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Generalized correlated states in a ring of coupled nonlinear oscillators with a local injection
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In this paper, we study the spatiotemporal dynamics of a ring of diffusely coupled nonlinear oscillators.
Floquet theory is used to investigate the various dynamical states of the ring, as well as the Hopf bifurcations
between them. A local injection scheme is applied to synchronize the ring with an external master oscillator.
The shift-invariance symmetry is thereby broken, leading to the emergence of generalized correlated states.
The transition boundaries from these correlated states to spatiotemporal chaos and complete synchronization
are also derived. Numerical simulations are performed to support the analytic approach.
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| INTRODUCTION K+ M+ X yXe =F cosot+ K (Xyy 1= 2X+ X 1),

Synchronization and spatiotemporal dynamics of chaotic
systems are some of the most intensively investigated topics k=2,..N, D
of nonlinear sciencgl-3]. It is known that these phenomena
can lead to interesting applications in communication engi- _ . .
neering[4] or for the understanding of certain collective be- wherex. represents the dynamics Of the external oscillator
haviors encountered in various physical and biological sys2d Plays the role of a command signg|, stands for the
tems[5,6]. instantaneous displacement of tk#h oscillator, K and G,

In general, when several identical oscillators are coupledi€SPectively, represent the coupling parameter and the local
different dynamical states can be observed such as spiuection strength. Thél state variables, obey to the shift-
tiotemporal chaos or complete synchronization. It has yetlvariance conditionx=x,.n. Generally, literature lays
been demonstrated that the occurrence of these dynamic@MPhasis upon the casg=0, i.e., upon the control of the
states mostly relies on the number of oscillators, as well a§0UPled system to the trivial equilibrium state. Even for this
on the type and strength of the couplifig—10]. However, 5|mple_st target, further S|mpllf|cat|ons are often |mpose_d for
the modelized system or its potential utilization sometimesnalytical results to be derived. For exampiemay be di-
requires to couple the system to an external independent Ogectly set to |nf.|n|ty to pin at least the flrst o;cﬂlator to 0, and
cillator. This is commonly achieved through the local injec- 9radient-coupling forces are sometimes introduced to en-
tion technique consisting of a unidirectional coupling be-hance the control efficienchd1]. Throughout our study we
tween the external command oscillator and a fixedgi@keX; as the chaotic oscillation of a SWDO identical to the
representative of the nonlinear coupled sysiad]. This lo-  uncoupled items of the ring, i.e., we have
cal injection scheme is, for example, indispensable for the
description of undesirable parasite couplings or external per-
turbations. On the other hand, local injection can also be
willingly introduced to force the nonlinear system to repli-
cate the dynamics of the external master oscillator. For exFor the sake of exemplification, we fixto 4, and we aim to
ample, it is known that initially chaotic oscillators can lock analyze the influence of the local injection on the dynamics
into a(multi-) periodic state when they are mutually coupled of the nonlinear coupled system. More precisely, our objec-
[10]. The local injection method can, in that case, enable taive is first to identify the various dynamical states of the ring
recover the chaotic dynamics when the unidirectional comdepending orK, and second to study the modifications in-
mand coupling is suitably designed. duced by the local injection coupling.

In this paper, we consider a shift-invariant sethofif- The paper is organized as follows. In Sec. Il, we analyze
fusely coupled single-well Duffing oscillatofSWDOSg with  the dynamics of the nonlinear coupled system wiBen0.

a positive nonlinear stiffness coefficient. Straightforwardly The transitions from spatiotemporal chaos to complete syn-
taking into account the injection unidirectional coupling, thechronization states are particularly investigated through Flo-

Ko+ A+ X+ yXo=F coswt. 2

evolution equations can be written as quet theory. Section Il deals with the caGe#0, and it is
demonstrated that the local injection coupling drastically
K1+ MK+ X1+ xS =F coswt + K (X, — 2X; + Xy) modifies the dynamical behavior of the ring as it enables
- what we have termed generalized correlated states to emerge.
+G(Xc—Xq), We also give an analytic insight into the nature of these

correlated states and discuss their potential applications,
mainly in the field of communication engineering. The fourth
*Corresponding author. Email address: pwoafo@uycdc.uninet.crand last section is devoted to the conclusion.
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II. NONLINEAR DYNAMICS AND BIFURCATION °
BEHAVIOR OF THE FOUR-OSCILLATOR RING (G=0) s |

The SWDOs with a positive nonlinear stiffness term can 6f
display a chaotic dynamics as it appears in Fig. 1 with a Al
pseudo-two-well potential configuration. When they are dif-
fusively coupled like in Eq9(1), the stability of the resulting .,
dynamical state can be studied through the linearization of§< or
these equations around the statgsccording to = 2|

Ect NEAH (L+3yxD) E=K[ 1~ 26+ & 1],

k217213141 (3) N

where ¢, stands for the perturbations. Each of these pertur- 5 4 a8 2 4 o , s 3 4 s
bations is parametrically excited by a chaotic variakje
The Fourier spectrum of the SWDO with>0 in the chaotic
state shows that the energy is mainly distributed in very FIG. 1. Phase plane of the chaotic oscillator wikk-0.2, y
sharp bands around odd harmonicswofBut, the major part =1.0,w=0.86, andF=28.5.

of the energy is around the fundamental mode, which is thus

the most predominant. Consequently, we can in first approxi-  d?7;

mation replace, in Egs.(3) by a2 T[0st2acod27-2¢)]9s=0, s=1234, (7)
Xper= Ao cod ot — o), (4) with
wherex,,, is supposed to be the best uniperiodic approxima- 51= 580,

tion of x. The mathematical meaning of such a substitution

is that the asymptotic behavior of eaghwill be decided by

the optimized Floquet multipliers instead of the sub- 2= 03= 0o+ 7, (8)
Lyapunov exponent$12,13. As reported in Refs[12,13

dealing with the optimization of chaos synchronization, this AK

first order approximation gives results in fairly good agree- 84= 00+ —>.

ment with the numerical simulation. w

If we introduce the diagonal variablésr Fourier modes .
(s as Floguet theory states that depending &nand «, s may

either indefinitely grow to infinity or decay to zero, and

(=€ Eat Eat Ey, thereby unambiguously decide the asymptotic behavior of
the independent Fourier modes [13]. Consequently, the
{o=X4— Xy, stability of each/, relies on the position of the representative
(5) point M4(65,a) on a stability map which is sometimes re-
{3=X3—Xq, ferred to as the Strutt diagram.

In Fig. 2, we have represented the Strutt diagram which is

4= Xa—Xg+Xp— Xy divide_d into three areas in the para_lmetric pI&_@,ea) [13].
The first of them is the area of linear stability whei@

and the following rescalings,

7= wt,

5_1
0=

3yA]
4w?

a=

AT
7s= s EX Z

3

)\2
1+ EyAg— —},

4

s=1,2,3,4,

(+%)|—0. It is the inner shaded zone of Fig. 2, and its
boundaries can be either periodic[ {(t)={(t+ 7/ w)] or

27 periodic [{(t)={(t+27/w)]. The second zone is the
area of instability where any perturbation diverges to infinity,
i.e., |{(+%)|— +0o. This area is in blank in the Strutt dia-
gram. At last, there is a buffer zone of nonlinear stability
between the linearly stable and unstable areas, where 0
<|{(+»)| <+, This latter zongwhich is, however, lin-

(6) early unstablghas been lightly shaded and cannot be pre-
dicted from the conventional Floquet analysis, since it origi-
nates from the nonlinear variational terms we have discarded
in Egs.(3).

We can now analyze through the Strutt diagram what hap-
pens in the system when the coupling strerigtis continu-

Egs. (3) may now be written under the form of a set of ously increased from zero to infinity. Whéo=0, the system
independent canonical Mathieu equations, that is, is uncoupled and the Fourier modés (5, and{, degener-
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since{, and{; remain in the nonlinear stability buffer zone.
The ring is therefore in a standard correlated st&€S.
This intermediate state differs from spatiotemporal chaos be-
cause of the constraift0), and also from complete synchro-
nization because of Egsll).

If, on the other handM, reenters into the buffer zone
while M, and M ; have yet together penetrated into the lin-

S early stable area, we have
X1=X3,
X2=Xq, (12)
and
2 ! 0 ! 2 3 ‘ 5 ® X4—Xz+Xy— X1 #0. (13
o

This is sometimes referred to as cluster synchronization.
FIG. 2. The Strutt diagram. The-periodic boundaries are rep- Here, two clusters have emergéths.(12)] while there is no
resented by thick lines, and thereriodic boundaries are repre- synchronization between these two clustdtgs. (13)].
sented by thin lines. The nondegenerated spatial Fourier modes At last, when the three transverse mode poMts, M3,
have been represented fGr=0 (pointy and forG+ 0 (crossek andM, are together in the linearly stable area, the ring is in
the complete synchronization state
ate intoZ,. Therefore, the whole system is represented by a
single pointM,, of coordinates §,,«) in the Strutt diagram. X4=X3=Xp=Xq, (14
It should be noticed tha, automatically belongs to the
nonlinear stability area since the uncoupled system is ch
otic. AsK is increased, the modées, {3, and{, represented
in the stability map by the related poiniiég of coordinates
(65, ) independently begin to move from left to right along
the straight horizontal line of equatian= const with a “ve-
locity”

corresponding to the simultaneous fulfillment of both Egs.
a(10) and(12). In that case, all the oscillators display the same
dynamics.

Numerical simulations confirm the bifurcation mechanism
deduced from the Strutt diagram analysis. Let us consider the
following two functions of the state variables:

94=(|Xa— X3t X2—X4]), (15
_des
Ve=——. 9

dK O23= (|X4—Xa| +[X3—Xq|), (16)

where the bracketé) stand for the time averagg, repre-
sents{, on one hand, whilg,; represents both, and{; on
the other. These functions will be equal to zero if the corre-
u§ponding transverse modes points are in the linearly stable
frea of the Strutt diagram, and different from zero if they are
In the buffer zone.

In Figs. 3a) and 3b), the variations ofg,; and g, are
represented as a function iéf Effectively, for lowK values,
the ring is in the spatiotemporal chaos regime siggg~ 0
andg,#0. WhenK reaches 0.70g, first vanishes because
the fastest mode poidl , enters the linear stability area: it is
}he standard correlated state. This is also witnessed When
Is between 2.30 and 2.3943;# 0 andg,=0). On the other
hand, wheng,;=0 and g,#0, like in the case 1.08K
<1.20, we have a cluster synchronization state. At last, com-
plete synchronizationg,3=g,=0) occurs between 1.20 and
1.70, and also wheK>2.35. It is important to notice that
the transitions between these dynamical states are never
sharp. Moreover, unstable invariant sets embedded within the
chaotic attractor can perturb the stability of the Fourier
modes, like forK~1.00 orK~1.75.
X17 X3, The above stability analysis can be generalized to a wide

range of chaoticdN-oscillator coupled systems through the

XoF Xq, (11 master stability functiofMSF) technique[7]. Even though

It results that{, is the fastest mode with a velocity,
=4/w?, while the degenerated modésand{; are the slow-
est with v,=r3=2/w?. These “mobile” modes are called
transverse modes because they decide the stability of pert
bations transverse to the complete synchronization manifol
On the other handf; remains immobile in the Strutt dia-
gram sincev;=0: it is the longitudinal mode describing the
stability along the synchronization manifold. Wheh is
small, the three transverse mode poiMs, M3, and M,
remain in the vicinity ofMg, i.e., in the nonlinear stability
zone. Therefore, the correspondidgperturbations have a
nonzero finite time-average value: we are in the regime o
spatiotemporal chaos.

When the fastest modg, reaches first the linearly stable
area, the ring satisfies the constraint

Xa— X3+ Xo—X1=0, (10

while we still have
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25 . . . , . FIG. 4. Velocities(in units of 1?) of the Fourier modes when
(b) the ratio G/K) is increased.
2 ] with &=x,—X;. From these equations, we can determine
the eigenvalued ,, through the resolution of the characteris-
s tic fourth-order polynomial equation,
<+
- 4+ © r3—4r2-2 c =0 18
1 E K K — Y ( )
os where the solution§',, are related to the eigenvaluas, and
the velocitiesy,, by
0 i n
0 0.5 1 15 2 25 3 Fn=2_ ?:2_602]}“. (19)
K
FIG. 3. (a) Variations ofg,; as a function oK, (b) idem forg,. Figure 4 shows the numerical solutions of E¢k3) ob-

tained with the Newton-Raphson algorithm when the ratio

that method was originally developed to investigate the stalG/K) is increased. It can be noticed that whér-0, we

bility of the completely synchronous motion, it can, however,have three nondegenerated modes, as we have demonstrated
enable one to understand the various phenomena that haifethe preceding section. But as soon@s-0, the degen-

yet been numerically encountered in some coupled systen®acy of the second mode is destroyed so that four nonde-
(intermittent pattern formation, symmetry breaking, sponta-generated modes now appear, and the slowest one discon-
neous spatial reordering, etcEffectively, the MSF method tinuously passes from, z=2/w? to v;=0". Moreover, it
enables one to decide the stability of the transverse modedppears thaw, indefinitely increases to infinity, while the
and therefore, the cluster and correlated states would also [€cond mode keeps a constant veloeify- 2/w”.

interpreted as the dynamical configurations corresponding to Each of these nondegenerated modes has been schemati-
the various distributions of these transverse modes betwedidlly represented in the Strutt diagram in Fig. 2 by crosses of
the linearly and nonlinearly stable areas of the related parantoordinates §s,a) with

eter space.

£
81= 8o+ v K= 5o+ w—lzK,
IIl. INFLUENCE OF THE LOCAL INJECTION (G#0)

WhenG is taken into account, the first order perturbation

2
: = 8o+ v,K= 80+ —
equations are 8= ot vK= g+ K,

(20)
. . — 2+83
EFNE+(1+3yx0)E=K(&4,— 26+ &) — Gy, 03=0pt+ v3K=6p+ _wz_K’
Et NEH (L+3YD) =K (&1~ 26+ E-1), k=2,34, 4+e4

(17) 54:50+ V4K:50+ wz K.
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The 85 parameters have been explicitly written to define theof the ring can be univocally related to only two others. In
detuning functions: which are obviously equal to 0 when this case, obviously, the masking component is less complex.
G=0. However,v; and v; asymptotically converge to the If a third mode also becomes stable, each oscillator will be
limit values e7/w? with £7=0.585 and &5 +2)/w? with  related to a single other one and at last, complete chaotic
g3 =1.414, respectively, wheG — + . synchronization with the external master oscillator occurs
when the four modes become linearly stable. This latter case
corresponds to the classic masking technique, since the four-
oscillator ring is now equivalent to a single oscillator. Obvi-

The determination of the dynamical state of the ring Nowously, the above reasoning can also be extended to the
depends on the distribution of the four nondegenerated FowN-oscillator system.

rier modes between the various areas of the Strutt diagram. If
we considerT as the transfer matrix from the perturbation
variablesé; to the diagonal oneg,, we have the following
equations: The transition boundaries between the spatiotemporal
chaos, GCS, and complete synchronization states are mainly
4 influenced by bothG andK. Let us, for example, focus on
&= 21 Tikéi - (21 the first bifurcation(from spatiotemporal chaos to GC&nd
on the last onéfrom GCS to complete synchronizatiosmsK

Here, theT;, coefficients are complicated functions@fand IS increased with a fixe®. The corresponding critical tran-
K which can be obtained through an eigenvector analysis ofition values foilG=0 have yet been determined numerically
Egs. (17). They are, however, simply equal to 0, 1, e !N Sec. Il aK((0)=0.70 andK,(0)=2.35. They can be used
whenG=0. to deduce analytically the transition valuds;(G) and
For very smallK values, the mode points are still in the Ki(G) for any nonzeroG value. Note that forG#0 we
nonlinear buffer zone, so that the ring remains in the spaShould have spatiotemporal chaos foxK(G), complete
tiotemporal chaos state. Whef is increased, the fastest Synchronization folK>K,(G), and GCS wherK(G)<K

mode becomes linearly stable, i.e., <K(G). . .
In fact, the first GCS emerges when the fastest mode point

A. Generalized correlated states

B. Transition boundary values for generalized clusters states

4 M, enters the linear stability area of the Strutt diagram.
(4= E Tia(X;—%c)=0. (22 From Egs.(8), (9), and(20), we can therefore deduce that
=1
5cr,f Kf(o) 4 Kf(G) l G
This latter equation expresses a nontrivial linear constraint f d5=f — K=J —| 4+t e4| 7| |dK,
. . . . 0 w ot w K
between the four dynamical variablgs: we consider this 0 (24)
intermediate state as a generalized correlated 685 by
opposition to the SCS we have analyzed in Sec. Il. Equati0|i1e
(22) means that knowing the, command variable, each ring "~
displacemenk; can be related to the three others as K (G
f
4 1 fw 84(R)dK:4[Kf(O)_Kf(G)L (25)
X=Xt 2 1 (4%0). (23
'i;j 14 where &, ¢ is the first critical Hopf boundary value encoun-

tered asdis increased. Since the integrand functiep is
This may have a conceptual application to the enhancemepositive, one can straightforwardly deduce that
of the chaotic encryption of messadds. Effectively, in the
classical scheme, only two chaotic oscillators are synchro- K(G)<K(0). (26)
nized. Hence, one can encode an information-bearing signal

into the noiselike output of the chaotic transmitter while thejonce the ring emerges more rapidly from spatiotemporal
synchronous receiver identifies the masking componenty ;o ,whenG is greater. Howeverk(G) cannot be ex-

which is then extracted to reveal the original transmittedpressed explicitly because, has not been determined ana-
message. lytically.

In the four-oscillator ring with a local injection, security is y on );he other hand, the boundary transition from the last
strengthened when the encryption is performed withxpe g 1 the complete chaotic synchronization state corre-
variable rather than witk,. Effectively, according to Eq. ponds to the entrance of the slowest mode piipinto the

(23), itis indispensable in that case to know the dynamics Od':\st semi-infinite linear stability section, so that we have
the three other chaotic oscillators to recover the encode

message. Therefore, one can consider that these three
. . e f Kf(0) 2 K#(G) 1 G
complementary oscillators enable the chaotic component to dés= —dK= g —
. . . + W K
be more complex, i.e., more difficult to pirate. When a sec- % o 0
ond nondegenerated mode becomes linearly stable, a supple-
mentary constraint is imposed so that each chaotic oscillatare.,

dK, (27)
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areas: the lower zone corresponds to spatiotemporal chaos,
the intermediate one to the GCS, and the uppermost to the
complete synchronization. However, the curke(G) re-
mains difficult to distinguish in the figure, since it rapidly
vanishes to 0. Therefore, the lower zone of spatiotemporal
chaos does not clearly appear on the map. On the same fig-
ure, the results of the numerical simulation #;(G) have

also been represented. They show a qualitative concordance
with the analytic results of Eq28). One can note the dis-
continuity atG=0 for theK,(G) curve, due to the drop to

0" of the slowest velocity when the local injection is set on.
This implies that smalG values(case corresponding to un-
desirable external perturbationsrreversibly destroy the

|

0 : ' : : : : ' ' ) complete synchronization state since the threshold value
[} 5 10 15 20 25 30 35 40 45 50 . .. . .. .
jumps from a finite value to infinity. However, it appears that
G the boundary curves rapidly converge to their asymptotes, so

FIG. 5. Transition boundaries from GCS to complete synchro-tsr:tlitslti;]S r;Otngher((:)?\?zS:t%r:o use high values to obtain a
nization. The analytical results are shown by full line, and the nu- fying sy ’

merical results are shown by squares linked by a continuous line.
dK=2K,(0). (28)  tion behavior of a ring of chaotic oscillators with a local

K|(G) G
fo* Sl(R
injection. Floquet theory has enabled to interpret through the
Here, 8¢ is the last critical Hopf boundary value. There- Strutt diagram the various transitions amongst the different
fore, K|(G) converges to the asymptotic value dynamical states of the system. The influence of local injec-
tion has also been investigated, and a particular emphasis has
been laid upon the generalized correlated states. The bound-
aries from these GCS to spatiotemporal chaos and complete
synchronization have been derived.
The above equation means thatkass increased, complete The extension of our approach to the thermodynamic limit
synchronization paradoxically occurs later when a local in{N—+=) and to the continuous media approximation
jection coupling is introduced. It can consequently be conseems to be an important perspective. This study may also
sidered that the related gap energy is used to tune the syshed some light on various interesting issues such as the
chronous chaotic ring to the target master oscillator. collective behavior of small aggregates of coupled cells in
The critical boundary curves;(G) andK,(G) have been biology [5], or the problem of interconnection in chaos-
plotted in Fig. 5. They divide the parametric plane into threesecured communication networks.

IV. CONCLUSION

In summary, we have studied the dynamics and bifurca-

2
Ku(G—>+°C)%§K|(0)>K|(0)- (29
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