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Front instabilities in a forced oscillatory medium with global coupling
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We study a two-dimensional, locally and globally coupled oscillatory system that is subjected to external
forcing at a frequency equal to twice its natural frequency. It is shown that the onset of an Ising-Bloch
transition is preceded by novel front instabilities: a pattern formation instability, wave trains along the front,
and a weak turbulence in the frontal patterns.
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[. INTRODUCTION front. In Sec. V we study bifurcations of frontal patterns. In
this section, the dynamics of a front line is studied numeri-
Bistable systems represent an important class in theally. Section VI is devoted to discussion.
theory of reaction and diffusiofil,2]. A front, sometimes
called a kink, which connects the two stable states of bista- Il. THE MODEL SYSTEM
bility rules dynamics in such systems. A front is subject to

different types of instabilities, depending on the nature of the_. The model system “”d?r study is a globally cpqpled 0S-
cillatory system that is subjected to an external driving force

system. For example, when a motionless front loses stabilit . .
and starts propagation, it is called an Ising-Bloch transition?;vhose frequency is twice that of the natural frequency of the

This type of instability has been observed in chemical reacpsc'"ator.s' It can be descrlbe[d’—g] mathematically as a
. S parametrically forced complex Ginzburg-Landau equation
tions[3], and in liquid crystalg4]. (CGLE) for a complex scalar field\(x1)
Another type of front instability in dimension two has piex ! X
been studied by Kuramotft]. In this case, a front line, . . . oA . 5 — .
which initially represents a straight line, may undergo a long”~ (1 T1@)AT (1+ia)VZA (A+iB)AIA+ pA+ YA(l')
wave instability. It was shown that the resulting spatiotem-
poral chaotic dynamics of such a front can be described by \when =0 and y=0, Eq. (1) is the CGLE, a generic
the Kuramoto-Shivashinski.S) equation[6]. ~ model for a system exhibiting a Hopf bifurcation at zero
A convenient model for theoretical studies of front insta-\aye number and frequenay,. The last term in Eq(1)
bilities is externally forced coupled oscillators, where bista-represents the external forcing that breaks the phase symme-
bility arises from the broken rotational symmetry of the sys-try of the systenj16]. The frequency of the external forcing

tem. It was shown that depending on the intensity of th ; ; N
external forcing an Ising-Bloch transition occurg—9] in in Ea. (1) is twice of wg [7]. The termA represents global

locally coupled oscillators. coupling,_i.e._, a spatia_ll _averageA),fA=CfAd r, whereC is

In theoretical models as well as in experimental systemg® Normalization coefficierftl0]. _
local coupling, i.e., diffusional coupling, is not only the pos-  OPViously, the two last terms in Eql) introduce more
sible type of coupling between the oscillators. For exampleCOMPIex dynamics to the CGLE which is itself very ric.
in surface catalytic reactions both local and global couplings 0WeVver, we are concerned in this paper only with the front
naturally arisd10,11]. An interplay of two different coupling  selutions of Eq.(1), which have analytic expressions in the
ranges may lead to drastic effects in these systems; for in/ariational, one-dimensional case fpr=0. Indeed, when
stance, a global coupling can suppress turbulent dynamidge real parameters, o, 8, and w vanish, Eq.(1) can be
generated by a local coupling, or it can select a given un€@st in @ variational form
stable mode of turbulendd 2,13. JA S

In this paper we study front instabilities in a two dimen- — = 2)
sional, forced oscillatory system, where interactions between gt oA
glliengzs.cgﬁﬁorfot?\:glti(r;a:‘gre gtl?dyyiz;ﬂ?hilg Csil/ls'?enrg sgtlgr%zl f(r:grl:]that admits solutiqns describipg a front, or kink, which con-
the recent progress in controlling spatiotemporal chaos by BECtS the two stationary solutiodgx,t) =A==+ y1+7y.
global feedback in experimental systefist,15. An inter- There are two kinds of kink solutions, the first being an Ising
esting question is whether a similar control can be succesdval
fully applied for controlling front dynamics. 1

This work is organized as follows. In the following sec- CoN il
tion we introduce our model: locally and globally coupled |(Xi0)=0h0 tan)‘( \/EAOX
oscillators under external forcing. Section 1l is devoted to
the linear stability analysis of the phase locked solutions. Inwhereo= *+ 1 represents the polarity of the front. The other
Sec. IV, we show the pattern formation instability of the kind of solution is known as a Bloch wall
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FIG. 1. A view of a nonvariational front. Solid line, Re FIG. 3. Nonvariational fronts under global coupling. Solid line,

dashed line, IA. Parametersw=—0.825, «=0.05, B=—1, y ReA; dashed line, IA. Two time moments are shown. The param-
=0.18, x=0. All parameters, time, and space are dimensionless.eters are the same as in Fig. 2.

We found that the spatial symmetry restoring global cou-
pling can stabilize in two dimension a circular domain that is
unstable foru=0. The aim of this paper is to study front

B(x;0)=cAptanh(kx) +ioy1—3ysechkx), (4)

wherek= \/Z’ instabilities of this domain in the Benjamin-Feir unstable re-
It is known that the Ising wall is stable fop>y, =2,  9ion where 1 B<0.

while the Bloch walls are stable foy<<vy.,. Thus,y., de-
notes the location of the front bifurcation in the limit of the 1ll. THE STABILITY OF THE PHASE LOCKED STATES

vanishinga, B, w, andu [8]. i .
o : o Nonvariational Ising and Bloch walls of Eql) connect
Our objective in this paper is nonvariational analogues oftWO spatially uniform phase locked statefy, = + (Xor

these front solutions. As an example, in Fig. 1 we show a . :
numerically obtained, nonvariational Bloch front in one di- *+iYon) == Rexp{¢), whereR and ¢ are given by
mension. Depending on the sign and intensity of global cou- ) ~

pling, different perturbations to the front solutions can be C0%2¢)=(R"=u)/y,

expected. In this paper we focus on the spatial symmetry

restoring effect of global coupling, which occurs for a small,  Sin(2¢)=(w—BR?)/y,

negativew. It strives for the spatial symmetry between the

negative and positive amplitude domains. For example, in , wtBo+[Y(1+p%)—(o—Bur)"?
the absence of global coupling, the front in Fig. 1 propagates R*= 1+ 32

with a constant velocity, until it reaches a boundary. How- B
ever, a front may change its direction of propagation under
global coupling before reaching boundaries. This is shown in

! . . ith w=1+pu.

Fig. 2 as a gray scale space time plot. Figure 3 shows twd™ & . -

snapshots of the front in Fig. 2, at the times of its propaga- /e Study a linear stability of these phase locked states
tion to the left and to the right. against the perturbations of the foréte'9*eM. A linear sta-

bility analysis can be easily done, if the complex amplitAde
in Eq. (1) is represented by the equations for its r&aand
imaginary partsY [17]. The characteristic equation is given

by

®

(A== y+ @+ A\ =+ y+q*+D)
=(-B—w+eq?)(—C+w—e€g?). (6)

The A, B, C, andD in Eg. (6) are given by the following
expressions:

A= 3X%n + Y%n - 2IBXOnYOn )

- BZZXOnYOn_‘?’BYSn_IBX%nv

C= 3:8Xgn+ ﬂan+ 2XonYon s

X
FIG. 2. Change of propagation direction under global coupling.

|A| is shown. The parameters are the same as in Fig. 1 except 9 2
= _0.15. D=3Yg,+28XonYont Xgn - )
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The relationsA+D=4R?, AD—BC=3(1+8%)R* andB 1 -
—C=—-4pR? allow elimination ofX,, and Yg, from the ~  [7777T=-al -
characteristic equation. The root of E§), which leads to a I e~ ]
pattern formation instability is A

N
<
A=7—2R2— %+ [1+ w?—(w—28R2— ag?)?]Y2. (8) < 0

In our previous paper we studied pattern formation of the I ]
phase locked stat¢47]. In this paper we are interested with P
the case when the phase locked states are stable, but the front -7
is subject to pattern formation instability. 0 0.4 0.8

q

_ ) ) FIG. 4. Linear spectra for the fixed solutiglong-dashed ling
As analytical forms of front solutions are unknown in the for front lines with maximum unstable modésolid lineg, and for

nonvariational case, their linear stability analyses are noA=0 solution(dashed ling y=0.38.
straightforward. Nevertheless, approximate analysis along a
front position can be conducted to show pattern formation offhese curves display positive maxima at some critigal
the front. The dashed curve in Fig. 4 shows linear spectra for the
Assume that in a two-dimensional system, two parallelA;,,,+=0. It has a positive maximum at=0. There is no
rectangular domains of equal size are chosen as an initiglositive maximum for the phase locked staf@é=1.17
condition. Then, for the Ising fronA—0. Assume also that (long-dashed curve all wave numbers are stable for this
the front is parallel to the axis. By making a cross section case. Thus, Fig. 4 shows that for parameters we have chosen,
perpendicular to thg axis, it can be seefsee Fig. 1thata several front lines have the most unstable mode; hence, un-
domain wall which connects the two phase locked states iger suitable conditions leading to a wave number selection,
an extended object along theaxis. By choosing an initial pattern formation can be expected in the neighborhood of
position in thex axis, a number of front lines parallel to the these lines.
y axis can be drawn. These lines can be characterized by In our simulations withu=0, a narrow parameter region
their amplitude values. For instance, the real part of theitvas detected for a clearly pronounced, stable pattern forma-
amplitudes are defined in the intervak0A ()| <R, tion of the front. Moreover, with the change of the control
whereR is given by Eq.(5). As an Ising front is motionless Parameter, a front transition leading to a collapse of domain
and stable, a front line in this regime can be considered &ay Occur.
steady, uniform state. In other words, in an Ising regime front Numerical results show that for a small and negative
lines behave like the phase locked states. Hence, a lineyRlue of u, the phase locked solutions, as well as the non-
stability analysis of a front line can be conducted in the sam#ariational domain walls, still remain structurally stable. But
way as it was done for the phase locked st4ted. If a ~ more importantly, regardless of their initial sizes two do-
number of these lines undergo a wave number instability, ongains acquire an equal size/f<0. This means that if an
can expect that the front exhibits the same instability. Thereinitial condition is chosen to be two domains, then at a suf-
fore, we approximate the linear stability analysis of the frontficiently long run,A—0. Unlike the casg.=0, there is no
by the linear stability analyses of the front lines. collapse of a domain. With a gradual decreaseyofjlobal

A linear stability analysis of lthe\=olsoluf[ion., i.e, the  coupling continues to forc&—0, and this delays the front
Asront=0 line, against perturbationsAe'¥'e*! is given by gransition. Thus, the front remains almost stationary for an
~ 5 5y interval of the control parameter. Before the onset of an
A=p—0° =y —(0—ag)”. 9 Ising-Bloch transition, pattern formation can be detected.
This is shown in a three-dimensional plot of a front in Fig. 5.
There are no pattern formations for the phase locked solu-
tions in Fig. 5, but the front exhibits roll patterns. The wave-
length of the roll patterns is given by

IV. PATTERN FORMATION OF THE FRONT

Note thatl is a coordinate along the front line, which is
parallel to they axis. Alongl, a linear stability analysis of the
lines with 0<|A,on(X)|<R can also be performed. A per-
turbation of theA=A,,n(X) states bysAed'er2! leads to

1t wa 1+ap vz

7\2::”_2|Afront(x)|2_q2+{1+w2 Qer= 2 _2|Afront|2—2 - (11
1+« 1+«

_[w_2B|Afront(X)|2_aqz]z}llz- (10

A Fourier transform of the roll patterns in Fig. 5 shows that
In this paper, we will usey as a control parameter. From now from the spectrum of the critical wave numbers displayed by
we fix other parameters ab=—0.825, a=2, B=—1, u  the front lines, a wave number for the line With¢ oni?
=—0.15. For these parameters and for <9|8n:(X)|? ~0.9, which has a larger critical wave number has been
=<0.9, Eq.(10 has linear spectra with a positive maximum selected. Note that the selected pattern covers all front areas
at nonzerog. The two solid curves in Fig. 4 show linear in Fig. 5, though according to the linear stability analysis
spectra for the front linefA¢,on]?=0.8 and|A¢on>=0.9.  near the region correspondingAc=0, no pattern formation
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FIG. 7. Atypical view of a nonvariational Ising wall. The solid
line shows the imaginary part, and the dashed line shows the real
part of the complex amplituda. y=0.4.

FIG. 5. A three-dimensional view of Re y=0.38. with the most unstable wave number of the front lines, as

. . discussed in the preceding section.
was expected. However, it can be shown that for a slightly With the furthe? decreage of, the pattern along the front

larger value ofy, pattern formation emerges o_nly at Ce”??” starts to propagate, Fig(d. For the set of parameters used
:Lz?jsgf the front, in accordance with the linear stability; Fig. 6, <0 for all q in Eq. (10) (see the long-dashed
' curve in Fig. 1. Hence, the phase locked solutions are stable,
and the inner part of the domains are uniform. Therefore, the
V. FRONT LINE INSTABILITIES pattern propagation along the front gives the impression of a
domain rotation. Further decrease pfcauses chaotic pat-
terns along the front, as in Fig(d. Thus, Figs. @)—6(d)
illustrate that front instabilities precede an Ising-Bloch tran-
" e sition. We note that aty.,~0.25, an Ising-Bloch transition
condition, we take a small rectangular domain |nS|deaIarge6CCWS, and the white domain in Fig. 6 starts to travel

rectangular domain. _mzo’ the larger domain would in- through the dark domain. In this regime, very complicated
vade the smaller_one, however, the presence of a global CO%ructures can be seen along the front of a moving domain.
pllng term forcesA— 0, and it stabilizes a circular domain. A Atyp|ca| amp]itude prof”e in an |Sing regime is shown in
front is an interface between the domains. In Fig. 6, it is therig. 7. As structure of R&) is rather simple then Ik, we
area between the darkest and brightest circles. The core gjil| use the real part R& for a characterization of a front
the front can be defined as the region where the real ampliine |ocation and its dynamics. For simplicity, we define a
tude|A| approaches its minimum. In an Ising regime, a frontyariable which is given by distance from the center of the
has a regular shape. With the decreaseg ofhe front losses  system §,,y,) to the front line where A=0, r

its circular shape, but a cellular pattern along the front— J(Xo— Xreac0) 2+ (Yo— Yrea—o) 2 To plot this variable we
emerges, as in Fig.(B). This pattern formation is associated -pgose a position on the front line and calculatéor it.
Then, moving clockwise, we search for the next closest point
where RA|=RdAin|, andr for this point is calculated. In
this way, we calculate and records value along the front
until the first point is reached and the front line is closed. For
instance, if a front line has a circular shape, as in Fig),6

= const. Thus, plotting of will produce a line. For a front
like that shown in Fig. @), the plotting ofr will produce a
regular periodic structure.

In Fig. 8, we show a gray-scale space time plot dér
three different values of. Note that to save space we have
shown dynamics only on the quarter part of the front line.
The first column in Fig. 8 shows Turing-Hopf-like structures,
one-dimensional cellular structures that appear in an oscillat-
ing manner. With the decrease ¢f cellular structures start
to propagate with a constant velocity, as shown in the second
column of Fig. 8. In this regime, global coupling still re-

FIG. 6. Front dynamics versug. ReA is shown.(a) Ising re- ~ Mains small, but its oscillation near zero causes perturbations
gime; y=0.4. (b) Pattern formation along the front ling;/=0.38.  Which trigger wave trains. With the further decreaseypfa
(c) Wave trains;y=0.37. (d) A weak turbulence of wave trains; partial deformation of cellular structures occurs, and it seems
y=0.32. that the emerging dynamics can be best characterized as a

In this section we numerically study EL) in dimension
two. The numerical method is described in Relf7]. The
system size it , =L, =256, 5x=0.5, 6t=0.02. As an initial
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FIG. 10. A chaotic pattern along the front line.

pasitian ferenty. The decay ofZ,,(l) is not sharp at smak; longer

FIG. 8. Space time plots of structures formed by a front line.waves are dominant in the spatial distributions o€orrela-
From the left, the Turing-Hoph pattern, traveling waves, and fronttion length also increases with the decrease,oFig. 12 the
turbulence. dashed line. Numerical experiments show that the front

width increases with the decrease of Such increase in
weak turbulence of wave traifj§], as seen in the last col- Width weakens small scale spatial perturbations.t&low
umn of Fig. 8. decays of temporal and spatial correlation functions in Figs.

In Fig. 9 we over plot the front line\,,=0 at three 11, 12 indicate a weakness of turbulent dynamics.

. . 2
different time moments when the system is in a regime cor- !N Fig. 13, we %IIOt a long time averagel’;) versusg,
responding to the last column of Fig. 8. The values aong ~ WhereWq=/r(l) e dl. A high spectrum at smad is due
the front line at a given moment are shown in Fig. 10, Wet© the perturbations of global coupling. The maximunmat

calculated temporal and spatial correlation functions of? O corresponds tq~0.4 which is close to thec, given by
. P pat : unct Eqg. (11). Shorter waves in Fig. 13 decay by a power law,

Ar(l,t)zr(lzt)—r(t), wherer is the spatial average ot (¥2)~q~7, with o~2.45. With the decrease of, the
These functions are defined by maximum gradually disappears and decreases. Interest-
ingly, having a maximum and a power law decay at shorter
waves are known features of the fluctuation spectrum of a
stationary turbulent state of the KS equation. However, in the
Car(D=(Ar(I,tHAr(I+1",t"))/((Ar)?), phase turbulence of the KS, shorter waves decay \bg)
(12 ~q 7, with 0=2. This implies loss of long range ordg].

) For parameters we have fixed, the fluctuatior @f(1)/4l ]
where(- -) represents an average ovérandt’. In Fig. 11 seems to depend ap Thus, unlike the phase turbulence in
we showC,(t) for two differenty. As the solid line in Fig.  the KS, a coherence loss might be slower in our case. More
11 shows, at smaller r (1) oscillates around its mean almost gccurate computations are desirable in different parameter
periodically. However, as grows these oscillations become regions of Eq.(1), and for larger system size to elucidate

irregular. With the decrease of, correlation time slightly scaling nature of the front line turbulence.
increases, the dashed line Fig. 11. It means that the frequency

of r's oscillation near its mean decreases with the decrease of VI. DISCUSSION
v. Figure 12 shows spatial correlation functions at two dif-

Car()=(Ar(I",)Ar (1", t+t")){(Ar)?),

Pattern formation and turbulence of a wave front in gen-
eral, two-dimensional reaction diffusion models with bistable

1.0 , .
100 1
[ =
Zos )\ .
50 - 1 3 \
) I' LA
\ /’
WAL
\/ s \\/"\
0 ‘ : 0.0 :
0 50 100 0.0 200.0 400.0
x t

FIG. 9. Overplots of a front line exhibiting turbulence. Three  FIG. 11. Time correlation functions. Solid ling=0.32; dashed
different time moments are shown. line, y=0.28.
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FIG. 12. Spatial correlation functions. Solid ling,=0.32; FIG. 13. Log-log plot of fluctuation spectrum of chaotic patterns
dashed line;y=0.28. formed by the front line.
kinetics were theoretically predicted a few decades[&gf. Our simulations show that global coupling can change

Later, these front instabilities have been studied in a reactioflirection of front propagation in the 2:1 resonance system.
diffusion system with autocatalytic kinetickl8,19. Re- However, we found that the spatial symmetry restoring glo-
Cenﬂy’ Comp|ex front dynamics have been studied in a twobal Coupling does not control the width of front. BESides, as
dimensional oscillatory medium in the 3:1 resonance regime2 result of alternation of propagation direction, correlation
i.e., when the external forcing frequency is three times of thdime, and length of the functioar which characterizes front
natural frequency20,21]. We have shown in this paper pat- line location may drop significantly. Thus, global coupling
tern formation and a weak turbulence of the front in the 2:1¢an be a destabilizing factor for the front line position.
resonance system with a global coupling. We studied front Finally, we suppose that the front line instabilities we
dynamics of a circular domain which is unstable in the ab-have studied in this paper can be observed in experimental
sence of global coupling. However, for special initial andSystems.

boundary condition$20], global coupling is not necessary

for stz_ibilization of a band shaped d_omain. A front of such ACKNOWLEDGMENT
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