient we show
The Sliod equation, so named because of its close relatiorf?@t the conjugate pairing rule for the thermostated system
ship to the Dolls tensor algorithm has an explicit parameteVith @ shear field given by the Sllod equation is satisfied. As
expressing the shear rate to realize a shear flow, and is dift SPecial case we also discuss briefly an explicit form to
ferent from the dynamics in which a shear flow is realizedc@nnect the Lyapunov exponents with the time-correlation of
only by a boundary condition such as the Lees-Edwards pe’I_he interaction matrix in a thermostated system without a
riodic boundary condition{36]. Early investigations sup- Shear field.

ported the conjugate pairing rule for the Sllod dynamics

[19,20,37. Reference$32,38 suggested a small deviation || |SOKINETIC THERMOSTATED SYSTEM WITH A

from the conjugate pairing rule. An analytical consideration sHEAR FIELD AND ITS TANGENT VECTOR DYNAMICS
showed that the deviation from the conjugate pairing rule

should be at most fourth order in the shear rate in the case of We consider nonequilibrium systems with an iso-kinetic
a small shear rate in the thermodynamic lif@@]. However, thermostat. Our consideration includes the case where a
a recent numerical calculation with a more careful numbershear flow is sustained by an external restriction, and for
ing of the Lyapunov exponents and with numerical error bargimplicity we consider a two-dimensional system consisting
showed that within the numerical precision the conjugatedf N particles with the same mass We introduceq((t)
pairing rule was satisfief40]. After all these trials, a justi- E(qf(')(t),q)(,”(t))T andp(')(t)E(F>§<J)(t),p§,')(t))T as the spa-
fication of the conjugate pairing rule for the iso-kinetic ther-tial coordinate vector and the momentum vector of jlie
mostated system with a shear field still remains as an opeparticle, respectively, at timewith the transpose operation
problem. T. (Note that all vectors in this paper are introduced as col-
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umn vectors. Equations forgt)(t) andp)(t) are expressed dsr(t)
as[36] at =L(t)dI'(1) )
dg®(t) 1 o for the tangent vectosI'(t). Here the matrixC(t) is given
i = mPP O+ yEa0 ) D py
0 o= o (®)
dp'’(t) AU(t) : t)=
_ e () R(t v
with 2N X 2N matrices®, ¥, andR defined by
where U(t) is the potential energy as a function of L
q¥(t),j=1,2, ... N andt only, and we introduc& ,, is the P=7yEon, (7
2k X 2k matrix defined by —
W=—yEn—aly, ®
Oy Ik) 5
EZkE( 3 _ U
O O RO=" Gqmaqm ©
with the kxk identical matrixl, and thekxk null matrix  \yhere ~ we  introduced q(t) as a  vector
0y . Herevy is the shear rate as an external parameter, namel)(lqﬁl)(t),q§(2)(t), o ,q(XN)(t),q§,1)(t),q§,2)(t), o ,qu)(t))T_

a constant gradient of thecomponent of the local velocity

in theyy direction, anda(t) is defined by lIl. RANDOM INTERACTIONS AND MASTER

EQUATIONS FOR THE TANGENT VECTOR DYNAMICS

N J .
> P(J)(t)T< (j)( ) + yEzp“)(t)) In this section we introduce a random interaction between
a’(t)E—J:1 N&q ) (4) the particles, and obtain the two kinds of master equations
_ 5 corresponding to the time-forward tangent vector dynamics
121 (1)) and the time-reversed tangent vector dynamics by using the

Kramers-Moyal expansion technique.

so that the total kinetic energy is constant in time:
d[=]L,[p"(t)[?/(2m)]/dt=0. Egs.(1) and (2) are called
the Sllod equation for the planar Coutte flow with the isoki-
netic thermostat, and gives the model for the system driven We consider the case that each particle interacts with the
by external fields andor) a shear rate with an attached heatother particles randomly enough so that the matRii)
reservoir which removes the energy generated inside the sys=(Rj«(t)) can be regarded as a Gaussian white random ma-
tem and maintains the temperature of the system constantlyix satisfying the conditions

in time. As an example described by E@§) and (2), other

than the system with a shear field, we may mention the color ~ (Ruyn (TR (t2) - Ry, o, - (t2n-1))=0, (10)

field system in which the system consists of many particles

with charges of different signs and is driven by an external (R, (t1)R,,,,(t2) R, . (t20))

electric field[22,41].

In general, the quantity(t), which is interpreted as the :z D
friction coefficient, depends on the coordinates and the mo- Py
menta of the particles, so is variable in time. However, it is
known that the fluctuation of the quantity(t) is small in a X 5(til_tjz) 5(t13_tj4)' o 5(t12n_1_t12n) (11
system consisting of many particlg37]. (For a justification ]
of this point by the kinetic approach see Rpf2], which ~ forany integen and a 4th rank constant tenddyy, , where
shows that the quantityr(t) fluctuates with the order of We take the sum over only the independent permutation
1/JN around a fixed valugBased on this fact, in this paper Pa:(1.2,... . 0)=(j1,j2, .. - jzn), and the bracket- - )
we consider only the system which consists of enough pafM€ans the ensemble average over random processes. The
ticles so that the friction coefficient(t) in Eq. (2) can be  €nsorDju, satisfies the conditions

A. Fokker-Planck equation for the forward dynamics of the
tangent vector

Lo P PLad PA PR PR P PR A Bian-1"izn-1*i20"i2n

replaced by a fixed constant _ _ Dinjk=Djkin » (12
For a convenience we represent th&l-dimensional

phase space vector TI'(t) as a vector o =D..=D.

@V (1,90, o’ (0, 9 (0.9 (1), . o (0, ko= P =Ddn: o

plM (1), pl2 (1), ... .pMN (1), p<yX>(t), pA), ... pM(t)T.  which are derived from the relationD;,(s—1)
Using this notation and the assumption explained in the pre=(R;x(S)Ri,(t)) and the symmetry property of the matrix
vious paragraph we obtain the equation R(t).
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Under the randomness conditio(i) and(11) the time- In the iso-kinetic thermostated system with a shear field
evolutional equatiori5) is regarded as a stochastic equationthe time-reversed motion is expressed by the “time-reversed
of the Langevin type, and its corresponding master equatiomapping”[36]: q—q, p— —p andy— — y. The transforma-
for the the probability density(™)(8T,t) for the tangent tion y— — v is justified by the fact that the direction of the

vector SI' at timet is given by shear flow changes to the opposite direction in the time-
reversed motion. This justifies the time-reversal transforma-
J ST 1= § § d tion a— — « for the friction coefficient by Eq4). The time-
at? (T H= i=10=106q, reversed mapping leads to the time-reversed operafion
5 defined by
y7a%
2N 2N
op— — op, (16)
- 2 E _\I,;Lvépvp(+)(5rit)
p=1r=1 (75p#
D——d, 17)
2N 2N 2N 2N 1
+2 2 2 2 5Du.,69,8, W -, (18)
w=1r=1 uw'=1v'=1 2
2 for the tangent vector dynamics, noting the relati¢fysand
% p()(ST ) (14)  (8) to connect the matrice$ and ¥ with the shear ratey
9P, 0P, and the friction coefficient. It is important to note that the

) . ) tensorDjy, itself is invariant under the time-reversed map-
applying the Kramers-Moyal expansion technique to the dyping.
namics(5). Here 6q; and 6p; are thejth components of the ~ Now we introduce the Fokker-Planck equation for the
coordinate partq aqd the momentum padip in the tangent  probability densityp!~)(ST,t) for the time-reversed tangent
VﬁCtOF 5r=(|5q,5p) : ][eﬁpectlveﬂlqy, al:;g,g ?nd(;l't,;u Sfe vector at timet as the transformed equation of the Fokker-
the matrix elements of the matrik an efined by Eds.  pjanck tior(14) by the time- d tighand
(7) and(8), respectively. The derivation of E¢l4) is given thgqfan(segouriwgggnl _yt r?ar:gﬁl reversed operatichan
in Appendix A. Equation(14) in the special case ofb ’
=0,y and V=0, have already been used to discuss the

2N 2N
step_wise strL_Jcture of the Lyapunov spectrum for a many- — p(7)(Tt)= — z 2 J
particle Hamiltonian systerfi.0]. at p=10=1 0959,
Ouv
B. Anti-Fokker-Planck equation for the time-reversed x| ®,,6q,+ rl:] p, | pt (STt
dynamics of the tangent vector -
N N
As shown in Ref[10], in the case ofy=0 anda=0 the -> > L\p op,p (ST ,t)
Fokker-Planck equatiofiL4) provides the positive branch of p=1i=100p, *T ’
Lyapunov exponents as the time-averaged exponential rate of ON 2N 2N 2N
the randomness average by the probability density(I",t) YIS Y S ED 506
in the time evolution of infinitesimal perturbations of the e W O 2 mlmvty .09y
dynamical variables. However, this method does not provide
directly the negative branch of Lyapunov exponents, because 9? )
in the stochastic systethe randomness average ttfe dis- me (oL1). (19)
o v

tance between the infinitesimal nearby trajectories should not

shrink in the infinite time limit. This was not a problem in | qiher words, if the dynamical evolution operator of the

the Ham_ilton_ian system discussed in REEQ], because in _ probability densityp(*)(ST,t) is expressed by the operator
the Hamiltonian system the absolute values of the negative

1 + — 1 + ;
Lyapunov exponents are the same with the positivee_Xp(H_t) (so that p! )(6F,'E)—exp(Ht)p : )((SF’(_)) ) with ?
Lyapunov exponentl7]. However, in the thermostated sys- {ime-independent operatdi then the dynamical evolution
tem discussed in this paper such a simple relation of th@perator of the probability densipy ~)(T',t) is given by the
negative and the positive Lyapunov exponents cannot be exoperator exp{ Z117t). Equation(19) is simply the equation
pected any more. In order to overcome this problem and tevith the opposite sign of the diffusion term to the forward
provide the negative branch of Lyapunov exponents usindg-okker-Planck equatiofl4), and is interpreted as the master
the master equation approach directly, we use the fact thaquation to describe the time evolution of the tangent vector
the negative Lyapunov exponents can be regarded as thehose initial condition is the time-reversed initial condition
positive Lyapunov exponents for the time-reversed motiorto the Fokker-Planck equatidi4). We call this equation for
This fact has been used in some works to calculate the negéhe probability densityp(~)(ST',t) the “anti-Fokker-Planck
tive Lyapunov exponents for chaotic syste[@§,43,44. equation” in this paper, and calculate the negative Lyapunov
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exponents as the exponential rate of the randomness averagpatial coordinate part onljor the momentum part onlyof
by the probability density(™)(48T,t) in the time evolution the tangent vector has been used previously by Réds47.
of infinitesimal perturbations of the dynamical variables in e introduce the matri%y (*)(t) defined by
the minus infinite time. B

It is important to note the difference between the anti- YO ) =YE) (+t)e*, (22)
Fokker-Planck equatioil9) and the so called “backward
Fokker-Planck equationf46]. The backward Fokker-Planck as shown in Appendix B, the matri¥ (*)(t) satisfies the
equation describes the dynamics before an initial time inyifferential equation
which the initial condition is the same as that in the forward
Fokker-Planck equation that describes the dynamics after the AV 1
initial time. However, in order to calculate the negatve @————
Lyapunov exponents from the time-reversed motion, we dt* 2
must use the different initial condition which has the oppo- 1
site sign of the momentum to the initial condition in the + =[O ()20 O () (QD)T+YE)(t)
forward Fokker-Planck equation. In the equilibrium case ex- 16

d2Y ) dAY )t
02 ( )+ (1)
dt? dt?

(QZ)T]

pressed byy=0 and a=0 the backward Fokker-Planck 2 [dY™)(h)
equation coincides with the anti-Fokker-Planck equation, but xX(QHT- _2D‘ d—] =0, (23
otherwise it cannot be used to calculate the negative m t

Lyapunov exponents. . .
The anti-Fokker-Planck equation is analogous to the antiWhere we assumed the probability density (oI, t) ‘o be

Lorentz-Boltzmann equation which was introduced to calcuZ€"© at the boundary of the tangent space. Herés the

late the negative Lyapunov exponents using the kinetic apt2N) > (2N) matrix defined by

proach [26,44,43. In this approach the anti-Lorentz- Q=h_v (24)

Boltzmann equation is given as the Lorentz-Boltzmann - :

equation where the collision operator has the opposite sign to dDis the I 5 .
the ordinary Lorentz-Boltzmann equation in an equilibrium@1d D is the linear operator to map anyNgx (2N) matrix

or a nonequilibrium stationary state. X=(Xji) to the (2N)x(2N) matrix D{X}=((D{X});) de-
At least, in the equilibrium case expressed 30 and  fined by

a=0 the anti-Fokker-Planck equation must provide the N N

negative Lyapunov exponents as the opposites of the positive (f){x})‘kf z 2 DX, (25)

Lyapunov exponents calculated by using the Fokker-Planck e e R il

equation(14). In the following section we show that it is

actually a special case of more general results. It may be noted that Eq23) for the matrix Y (*)(t) is in-
variant under the transformatida— — ().
IV. CONJUGATE PAIRING RULE FOR THERMOSTATED We can choose the initial probability densjtf)(4T',0)
SYSTEMS WITH A SHEAR arbitrarily to calculate the positive Lyapunov exponents. On

_ _ _ the other hand in order to derive the corresponding negative
We have to know the time evolution of the amplitude of Lyapunov exponents we assume the initial probability den-
the tangent vector in order to calculate the Lyapunov exposity p(~)(sI',0) for the time-reversed tangent vector to sat-
tr]ents. Such g time evol_l:snon for thzforv:r?rddmoven(eln?th isfy the Conditionde(—)(t)/dtk|t:0:de(-%—)(t)/dtkh:O' K
ime-reversed movemeyi expressed as e ynamics 0tthe =0,1,2,3 at the initial time=0. Under this assumption it
d!agonal elements of the mati& ™) (t) (the matrixY()(t)) follows from Eq.(23) that
given by
YO (—t)e =Yty 26
Y1) =(sq607) (). (20 Y v 20
. because the quantitiés(*)(t) and Y(7)(t) defined by Eq.
Here the brackeg- - '_2t_ means to take the average by the (22) satisfy the same differential equati¢®3) and have the
probability densityp(=)(ST,t), namely, same initial condition. Therefore, the diagonal element
Y{(t) of any orthogonal-transformed matrix of (*)(t)
(X(&F)}F)EI dTX(8T) p=)( 8T 1) 21) must satisfy the relation
Y (-t =Y (t)e* . (27)
for any function X(8I') of 6I'. In Ref. [10] the positive . _ . .
Lyapunov exponents were calculated by the time-averageljhls equation connects 'the tlme-fo_rward evolution and the
exponential rate of the diagonal elements of an orthogonalime-reversed evolution in the amplitudes of the spatial part
transformed matrix on(+)(t)_ We get the negative Of the tangent vector in the thermostated system.
Lyapunov exponents from the matrik()(t) by a similar Thejth positive(or zerg Lyapunov exponert{™ and its
procedure. The introduction of Lyapunov exponents by theconjugate negativéor zerg exponent)\j(’) are given by
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1 Y

(28)

The quantity Yj(j:)(t) satisfies the conditionYﬁ”(O)
=Y{)(0) at the initial time, and using Eq$27) and (28)
we obtain

MO =—a. (29)

This is the conjugate pairing rule of the Lyapunov spectru
for the iso-kinetic thermostated system with a shear field. |

PHYSICAL REVIEW B66, 066203 (2002
whereA; is defined by

A-E ﬂ 2+ ﬂ 4_ E 3711/3

! m m 3 '

[See Appendix C about a derivation of E§5).] It is clear
that the Lyapunov exponents given by H85) satisfy the

conjugate pairing rulé29).
Concerning the expressidi35) for the Lyapunov expo-

(36)

nent it is important to note that the tendoy,, can depend
en external force fields. This implies that the eigenvalye

is clear that it is attributed to the pairing rule of the Hamil- of the matrixW can depend on the friction coefficieat If

tonian system in the case ef=0.

V. CONJUGATE PAIRING RULE FOR A COLOR FIELD

For an actual calculation of the Lyapunov spectrum for an,
iso-kinetic thermostated system by the master equation a|

proach we have to know the value of tenddy,, and to
solve the differential equatiof23) for the matrix Y *)(t).

we were to assume the quantity to be independent of the
friction coefficienta, then we obtain the expression of the
Lyapunov ~ exponents  as A{*)=x|w;/(2m)|?*~ a/2
+0(a?) from Eq. (35 in the case ofla|<3|w;/m|??
owever, this is not consistent with the numerical results in

R deterministic many-hard-disk system with a color field in

which the negative Lyapunov exponents rather increase as
the value of the friction coefficient increasgX2]. This con-

Let us discuss these points briefly by using a case without gjgeration suggests that we should not neglect the external

shear field such as a color field systgd2,41], namely

y=0. (30

force field dependence of the correlation amplitiig,, at
least in the color field case. The dependence of the tensor
Dj«in ONn the shear rate and the external force fields should be

For simplicity in this section we also assume that the tensoft SUPject for a separated paper, although the conjugate pair-

Djun is expressed as the multiplication of the matrix ele-

ments of a symmetric () X (2N) matrix W= (W,,):
Dijkin=WjiWip . (31

Under this assumption the conditiofi?) and(13) are auto-

ing rule of the Lyapunov spectrum is correct regardless of
their dependence as shown in this paper.

VI. CONCLUSION AND REMARKS

In this paper, we have applied the master equation ap-

matically satisfied. This assumption was also used in Refproach to Lyapunov spectra to nonequilibrium iso-kinetic
[10] to discuss the stepwise structure of Lyapunov spectra.thermostated systems in order to discuss a conjugate pairing

As shown in Appendix C, under the assumpti¢88) and
(31) the equation of the matri¥ (*)(t) is simplified to

d3\~[(i)(t) . dY(i)(t) 2
2 (+) =
e @ at 2WY (H)W=0. (32

It is shown that Eq(23) is given by taking the time differ-
ential in both the sides of Eq32). Using the orthogonal
matrix V diagonalizing the matrixV, namely

(VTW\/)jkz wj 5Jk (33)
with a real eigenvalue; , the quantityYJ(ji)(t) is expressed
as the diagonal element of the mati%*)(t)=(Y{(t))
defined by

YO 1) =VTY SV, (34)

Using Eq.(34) we can solve the equation for the quantity

Y{;)(t) derived from Eq(32), and by using Eqs22), (28),
and(34) the Lyapunov exponents are given by

A o
j+3_AJ- , (35

a 1
(- _ %, =
Aj 272

rule. We considered two-dimensional many-particle system
with Gaussian white random interactions between the par-
ticles. In this system the positive Lyapunov exponents are
calculated by @forward) Fokker-Planck equation for the tan-
gent vector dynamics. We proposed a method to calculate the
negative Lyapunov exponents by a time-reversed master
equation, especially the anti-Fokker-Planck equation where
the diffusion term has the opposite sign to the forward
Fokker-Planck equation. Using the Lyapunov exponents cal-
culated by these two Fokker-Planck equations we showed the
conjugate pairing rule of the Lyapunov spectrum for iso-
kinetic thermostated systems with a shear field given by the
Sllod equation in the thermodynamic limit. We also gave an
concrete form to connect the Lyapunov exponents with the
time-correlation of the interaction matrix in a thermostated
system without a shear field.

We discussed the conjugate pairing rule based on the iso-
kinetic thermostat in the thermodynamic limit. However, it is
known that the iso-kinetic thermostat is formally equivalent
to other thermostats such as the iso-energetic thermostat in
the thermodynamic limif35]. In this sense our result should
be correct in systems with such other thermostats, more ex-
plicitly as far as the friction coefficient can be regarded as a
constant even in a finite number of particle systems.

In order to get the anti-Fokker-Planck equation we used
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the fact that the shear rate changes its sign in the time where:J(”J) ;j.(al',t) is defined by
reversed motion. However, this time-reversed change of the "
sign of the shear rate to get the anti-Fokker-Planck equat|on 1 1
may not be essential to obtain the negative Lyapunov expor:J jn(éF,t)E mlimg([ﬁl“jl(ws)— 5Fj1(t)]
nents, if the Lyapunov exponents are even functions of the 's—0
shear rate. We have not proved the invariance of the
Lyapunov exponents under the transformatigr> — v in X[5F (t+s) =4l (t)]
this paper, but the invariance of E@3) under the transfor- B
mation Q— —Q implies that the Lyapunov exponents are X[oL; (t+8) = oL (DD ]sry-or (A2)
invariant under this transformation.

We can show that all the Lyapunov exponexis) (\(7))
are non-negativénonpositive in the case ofy=0 (See Ap-
pendix Q. This implies that in this case the number of the
positive Lyapunov exponents should be equal to the number
of the negative Lyapunov exponents, possibly except for a
few Lyapunov exponents making pairs with zero Lyapunov
exponents. However, we have not proved that it is also cor- “ [t+s ™ 72

2 drnf dry_ 4 del

andol’j(t) is thejth component of the tangent vectél'(t).
Using Eq.(5) we obtain

ST(t+s)— 6T (t)= { ;eX[{ fHSdT,C(T) - 1} ST(1)
t

rect in the presence of a shear fielg#0. Concerning this
point we should notice that a numerical calculation of the
Lyapunov spectrum for the Sllod equatiori$) and (2) o
showed that in the case of a high shear rate the number of XL LTn-1)- - L{72) ST(L).
positive Lyapunov exponents can be less than the number of (A3)
negative Lyapunov exponenfdQ]. Therefore, it should be
interesting to check whether the master equation approach #bfollows from Egs.(6), (10), (11), (A2), and(A3) that
the Lyapunov spectrum can describe such a situation or not. =) —(1) =

It should be noted that the discussion of this paper does = Do, h=EM(or,1),E(eT1), .. ER(ST )T
not conclude that the conjugate pairing rule of the Lyapunov

spectrum for the thermostated system with a shear field must =lim= <[5F(t+s) — 8TV sry=or

be satisfied rigorously in deterministic chaotic systems. To 505

show the conjugate pairing rule in this paper we assumed the

Gaussian white randomne$$0) and (11) for the particle , t+s ®5g+ op/m
interactions, and there is no guarantee that we can justify the - "mgft dr{L(r))ol'= W sp/m
conjugate pairing rule by the master equation approach under s=0

a more general random interaction of particles, for example (A4)

under the non-Gaussian randomness of the particle interac-

tion matrix which leads to a more general master equatio@nd

for the tangent vector rather than a simple Fokker-Planck

equation(14). A generalization of the conjugate pairing rule Z@(sT,1)= (2@ (6T t))= Iimi<[5l“(t+s)— ST(H)]
by the master equation approach to a more general random™ ' ik ' 2s

interaction remains as one of the important future problems. .
X[SL(t+5) = L)1) srey= or
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APPENDIX A: MASTER EQUATION FOR ) _
THE TANGENT VECTOR where 7(50) = (1;(59)) is defined by

In this appendix we derive the Fokker-Planck equation A
(14) for the tangent vector dynamics. Using the Kramers- 7jk( S EE Z 21 Djuk»09,09,, - (AB)
Moyal expansion the dynamics of the probability density T

e S
pt")(oT 1) is given by[46] Here the only nonzero contributions come from the 1

ap(+)(5l—w H 2N term of Eq.(A3). For generah, the number ofé functions
LA 2 2 > E (—1)" from Eq.(11) must be only one less than the number of time
=1i1=1j2=1  jp=1 integrals, to give a nonzero contribution. It is straightforward

to show that this never happens for-1. Concerning the
terms including= ,t), n=3,4, etc., in the right-
(A1) luding={" . (oI 34 in the righ
‘mril‘mrjz' ' "Mrjn hand side of Eq(Al) we obtain

"2 (STHp (ST

=l
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E(M . (8T)=0, n=34, ..., (A7)
because of the Gaussian white properti® and(11) of the
random matrixR(t). Using Eqs.(Al), (A4), (A5), and(A7)

we obtain the Fokker-Planck equati¢iv).

APPENDIX B: EQUATION FOR THE MATRIX Y&

In this appendix we give details of the derivation of Eq.

PHYSICAL REVIEW E66, 066203 (2002

with the matrix() defined by Eq{(24), and f)t{- .-} is de-
fined by

DiX}=e VDlePixel eVt (B13)
for any (2N) X (2N) matrix X. Here we used the relation

PV =T, (B14)

(23) from Egs.(14), (19), and (20). We start this derivation SO that we have the equation ¢xpbtiexp{Wt}=exp{—(®

by introducing the (®)x(2N) matrices F)(t) and
G)(t) defined by

FE()=(sqap") ), (B1)
G0 =(spop") ™).

Equations(14) and (19) lead to

(B2)

dY&)(t)

1
—py() () PT4 —[ £
G =YY meT [ FO)

+FE T, (B3)

dF ()

1
_ () () T — (%)
T PFH )+ FH(HWP +mg (t), (B4)

dg)(t)
dt

=VGE()+GE )P TEDYH (1)}

(BS)
for the matricesy ()(t), F)(t), andG*)(t) with the op-
eratorD defined by Eq.(25). Here, to derive Eq(B5) we

used the relationf12).
Equations(B3), (B4), and(B5) are equivalent to

Y ) 5 .
%zﬁﬂ(t)m)wP(t);di)(t)T, (B6)
dFA)(t 5
dt( ) =P(t)g (), (B7)
dgN() s o
d =+=D{YO) (1)}, (B8)
t
where Y ()(t), FF)(t), andG(*)(t) are defined by
YE ()= Pty (E)(He *T, (B9)
FEO()=e P FH) (e T, (B10)
G (=e Mg (e ", (B1Y)
andP(t) is the (2N) X (2N) matrix defined by
P(t)= ie*Qt (B12)
m

-t}

Noting that the matrixG(*)(t) is symmetric and the in-
verse matrix of the matrixP(t) is given by P(t) !
=mexp{Qt}, we obtain

dFAH(t) dFADI)T -
gt T g PO

265)(t)=P(t) *

d2Y (5)(t)

=P(t)* [P(t)" YT+ P(t) LADM)QT

dt?

+QFI W) TPt 1T (B15)

by using Egs.(B6), (B7), and (B12). Besides, using Egs.
(B6), (B7), and(B12) we obtain

PO FOOATH FI TP )

dY ) (t)

_ -1
QP(t) T

[P~ TQT+GH QT

+QGH)(1), (B16)

where we again used the relatigh™)(t)T=G(*)(t). It fol-
lows from Egs.(B6), (B7), and(B8) that

d2Y (1)

2 v 4o
2DV O}= PO

[P(t)~1]"
dY ) (t)

+QP(t) ! It

[P(y~HTQT

+GH)QT+HQGH)(1). (B17)

Taking the time differential of both the sides of H®17),
and using Eq(B8) we obtain

d? d2Y (1)

— p(t) ! Pt~ 1T

qer 0 g PO
dY ) (t)

+Q%P(t)’1 [P(t)"1TQT

dt
d,c A Lo 4
72 DY ()} DY (01T

+ QDY )}=0. (B19)
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This is the equation for the quantity(*)(t) only.

Now we derive the equation for (*)(t) defined by Eq.
(22) from Eq. (B18) for Y(*)(t) defined by Eq.(B9). We
note

Q=20+ al,y (B19)

=2V —al,y (B20)

which is derived from Eqgs(7), (8), and (24). Using Egs.
(22), (B9), and (B19) the matricesY (*)(t) are connected
with the matrixY “)(t) by

YO ()= O ()22, (B21)
We introduce the multiplicatiolX® Y of X andY which is
defined by

X®Y= %[XY+(XY)T] (B22)

for any square matrices andY of the same size. This mul-
tiplication is used in the relation

dz(t)
dt

.
e W27 (1)g* 02 gt 012

iQ@Z(t)}e*ﬂTt’Z
(B23)

dt

satisfied by any (R)X(2N) symmetric matrixZ(t) as a
function oft. Noting Eqgs.(B22) and(B23), Eq. (B21) leads
to

dY (1) dY () (+t)
-1 — 19T 20172 _
P(t) g P T'=me T
oY) (1) 22 (B24)
d2y (*)( t) ZY(i)(it)
P(t 9 P(t)"1T= meﬂt/z——zsz
(t)~ e [P()™] a2
dY)(=t)
—g— Teel0

@Y(ﬂ(it)]]eﬂ“/z, (B25)

where we used the relation(™)(t) =Y (*)(t). MoreoverDt
operated on the matrY“)(t) is connected witiD operated
on the matrixY ()(+t) as

f)t{Y(i)(t)}:emlzb{y(t)(it)}exﬂtm, (B26)
where we used Eq$22), (B9), (B13), and(B20). Inserting
Egs.(B24), (B25), and (B26) into Eq. (B18) and using Eq.

(B23) we obtain

PHYSICAL REVIEW E 66, 066203 (2002

d*Y ) (=)

o -20®

O®

d?Y () (1)
dt?
d2y(+)(+ t) ~

+ ?QT-FQ@[Q@[Q@[Q@Y(t)

(=0)]11-Q[Qe[QeYH) (=) ]]QT

2 A dYO) (x| 5o
el R (B27)
Equation(B27) is equivalent to
dYE)(=t) 1| dPYE(xt) dPY (=t
(=t 1 Y ( )+ ( )(Qz)T
dt* 2 dt? dt?

1 ~ ~ ~
+ 1—6[94Y(f>(rt)—292y<i>(rt)(QZ)TJrY(i)(it)
dY = )(+t)
><(Q4)T]——D — |- (B29)
By exchanging with =t in Eq. (B28) we obtain Eq.(23).

APPENDIX C: LYAPUNOV EXPONENTS IN THE COLOR
FIELD CASE

In this appendix we consider the case with no shear field
using the condition30), and derive Eq(32) under the as-
sumption(31). We also give a derivation of E¢35) briefly.

Under the condition(30), the matrix() defined by Eq.
(24) is simply an identical matrix multiplied by a constant
and is given by

szl 2N s (Cl)

and the matrixP(t) defined by Eq(B12) and the operator
Dy- - -} defined by Eq(B13) are given by
P()= e
(H=--e

“Uon, (C2

DX} =e2D{X} (5]

for any (2N) X (2N) matrix X. Noting Eqgs.(C2) and (C3)
and the relatio (*)(t) = Y(*)(t), Egs.(B6), (B7), and(B8)
are simply attributed into

dY®i) 1 - . "
—di " m® FO0+FD 0T, (CH
dFOM 1 o
—at " m€ 'GH(1), (CH
dé(i)(t) Z;t" (+)
G == DY ). (C6)
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Noting that the matrixg{™)(t) is symmetric, Eqs(C4), (C5),
and (C6) lead to the differential equation

9 g d gy + 2 upy I} (C7

dt dt

for the matrixY *)(t) only.

PHYSICAL REVIEW E66, 066203 (2002

(C12

for {. Here R¢X} means to take the real part of any imagi-

nary numberX. We sort the quantities;, j=1,2,3 as
Re({M}=Re({P}=Re( (P}, so that using Eq5(28) (34),

Now we consider the derivation of the equation for theand (cg) the Lyapunov exponent( ) is expressed as

matrix Y (“)(t) [defined by Eq(22)] from Eq. (C7) for the
matrix Y “)(t). It follows from Egs.(22) and(C7) that

d3Y<i>(it)
dt

dy( )(+t)
dt

2
+—D{Y( )(+1)}=0.
(CY

By exchanging with =t in Eq.(C8) and using Eq9.25) and
(31) we obtain Eq(32).

Using Egs.(32) and (34) the real functiong!™)(t) of t
defined by

£90=(TTO V) =Y (e (C9
satisfies the equation
BBty _deP(t) 202
i _ 25 T f(E) 4y =
e o= -Eé9m=0. (C10

The real solution of the linear differential equatic®10) is
expressed as

3
=3 RelvVei™, (c11

wherev{¥ | j=1,2,3 are constants determined by the initial gJ

J

) 1 E9 e
£9(0)

t=—+x

It follows from Eq. (C12) that {=¢{") is a real solution of
Eq. (C12 and satisfies the conditior‘él)z|Z|Iimwj_>0§fl)
=|a|, noting that the point= 4“(1) is the maximum inter-
secting point of the graphg= §3— a?f andy=20?/m? in
the £-y plain. This means that the Lyapunov expone?rété)
()\( )) must be non-negativeonpositivé. More concretely
the quantltyg(l) is given by

2

(1= —_
g A+3A

(C14
with the quantityA; defined by Eq(36). We can check that
in the case Oﬂa|<\/—|w /m|?® the quantitiesA; and £{"

are both real numbers, and in the caséajf> \ﬂw /m|2’3
the quantityA; can be an imaginary number but the quantity
given by Eq (C14) is still a real number and satisfies the

condition, andgj(k), j=1,2,3 are the three solutions of the condition ||ijﬂo§fl)=|a|- Using Eqs(C13 and(C14) we

equation

obtain Eq.(35).
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