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Finite-size effects of avalanche dynamics
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We study the avalanche dynamics of a system of globally coupled threshold elements receiving random
input. The model belongs to the same universality class as the random-neighbor version of the Olami-Feder-
Christensen stick-slip model. A closed expression for avalanche size distributions is derived for arbitrary
system sized using geometrical arguments in the system’s configuration space. For finite systems, approxi-
mate power-law behavior is obtained in the nonconservative regime, whereds-fer, critical behavior with
an exponent of—3/2 is found in the conservative case only. We compare these results to the avalanche
properties found in networks of integrate-and-fire neurons, and relate the different dynamical regimes to the
emergence of synchronization with and without oscillatory components.
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I. INTRODUCTION model does not display SOC in the dissipative regj@@—
28].

In the last decade, a considerable number of publications In these avalanche models with nonconservative interac-
have been dedicated to the occurrence of power-law behaviden, analytical results have been obtained only for system

in systems involving interacting threshold elements driversi2€ N—2 so far[26,29. Here we introduce a model that
by slow external input. The dynamics accounts for phenomp.Ot only circumvents the problem Of. system boundaries, but
ields an analytical access also for finite system sikeEhe

ena occurring in such diverse systems as piles of granul lements are globally connected, which makes the system a
matter[1], earthquakep2], the game of life[3], friction [4], 051 fielq mgdel. R?/andomness’ is not introduced t¥1r0ugh
and sound generated in the lung during breatfi®g An  random neighbors but by providing a random external inpu.
avalanche of theoretical investigations was triggered by Bakpuring an avalanche, the elements become unstable and re-
Tang, and Wiesenfeld6] who linked the occurrence of |ax in a fixed order determined by the state of the system
power laws to the notion of self-organized critical§yOCQ.  immediately prior to the avalanche. Therefore, the system is
In the so-called sandpile models, locally connected elementstrictly Abelian for dissipation parametets smaller than a
receiving random input self-organize into a critical statethreshold value, which can be readily worked out. In this
characterized by power-law distributions of avalanches withcase, a geometrical approach in tRedimensional configu-
out the explicit tuning of a model parameté.g., Refs. ration space yields an exact equation for the distribution of
[7-18)). Analytical results were derived for sandpile modelsavalanche sizes. . 3 .
[14,15, and it was shown that the existence of a conserva- In Sec. II, the model is specified and compared with other
tion law is a necessary prerequisite to obtain S@6-1g.  dissipative avalanche models, in particular, with the random-
A second class of models inspired by earthquake dynanpaghbor OFC model._ In Sec. Il ava_lanche properties are
ics employs continuous driving and nonconservative interacPrésented both numerically and analytically, whereby details
tion between the elements of the systehid]. In the Olami- of the analytical calculation of the avalanche size distribu-

Feder-ChristensefOFC) model[19], where the amount of t|qns can be found in Appendixes A_Q' Extensmns and ap-
o plications of the model are formulated in the terminology of
dissipation is controlled by a parameter power-law behav-

) : neural networks: The model allows for an interpretation in
ior of avalanches occurs for a wide rangecofalues. Sub-

. o . ; erms of a fully connected neural network of nonleaky
sequent investigations emphasized the importance of boun

. : ) _thtegrate-and-fire neurons. Implications of this view such as
ary conditions and tied the existence of the observed scaling,o synchronization behavior of local, densely connected

behavior to synchronization phenomena induced by spatialonyiations of cortical neurons will be discussed in Sec. IV,
inhomogeneitie$20—-24. More specifically, Lise and Jensen The paper concludes with a brief summary and discussion.
[25] introduced a random-neighbor interaction in the OFC

model to avoid the buildup of spatial correlations. Further Il. THE AVALANCHE MODEL
analysis indeed revealed that the random-neighbor OFC -
A. Definition
In the model, time is measured in discrete steps,
*Electronic address: eurich@physik.uni-bremen.de =0,1,2.... Consider a set oN identical threshold ele-
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ments characterized by a state variabkz0, which will Due to the global coupling of the elements, there are no
henceforth be calleénergy The system is initialized with boundary conditions to be specified in the model.

arbitrary valuesu;e[0U)(i=1,... N), whereU is the

threshold above which elements become unstable and relax. B. The casee=1

Depending on the state of the system at timthe ith ele-

ment receives external inpuf(t) or internal inputl}”t(t) Both the coupling parameter and the reset parameter

AR A ] control the amount of dissipation in the system. An analytical
from other elements, resulting in an activationat time t approach will be possible far=1, that is, if all suprathresh-
+1, old elements are reset such that they lose an identical amount
~ oxt int U of energy[cf. Eq. (2)]. We will therefore restrict further
Ui(t+ 1) =ui(1) 170 + 1), @ analysis to this case and only briefly return to the general
L~ . situation in Sec. IV.

From the activatiorui(t+1), the energy of theth ele- Fore=1, the valuex=1 corresponds to the conservative
ment at timet+1 is computed as case with respect to the internal dynamics: upon resetting of
~ .~ a suprathreshold element, the energy it loses is completely
ui(t+1) it ui(t+1)<U, ?) distributed in the network. Fotr=1, an infinite avalanche
e(Ui(t+1)—U) if U(t+1)=U, may eventually occur and we will therefore restrict ourselves

to the casea<1. In order to avoid side effects resulting
i.e., if the activation exceeds the threshaldit is reset but  from the null set of rational values af, U, or AU, we
retains a fractione(0O<e<1) of the suprathreshold portion assume one of the fractiondU or AU/U to be irrational.
Ei(t+ 1)—U of the energy. As will be shown below, a variation of leads to qualita-

For the external input?X‘(t), one element is randomly tively different avalanche size distributions.
chosen from a uniform distribution at each time step, and a
constant amount of energyU e (0,U] is added to the el- C. Comparison with other avalanche models

ement's energy. The external input is considered to be deliv- A c|ass of models discussed in the SOC literature employs
ered slowly compared to the internal relaxation dynamicsg parameter controlling the amount of dissipatiér19—28.
i.e., it occurs only if no element has exceeded the thresholgpe nymerically observed power-law behavior in such sys-
in the previous time step. This corresponds to an infinitgemg however, could be ascribed to spatial inhomogeneities
separation of _the tllme scale; of external_dnvmg and avazng the employed boundary conditiofesg., [21-24). In
lanche dynamics discussed in the SOC Il_terat[urla—xitla. order to study avalanches of activity in the presence of dis-
The external input can formally be written as™(t)  sjpation independent of spatial correlations among elements,
=0r(1),idm(t-1),0AU. r(t) is an integer random variable |ise and Jensef25] introduced a random-neighbor version
drawn at time step from a uniform distribution between 1 of the Olami-Feder-Christensen model described in Ref.
andN, indicating the chosen elememd(t—1) is the num-  [19]. In this model, threshold elements receive a constant,
ber of suprathreshold elements in the previous time step, anghiform input and have random nearest neighbors to which
d;,j is the Kronecker delta. _ they are connected during an avalanche. The temporal vari-
The internal input|™(t) is given by I™(t)=M(t  ability of the network connectivity avoids the buildup of spa-
—1)aU/N, whereaU/N is the coupling strength between tial correlations, thus ruling out boundary effects in shaping
the elements. We assume connections to be excitatory, thavalanche distributions. Subsequent studies, however, dem-
is, «>0. onstrated that the random-neighbor OFC model does not
At some timety an avalanche start¥] (to) =1, provided have scaling behavior in the dissipative regif2é—2§.
the element receiving external input becomes unstable. The Broker and Grassberg¢®6], in their analytical consider-
system is globally coupled, such that during an avalanche alitions of the random-neighbor OFC model, applied the
elements receive internal input, including the unstable eletheory of branching processes to yield avalanche size distri-
ments themselves. The avalanche durafiorO is defined  butions. For this purpose it was necessary to consider the
to be the smallest integer for which the stopping conditionlimits d—o (whered is the dimension of the latti¢eand
M(to+D)=0 is satisfied. The avalanche sizds given by =~ N—« in order to make the model effectively Abelian and
L==P"#M(to+k). The model allows the calculation of the avoid correlations among elemer6]. This prevents ava-
probability P(L,N,a) of an avalanche of size=0 in the lanches from visiting elements more than once and allows
regime O<L<N of a system consisting dfl elements with subavalanches to spread independently of each other such
coupling parametet. Avalanche size distributions can alter- that each suprathreshold element has a distinctive predeces-
natively be described by a functiop(L,N,«) for L=1,  sor which triggered it.

Ui(t+ 1):

which is related tdP(L,N,«) via Our model poses an alternative of the random-neighbor
OFC model: the global coupling of elements prevents spatial

P(L,N,a) correlations and the putative dependence of the system be-

P(L.N,a)= 1-P(ON,a)" 3 havior on boundary conditions. Randomness is introduced

through the external input rather than the random assignment
Avalanche duration distributions will be denoted by of nearest neighbors. This approach has the advantage of not
p4(D,N,a)(D=1). requiring the limitN—: For e=1, the system is Abelian
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FIG. 2. Range\(N, «) of avalanche sizes over which power-law
behavior is observed in the subcritical regimgN,«) has been
plotted for four different system sizes, namely, for=10? (solid
line), N=10® (dashed ling N=10" (dashed-dotted line and N
=10’ (dotted ling. To obtainx, p(L,N,«) as defined in Eq4) has
been fitted to the analytically calculated avalanche size distribution
p(L,N,a) by maximizing the symmetric version of the Kullback-
Leibler distance K(\) as defined byK(\)=3 (p—p)[In(p)

FIG. 1. Probability distributions of avalanche sizpéx,N,a), ~In(p)].
and avalanche durationqy(x,N,a), in the subcritical[(a), «
=0.8], critical [(b), ®=0.99], supracritical(c), «=0.999], and

24 -3 -2 -1 0
log,q X/N log, o XN

) - ; e ences between the models barely change the statistical prop-
multipeaked[(d), «=0.99997] regime.(d—(c) Solid lines and g ies of the avalanches. However, in the globally coupled

symbols denote the analytical and the numerical results for the avag, 40| “this regime can be described by a closed expression
lanche size distributions, respectively. (d), the solid line shows
H)r avalanche distributiong(L,N, «).

the numerically calculated avalanche size distribution. The dashe
lines in (a)—(d) show the numerically evaluated avalanche duration

distributions. In all cases, the presented curves are temporal aver- Ill. AVALANCHE PROPERTIES
3gfs over 10 avalanches withN=10000, AU=0.022, andU A Avalanche sizes

Figure 1 shows avalanche size distributions for different
for an arbitrary system sizbl because at each time stép values ofa. N=10000 was chosen as the system size, but
during an avalanche, all elements receive the same input déie curves look very similar for any other choiceNf
pending only on the numbévi (t—1) of suprathreshold ele- Four qualitatively different regimes can be distinguished
ments at time—1. which will be termed subcritical, critical, supracritical, and

The random-neighbor OFC model and the globallymultipeaked. For small values af, subcritical avalanche
coupled model are complementary in the following sense: irsize distributions exist, which can be approximated by the
the random-neighbor OFC model, randomness is introducegeneral expression
through the random choice of neighbors during the ava- .
lanche activity, while the interavalanche dynamics is a P(L,N,a)~p(L,N,a)=L"exp(—L/\), (4)
simple shift of the energy distributiom(u) on theu axis due
to the uniform input. In our globally coupled model, the wherey is an exponent independentfto be characterized
stochasticity is due to the random external input betweemelow, andA=\(N,«) describes the range of avalanche
avalanches, whereas the avalanche activity corresponds tosgres over which power-law behavior is obser{Et). 1(a)].
rotation of p(u) on a circle[0,U) with periodic boundary  For fixed N, A(N,«) is a monotonically increasing function
conditions. The latter property is due @ the fact that all  of o as long asa<a, which we refer to as the “critical
elements—including the unstable ones—receive the same '%ase”(Hg 2). For a., the system has avalanche distribu-
put1{"(t) at each time step, ar(d) the update rulé2) which  tions with an approximate power-law behavior with expo-
reinjects unstable elements according to the suprathreshofent —3/2 from L=1 almost up to the size of the system,
portionu;(t+1)— U of their energy. Therefore, the elements where the usual exponential cutoff is obsenjd®] [Fig.
become unstable in a fixed order depending on the actud(b)]. For finiteN, «. is in the dissipative regime. Above the
distribution p(u). Below it will be shown that for coupling critical value «, avalanche size distributions become non-
coefficients a<max1—AU/U,N/(N+1)}, avalanche sizes monotonic[Fig. 1(c)]. Such supracritical curves have a mini-
may not exceed\, which means that each element can bemum at some intermediate avalanche size.
activated only once. In this regime, avalanche distributions In order to find the critical coupling coefficient, as a
turn out to be very similar for the random-neighbor OFCfunction of system siz&l, we computed a conveniently de-
model and the current model, demonstrating that the differfined distance(«) between the distributiop(L,N,«) and
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an “ideal” power-law distributionp(L,N)=L %33 L %2
ThenK(«) was numerically minimized to yield the param-
eter a. for which the distribution is closest to a power law.
We chose the symmetric version of the Kullback-Leibler dis-
tance as defined bi(a)==,(p—p)[In(p)—In(p)], which
revealed a critical coupling constant

109, P(L, N, )

ao(N)~1—N"# with x=0.5+0.01 (5)

(obtained for system sizes ranging from=10? up to N
=10). An alternative approach to obtain the expongris
to compute the slope of the avalanche size distribution FIG. 3. Different avalanche size distributiopgL,N,«) with
p(L,N,a) for avalanche sizet =N/2 using the analytical «@=0.996 for N=50 (thin solid line, four peaks N=100 (thin
expression to be derived below. The resultzs=0.5, in ~ dashed line, two peaksN=200 (thick solid line, one pedk and
agreement with the numerics. N _:_250(th|ck dashed ling The curves shoyv maxima E_xt: kN and
Above the supracritical case, a fourth regime exists fofMnima atL=(k+0.5N (both marked with dotted lingsin all
values ofa close to 1, where the distributions show multiple $3€S: the. presented curves are temporal averages B 2va-
peaks located dt=N,2N+1,3N+1, . . . . These peaks arise '2"ches WithAU=0.022 andJ=1.
from the high coupling strength because elements can bgyart in the continuing avalanche, which explains the increase
come suprathreshold more than only once during an avasf the distribution towardd = (k+1)N. As can be seen

lanche. This is not possible in the subcritical, critical, andfrom Fig. 3, all distributions have minima at avalanche sizes
supracritical regimes. Figure(d) shows an example with | =N/2,3N/2, ... ,k+1/2)N, .. ..
three peaksgnote that the last maximum is not referred to as
a peak. B. Avalanche durations

_Conditions for the occurrence &fpeaks in the avalanche comparison to the avalanche size distributions de-
size distributions can be readily worked out. Consider the

casek=1 corresponding to the situation that neurons mayscnbed before, Fig. 1 also shows examples of avalanche

fire twice at most during an avalanche. First an avalanchration distributions in the four different regimes. Qualita-
9 ) ’ 'ﬁvely, the duration distributions have similar shapes. In the

sizeL. =N+1 must be possible. Since all elements receive. ,qicy) regime, the distributions are described by mono-

D e Mt e 1 & e orcer a2 ety ecreasing fnctons s n B, and above e
’ q ritical regime, the functions show one or more maxima as

which _o_rlglnally trlggered the avalanche may fire twice. Al- he couplinga increases, going from the supracritical to the
ter N firing events, this element has received the total inpu ultipeaked regime

e e e o e an 2" The cricalcasecccurs o the same vlor whi
fii s the t t Lint i .t : h’ | ; he size distribution is also criticfFig. 1(b)], and the critical
Irng ever;] S he %ell n erna” mpuf 0 feach € fj‘?e” mus xponent is the same. This holds for all system sidese
exceed the threshold to allow for urther firing N ( have testeddata not shown That is, the dependence of the
:1)ﬁU/N>U Ior “>£/(N”|:1)' hSlmgar argun(;g_nts hold critical « on the system sizBl is given by the same expres-
tﬁrt s gen?ra gase peaks. The above conditions must sion (5) for the avalanche sizes and the avalanche durations.
en be replaced by The main difference to size distributions lies in the fact
that duration distributions start to differ from an “ideal”
. (6) power-law distribution at lower values a@f. This behavior
can be explained by an intuitive argument. For avalanche
sizes of L=N, it is unimportant how many elements are
triggered in each step of the avalanche as long as the total
Onumber of toppling elements . For an avalanchduration
of N, it is not only required that the avalanche composed of

tween two peaks dt=kN andL = (k+ 1)N are always non- N elements is being triggered, but it is also necessary that in

monotonic. This can be seen as follows: In an avalanche Gf\aCh step of the avalanche, exaaifyeelement is triggered.
. : : : . Yience large avalanche durations have a far lower probability
size larger tharkN, the energiess; must have been in an

- o . than large avalanche sizes.
appropriate order to allow for this size. Because the interava- 9

lanche dynamics corresponds to a simple shifi(@f) on the
circle (0,U), the ordering aftekN events is nearly similar to
the ordering prior to the start of the avalanche, except forthe We use combinatorial arguments in the system’s
element which received external input. This element ha¥N-dimensional configuration space to derive expressions for
been responsible for triggering the avalanche, and only thiavalanche size distributions in the subcritical, critical, and
element has changed its position relative to the others. Theraupracritical regimes. The configuration spat&(0,U) (or
fore, it is highly probable that again all elements will take simply PiV) is defined to be the Cartesian product

AU kN
kU’ kN+1

a>amin(k)= max[ 1-

amin(K<a=<ayn(k+1) then gives the range of coupling con-
stants for whichk peaks can be observed.

Examples for avalanche distributions in the multipeake
regime are shown in Fig. 3. The distribution functions be-

C. Analytical considerations
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1 { 2. The general case ol elements

u 2 C AU Similar arguments hold for the general situationNo&l-
Fz 4“ i ements. The topology of regiohN—the region which is not
A=

inhabited between avalanches after transients have
\ decayed—and the regions leading to avalanches of certain
i sizes, however, are more complicated. We will outline the
o] derivation of the distribution functions in the following; the
A B detailed, rather tedious calculations can be found in Appen-
dixes A—C. The first step is to obtain a general expression for

o_| 2
2 A the volume of regionAN, V(AN(a,U)), in TIN. For this
: purpose, a rule can be derived showing htWis composed
of direct products ofN-dimensional and lower-dimensional

1
AU hypercubes of varying side lengthg(AN) is then given by
uy u the sum of the products of the volumes of these hypercubes.
U As a result, the particularly simple expressib\N(a,U))
. . . =aUN is obtained for arbitrariN (see Appendixes A and)B
FIG. 4. The dynamics in the configuration space libr 2 ele- For the regions ifIN(0,U) leading to different avalanche

ments. Effects of an extemal input to elementlibe marked as sizes, we suppose without loss of generality that the external
AU/U) followed by an avalanche of size 1 resulting in an input to ! PP 9 y

both elementgarrow pointing along the diagonalA? denotes the input AU, IS g!ven to element 1. Upon receiving input, ele-
region where the density of states eventually vanishe®, andC ment 1 fires ifu,>U—AU. I_n the second step, t_he corre-
denote regions leading to avalanches of &ize0,1,2, respectively, SPONding phase space region, whose volume is given by

if triggered by an external input to element 1. The hatched ared)’ AU, has to be partitioned into regions whelre-1
leads to an avalanche of size 1 but lies withiA. =0,1,2 ... N—1 further elements will fire in the respective

avalanche. The volumes of these regions will be denoted as
Z(L,N,&). The regions and their volumes are constructed
iteratively as shown in Appendix C. In the last step, ava-

IINo,uU) =[0,U)N with periodic boundary conditions, i.e., it
has the topology of ahl-torus (see Appendix A

1. An example with two elements

N—1
L-1

lanche probabilitiegp(L,N,a) are obtained by subtracting

the volumes of the intersections of the regiod@ ,N,«)

_ _ with region AN, and subsequently normalizing by the vol-
The caseN=2 demonstrates the basic mechanisms for,me of TMAN (see Appendix € Using Eq.(3), the ava-

evaluating the avalanche dynamics. The avalanche distribyzche distributions become independent\dd and U,

tion is calculated by determining the equilibrium density of

states inIT?, p(uy,u,), and subsequently considering the L1 | N-L-1

regions which lead to avalanches of sizes 0,1, and 2. Figure p(L,N,a)= LL‘2( (—) (1— L—)

4 shows the configuration spatF and the shifts resulting N N

from external inputAU, internal inputaU/2, and ava- N(1—a)

lanches of siz& =1. In the latter case, the system lealFs Xm for 1<L<N. (8)

and is reinjected on the opposite side. We consider; ,u,)

only at times between avalanches. Then, the total internal .

input distributed during an avalanche leads to a shift vectog gr'zse:rignixt?e val)le%nlztlr?sé?é;l/gi?a??en;%;s;;adtih?iupr;e]refr?f:t

which guarantees that sygtems will never be reinjected int(c):al avalanche size distributions fii= 10°

ETE l:j)g'eoxzd.?_ﬂgtggn;ﬁ ifﬁ’zeli’z i'S'eS'(’)Ig I(; él’el{[é)rr;%ego[)y Equation (8) resembles the avalanche size distribution

the randomly distributed external input. This input can beWhICh Broker and Grassbergg[26], Eq. (36)] have found

. e . . for the random-neighbor OFC model using branching theory.
decomposed into deterministic shifts of sia&)/\2 along The results differ, gi]n that the result in R%[QG] yieldg an g

the diagonal; =u, and a random walk orthogonally @, o, yression for avalanche sizes in systems of an arbitrary size
=Uz. AS a consequence of this stochasticity in combination; "yt is valid only in the infinite-size limit where simulta-
with the reinjection after avalanches, the densityiA\A neous avalanches are nonoverlapping. In contrast, (&q.
becomes constant for large 2timdes a”E'la normalization 1,145 for arbitrary system size¥ in our model. Formally,
ylelds the valuep(uy,uz)=[U*(1~a)] = Figure 4 also gq (g) contains a correction factor which is calculated by
|qlent|f|es those regions ibl“ which Igad to avala_nches of considering the regionN where the density of states even-
sizes 0 B), 1 (C), and 2(D) following external input 10,41y vanishes, instead of assuming a uniform density over
element 1. Avalanche probabiliti€L,2,«) are obtained by  he whole configuration spad&V(0,U) divided into regions
integratingp(uy,u,) over the respective region. Using Eq. leading to different avalanche sizes.

(3), the result is

3. The thermodynamic limit

2(1-a) a @) Avalanche behavior in the thermodynamic linht— co

P(1,20)= 2— and p(2,2e)= 2—a’ can directly be assessed from E8). Numerical results and
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analytical consideration®6]| suggest a critical coupling pa- (a)
rametera,=1 for N—~. Indeed, an evaluation of Eg8) 0
shows that the local exponent

pLNa L =l
y(L)=lim lim lnp(L+1,N,a)/ In—7 9 ;-2

—_ o'c=0cc (e=1)
--- 0=0.8000

— 0=0.9900
-—-— 0=0.9990

a—1N—x

becomes constant far—oe: lim, _,.,y(L)=—3/2. Thus, in
the conservative system, power-law behavior with an expo- g-ar
nent of —3/2 is reached in the regime of large avalanche
sizes. The critical exponent is identical to that of the random- =57
neighbor OFC mod€J26] and, for example, for mean-field
percolation[30]. -5 3 )

For finite L, the distribution is actually very close to log,, LN
power-law behavior. Since the critical case corresponds to
the conservative system=1, the supracritical regime be-
comes smaller and smaller Bs—: the occurrence of non-
monotonic avalanches is a finite-size effect.

- -+ 0=0.8000
— a=0.9900 |
== 0=0.9990

4. Avalanche durations
------ 0=0.9999 |

For avalanche durationg;(D,N, «), an iterative equation
for the corresponding regions and their volumes in the con-
figuration space can be derived; cf. EG23. A closed ex-
pression corresponding to the avalanche size distribG8pn
however, is not available.

IV. EXTENSIONS AND APPLICATIONS OF THE MODEL
IN THE CONTEXT OF NEURAL NETWORKS

Models of SOC can usually be interpreted in terms of
neural networkge.g., Refs[23,31-34). Single elements are FIG. 5. Distributions of(a) avalanche sizes ang) avalanche
identified with model neurons that receive both external andiurations for a subcritical coupling strength=0.8 (dashed ling
internal input. The energy variable corresponds to some infor a critical couplinga=0.99 (solid line), a supracritical coupling
ternal state of a neuron, usually interpreted as its excitatiom=0.999 (dashed-dotted lie and a coupling strength o#
or membrane potential. Upon reaching a threshold, the neu=0.9998(dotted ling. Compare also the distributions shown in Fig.
ron is reset and subsequently sends an input to other neurohgising identicakv’s. In all cases, the presented curves are temporal
in the network. In the following, we will study extensions averages over fOavalanches withN=10000, AU=0.022, €

and applications of the avalanche model using neural net=0.1, andU=1. For comparison, the thick solid line {a) shows
work terminology. the critical size distribution foe=1.

introduce length scales in the distributiopsand py, when
A. The casee<1 p(u) is rotated inu during an avalanche. The differences

The results described in Sec. Ill are valid for the Abelianbetween distributions fore=1 and e<1 are most pro-
casee=1. In terms of neural networks, this corresponds to aounced abover=«., as can easily be seen in Fig. 5. Small
fast neural relaxation such that the excess energyl is € can also_prevent a\_/algnches Iarger thain the multi-
accumulatedhfter the reset. FoE<1 in Eq.(2), the reset of peaked regime—the dissipation during the reset of the mem-

a neuron is slower, such that a fractior- & of the excess brane potentials eats up the Excess energy which otherwise
energy is los{34]. would make the same neuron fire twice during an avalanche.

We show examples of avalanche size distributions in Fig. Similar avalanche size distributions were de.scribed by
5(a), and examples of duration distributions in Figbp for Co"a!'et al.[23] for IOCQ”Y conm_ected r_letworks of Integrate-
e=0.1. an_d-flre neurons receiving uniform input to v_vh|ch some

A conspicuous feature is the appearance of additiond] ©'S€ Was ac!ded. As In our model, the dissipation of energy
peaks also in the regime where avalanches are restricted AS responsﬂ;le for the occurrence of the peaks whe_reas In
sizesL=N. The distributions thus deviate from a power law € COnservative case, approximate power-law behavior was

with a single exponent as in the conservative casel. observed.

When some neurons cross the threshold, the differences be- _ _ ]

tween their membrane potentials before the avalanahe B. Avalanches in networks of leaky integrate-and-fire neurons
—uj, will become smaller after the avalanche stopped, In the context of biologically motivated neural networks,
€(ui—u;). Thereforee<1 induces peaks ip(u), which  additional parameters such as time delays of interaction or
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decay time constants for the elements’ dynamical variable (g) Yg=> (b) Ug=5
are usually employedsee, e.g., Refs35—41]). Here we 0 0
briefly show how the avalanche statistics changes by the in- -1
troduction of a leak term into the dynamical equatidn.

Without input to element, this leak term yields an exponen-
tial decay ofu; to zero with time constant. For our simu-

lations with leaky threshold neurons, we used a discretizec € —*
version of the continuous dynamical system -5

-1

-2

-3

-4

-5

U
TUi(t)=—ui(t)+Ith(t)+I§m(t) (i=1, L 7N)7 (10) 25 -2 -15 -1 05 0 25 -2 -15 -1 -05 0

with external inputl *(t) = 8(t—kAt) 8, AU, keZ We  (€) , Up=13 @, u=1.01
defineAU to be

-1

-2

AU=ug[1—exp —At/7)N], (11

-3 U

where 1At is the rate of the external input ang, the

asymptotic energy to which an uncoupled neuron would be

driven in the absence of a firing threshold. If neuroeaches

its thresholdU, the energy is reset t,=0. 25 2 15 1 05 0 25 2 15 -1 05 0
In the previous, Abelian case we had only one parametel log,, UN log,, UN

AU controlling the input, which had apparently no influence

on the shape of the avalanche distributigsse Eq.(8)]. FIG. 6. Distributions of avalanche sizgs(L,N,«), of a fully

Now, there are two parameters controlling the neuron’ssonnected network of leaky threshold elements receiving random

input-output characteristics,, andAt. In the following, we  input for different leakiness constants, namely, for(a) up==,

demonstrate the phenomena resulting from varying these iffP) Uo=5. (¢) Up=1.5, and(d) up=1.01. The insets show the cor-
put parameters. responding mean energy densitiga). In all cases, the presented

In Fig. 6, we choose the critical cage= a in a system of curves are temporal averages ovef adalanches witrN=.1000,.
N= 1000 neurons, while varying,. The respective time in- :iJOTI %iﬁiusjeﬁzwzgdg;o?sémgh;23:; péaqrfgeters, the discretiza-
terval At is chosen such that the inpatU is constant. Ef- '
fectively, the casely=c0 [Fig. 6(a)] corresponds to neurons . )
without leakage, and decreasing yields the network be- shorter an(_d the noise appears to_hay_e a stronger mflue_nce on
havior for increasing leakage. Such a decrease imposes tjB€ dynamics. When both the variability of the external input
changes: first, large avalanches get more and more improf@d the coupling is high, the system synchroningtout
able, and second, oscillations are induced into the size diQscillating. Here, one element is likely to trigger a large por-
tributions. Both effects can be understood by observing th&on of the other elements in the netwo$ynchronization
energy densitieg(u) (small insets in Fig.  While in the but the input variability ensures Fhat the membrane potentials
nonleaky caséFig. 6@)], p is nearly uniform, a leaky inte- _of the elements get Qesynchronlzed before another ava_llanche
gration causes more neurons to have energies near the firify i99€red, preventing an oscillatory component to build up
thresholdU than energies near the resting potential, finally!" the cross-correlation functions.
introducing oscillations and peaks gnFigs. b—0d)]. These
density oscillations lead to the observed oscillations in the
size distributions due to the deterministic readout mechanism
of the avalanches: during an avalanche, the neural energies In summary, we presented an avalanche model involving
are uniformly shifted on thas axis. We observe that the random input and global coupling between its elements. Ava-
number of oscillatory peaks decreasesigslecreases, while lanche size distributions can be calculated exactly for an ar-
the oscillation amplitude increases. bitrary system size through combinatorial arguments in the

In a second numerical experiment, we held the leakinessystem’s configuration space. The model therefore accounts
constant, while we varied both the rate\t/at which exter- for phenomena in finite systems and elucidates the transition
nal input AU was delivered, and the coupling constant to the thermodynamic limit.
such that a transition from subcritical to supracritical oc- The model belongs to the same universality class as the
curred. Our results are summarized in Fig. 7. With highlyrandom-neighbor OFC model, showing similar distributions
variable external driving, and subcritical coupliagpper left  in the subcritical and critical regimes, and the same critical
plot in Fig. 7, the neurons do not show any sign of synchro-exponent— 3/2 in the conservative cage=1 asN— .
nization. When the external driving gets more frequent The analytical access to avalanche size and duration dis-
(lower left plot in Fig. 3, even a small coupling leads to tributions infinite system& especially important when mod-
synchronization, accompanied by a strong oscillation. Thinggling systems that in reality have some 100 to 10000 ele-
do not change significantly when the coupling gets strongements. For example, cortical columns are examples neural
(lower right plot in Fig. 7, only the oscillation period gets networks with an order of 1000 to 10 000 elements which are

-4

-5

V. SUMMARY AND CONCLUSION
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A 0=0.6, At=20/N ms 0:=0.92, At=20/N ms
100 100 T T
At 2 I S R 1 ‘
; 80.‘ s TN ; FIG. 7. Raster plots showing
= CRCRN the firing dynamics of a network
= 8 6oy, LS | of N=100 neurons. Each spike is
i _200 0 200 [ 100 0 100} drawn as a small black tick in de-
¥ — aoff |yt T pendence of the time, and the
)R N (N G AT FRA I number of the neuron which emit-
ool LB ALy ted that spike. The coupling pa-
o PRI R CN KA I rameter « was chosen to bex
IR RRR (R ST =0.6 (top left), 0.92 (top righ,

56 -100 ‘-1“5‘0' I200 2‘50 0.6 (bottom lefy, and 0.92(bot-
tom right, while the time interval
0=0.6, At=1/N ms 0=0.92, At=1/N ms between two external inputs was

100 200 300 400 500

1001 T 100777 I I N given by At=20MN,20N,1/N and
\“Ii ‘ Lz . ' ) 1/N m, respectively. The insets
80 ‘:: 1o 5 80t 5 show the mean over the cross-
i 1| i g ‘ | g correlation functions from 300
60 :| ‘ ‘ 150 | A h b soll 1 | = pairs selected out of thBl=100
T Lo &} ! ‘ &} neurons. The cross-correlation
S r L 00 0 100 T = 2 2 functions have been scaled arbi-
= goff 1| —— 40 o : identi
R P ‘ _ ‘ ’ T T trarily, but identically for all four
bl ! I | N : | , ‘ ) LRI insets. u, was chosen to bei,
20t/ ‘ l R I ‘ 20¢: ). o I \ ‘ =1.05 andr=32.84 ms, yielding
| oo i 4' i e , ‘ ' NE | an output rate of 10 Hz for an un-
I I R : L ‘ coupled neuron. The critical cou-
50 100 150 200 250 20 40 60 80 100 120 pling strength foN= 100 neurons
t [ms] t [ms] is g=0.9.
} .
o 0
c

densely connected to each other, but sparsely connected teodel as well as in reality arises—our analysis could then
other columns. Our approach may help to understand thprovide a tool to understand the mechanisms behind the dy-
synchronization properties of these local networks receivinghamics. While there are hints that in some cases, power laws
apparently stochastic input. Even when the analytically solvean be found in the brain’s dynamig46—48§, it remains to
able Abelian model may abstract from a real neuron, theslucidate which functional advantage a critical state may
properties of the avalanche distributions are stable with rehave for the information processing going on in the brain.
spect to changes in the underlying model itself—we already

pointed out its similarity with the distributions seen in the ACKNOWLEDGMENTS

random-neighbor OFC model. In general, it is not easy to

motivate the random-neighbor OFC model, because it em- We would like to thank Professor Theo Geisel for most
ploys a coupling changing randomily each stemf an ava-  fruitful discussions at the Max-Planck-Institute for Fluid Dy-
lanche. In the neuronal context, however, the model may beamics in Gttingen. This work has been supported by the
an example of a constantly driven, densely connected neBFG, Sonderforschungsbereich 517 “Neurokognitig/’E.
work of elements subjected to synaptic failures that occuand C.W.E), and by the Volkswagen Foundation, Project No.

relatively often in reality. 5425(U.E.).
Among other dynamical properties, we also observe syn-
chronization without oscillations. While this phenomenon .
APPENDIX A: PRELIMINARIES
has already been observed in biologd2] and modeling
studies(see, e.g., Ref$43,44]), we link its occurrence to the In the appendixes, we derive the exact avalanche distribu-

transition from the critical to the supracritical regime. Thetions p(L,N,«) for arbitrary system sizedl. Appendix A

fact that the latter disappears for large networks goes towill introduce a suitable notation for partitioning the con-

gether with the synchronized dephasing due to finite size firdiguration spacdl into products of lower-dimensional sub-

mentioned in Ref[45] (cf. also Ref[43)]). sets. In Appendix B, we calculate the volume of the region
With the advance of experimental technologies such as; phase space which is not inhabited between avalanches,

e.g., stable long-time multielectrode recordings, the questioby using a partitioning of the configuration space leading to

of whether one can find similar phenomena in our “toy” a recursion formula for subregions. In Appendix C, a recur-
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sion formula for regions leading to avalanches of a specific 2. Lemmas

sizeL will be derived, and subsequently be modified by sub- ¢ f6|10wing three lemmas will help to shorten the deri-
tracting the noninhabited regions. This modification finally,,ation of the recursion formulas in the following sections.

leads to the exact avalanche distributigr{&,N, «). Lemma 1Vk I<mVu>0:VA:0<\<1,
Before starting the analysis, we will shortly summarize
the terminology used in the appendixy,ze R, andx,y,z A:=H'(0,)\u)@g;lT“*'()\u,u)|JI NTRON U m)
eR™; i,j,k,I,m,n,p,q,r eN denote indicesj,J,K denote "
sets of indicesZ, 7, denote second-order sets of indices; #FD e mCJ|m- (A6)

Imam"rmem e emcR™ denote subsets iR™; D,S,V de-

note volumes of subsets. Overlined symbols will denote re- - prof | et us choose a suitable disjoint decomposition of
gions and volumes excluding the subset of the non-inhabiteg,o index set

. ! . m as
volume in configuration space.
1. Subsets and sets of indices tn=(lmM 1, m)
Let I, denote an arbitraryk-element subset of .,
:={1, ... m}. The superset of all differerty ,, is denoted by U(hm\J1,m)
Tym- Ixm contains thus ') k-element subsets df, as its
elements. U(J)m\lk,m)

For the following analysis, it is convenient to define

m-dimensional subsefd™,
U(Im\(lk,mu‘]l,m))- (A7)

l—Im(xmin Xmax) ’:{XE [ Xmin 1Xmax)m(;Rm}- (A1)

The configuration space & units can then be denoted by using Egs.(AL), (A3), and (AS), we can then explicitly

ite A

1NO.). write A as

We also define subsef§(\,u,ly ) for 0O<ks=mand 0 m .
<\<1, A={xe RM0o=<x;<\uk/miiel NI n,

k .
Frkn()\,u,lk‘m) ::(XE Hm(O,u) Xi<)\ Eu,i € Ik,m] . )\U$Xi<)\uk/m.| Elk,m\JI,ma
(A2) .
Os=sx;<Auiied; N\l m.,
Let A™ denote a union of' s,
m Ausx<uiiel\(Iy U m}. (A8)
ATNw= U U TR U ). (A3)

k=1l meTim Because ofAu=\uk/m, A is nonempty if and only if

For the special case af=1, I™(1,u) =I1(0u) and, there- 'km\Ji.m=; and this implies thak, nC J; meA#J. Note
that if k>1, conditionl, ,CJ, , is never fulfilled.

f
ore, Lemma 2VI=m;Vu>0;VN:0<A<1,
A™(Lu)=TI"(0u). (A4)
[
In order to be able to combine lower-dimensional subsets, U Uy IEnulem
we finally define the direct produ@“c ®™ ¥, between k=1l m
two subsetsl, , determines the indices of the components =A'\/muyeI™ ' (0u)|, (A9)
H il I,m'

of the elementy in the resulting volume assigned to com-
ponents belonging to elementsn O,
Proof. Inserting definition(A2) into the innermost union
0%:={xe ACR¥}, in Eq. (A9) yields
m—k,_ m—k
q) -_{XE BQR }, U ka(A,UJk,m)

Ik,mg‘]l,m

®k®¢m7k|lkvm:{y€ R™{yiticr, ne AdYiticr i, € B}
(A5)

= U [XE I1™(0,u)
Note that this definition is well defined only for séisbeing lemC3im

invariant under a permutation of the componentscefA.

The operator® is assumed to have higher precedence tharn this union, exactlyn—| components ok cover the whole
U,N, and\. interval [O,u). By separating these components forming a-

k
xj<)\5u,JeIkym].
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subseflI™'(0,u), the union can be written as a direct prod-
uct of II™" with a union of dimensiorl, using suitably

chosen index sets, | ; o
3
(U(H'(O) <>\|k]
Xe W[ Xi ek ——-u
Kioie K 1 m |
m—I
STI™(0u);, . /
= U T\/mu)|eII™'0u| .
Kyie
k1 €K1k Im p
(A10) L=3 U !
1
Then Eq.(A9) follows immediately, using the definition
(A3) for A'. FIG. 8. Example of the configuration spaldé and its partition-
Lemma 3Vz=y, ing. The noninhabited voluma? is highlighted in shades of gray.

The volumesV(L,3,a) leading to avalanches of sizés=0, L
=1, L=2, andL=3 are outlined with thick black lines at their

AM(x,y)NII™(0,2) = A™(xy/z,2). (A11)  edges.

Proof. This can be achieved by rescaling the parameters

and\ in definition (A2) to the smaller subsdi™(0,z), and The phase spadd"(0,u) can be expressed as a union of
inserting the rescaled definition into EG\3). disjoint subsets,
APPENDIX B: CALCULATION OF THE NONINHABITED n
VOLUME mow=uU U moixen"'ouul; ,
[=0J n€Zn '
In a configuration space of dimensidhand volumeUN, L (B3)

the volume not inhabited between avalanches mediated by a

coupling of strengthaU/N is denoted byAN(a,U). The . ) .
purpose of this section will be to calculate its volurie whose volumes are related to a binomial expansion of
which is done iteratively. The reason for using this strategyV(Hn)v

can be illustrated by comparing the phase spaces and their

partitionings forN=2 (Fig. 4 andN=3 (Fig. 8). The par-

titioning for N=2 is similar to the partitioning of the,-u, "
plane in Fig. 8, except for a change in the side lengths of the V(]‘[n(o,u))zun[)\+(1—)\)]“=u”2 ( | )A'(l—k)”".
volumes. This “self-similiarity” continues when proceeding =0
to higherN and enables the iterative calculation of the vol- (B4)
umes AN, Note that alreadyA® has a relatively complex
structure. Using the definitions (A1) (A3), it is clear that

Theorem.VA<u and Ym>0, V(A™(\,u)) is given by A"\, u)CTI"(Ou)\II"(Au,u). Inserting Egs.(A3) (B3)
the particularly simple expression into this expression,

V(A™(N,u))=Nu™. (B1)

AN u) =[IT"(O,uNIT"(Au,u) TN A"(N\,u)
The proof will be given by induction oven.
Basis.From definitions(A3) and (A2) it is obvious that —
for m=1,

n
U u H'(O,Au)@H“'()\u,u)hl)
=13, \e7 , "

VAL, W)= VI, u 15 )= u. (B2) n

u U FE()\,u,Ik’n)).

k: 1|k,nEIk,n

Induction.For the induction we assume that E§2) has
been proven fom=n—1. Thus we have to prove that Eq. We subsequently use Lemm#&&6), (A9), and (All) and
(B2) holds also form=n. obtain
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n |
U U (I'oixnel™'owuul, nU U FQ(A,qu,n)) [Eq.(A6)]
1=1J,, k=11, can

EIl,n

=U U (H'(O,)\U)@H”'()\u,u)|JlnﬂA'(M/n,u)@H“'(0,u)|3|n) [Eq.(A9)]
=13, ' '

EI|’n

= U U @O xynAN/nw)e @ (u,unIouw)l;
|:1‘]|,nEI|,n '

[Eq.(A11)]. (BY)

n |
=U U A'(—,)\u)c@H”'()\u,u)
=13, \N

EI|,H

‘]I,n

By construction[see Eq.(B3)], the subsets are disjoint and preceding appendix, we will use an iterative procedure, as
the volumeV of their union can be written as a sum over the suggested by comparing Figs. 4 and 8.

subvolumes. In addition, volumes of subsets for different in-

dex sets], , for fixed n and| are identical. Thus we can

insert Eq.(B1) for | <n, and Eq.(A4) for | =n. Through this 1. Regions representing different avalanche sizes

procedure we close the induction To convey the idea behind the analysis, we first recall the
N I dynamics during one event in an avalanche. Typicatty,
n _ _ units have still not been active ydtunits are just firingk
V(A“()\,u))zzl ( I ) ﬁ()‘u)lun (2= elements have already fired and will not be activated again,
and | of the m remaining units will be activated until the
N " (n—1 1 - avalanche stops. If the coupling strengthds- «U/N, no
AU ;1 1—1 /M (1=0) state variableu of the remainingm units could have been
initially larger than U—kB. We will denote the
nlia-1 m-dimensional subsets of the configuration space, which will
NTLDS ( K )Kk(l—h)(”l)k=7xun- B evolve into the situation described above, witl]\(j). The
k=0 following considerations will lead to a recursion formula for

(B8 am(j) over the variablg.
By choosingn=N, u=U, and\=«, we obtain the vol- Let us start with the subspad&™(0,U —kp), which can
umeV for the noninhabited region as be written as a union over afd’s with fixed k, I, andm,
m
V(AN(a,U))=aUN. (B7) nmou-kg= U Q). (€2

1=0
APPENDIX C: AVALANCHE DISTRIBUTIONS

In this section, we will prove the following theorem for In other words, Eq(C2) expresses that am-dimensional

the avalanche probabilitig®(L,N, «). configuration space of side length—kgB, onto which an
Theorem. input of | B is given, can be decomposed into subsets where
j units will fire. It is obvious that for the cage=0 in which
B(LN.a)=LL-2 N-1)[a\t™ an avalanche stops, the sub&sf,(0) is given by
L-1/\N
a\N"t L N(L-a) (0 =T1"0U— (k+1)
—L— = k1(0)= : B). (C3
x| 1 LN) N-(N-Da CD

Proof. It is convenient to divide the proof into three steps.  While decompositio(C2) partitionsII™ considering the
The first step will be to identify the regions in configuration whole remaining part of an avalanche wjthnits firing, one
space leading to avalanches of a certain &iz&he second can equally well partitiodI™ considering only the next step
step will be to subtract the noninhabited subdét from in an avalanche, where the inputlg# can trigger up tam
these regions. By calculating their volume, one finally ob-units to fire immediately. Withi denoting the number of
tains the correct avalanche probabilitggd.,N,«). As inthe  these units, the disjoint decomposition then reads
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" m i In Eqg. (C6), we excluded subsets where the inp8ttriggers
HTOU—-kB)= L—JO U Im'ou—(k+hHpg) none of the units, because we already know the result from
= EIIIm Eq. (C3).

If we require Eq.C6) to represent a recursive description
of the avalanche dynamics, then one specﬂt[}}(j) should

®I'(U—(k+1)B,U—kp) L be composed of terms with satisfying (' —i)+i=],
(C4) _
J .
Using an appropriately scale(C2) as a decomposition of Q)= U Ul ez kam;,'Yi(j—i)
1™, the common inpuiB due to thei units firing will =1
subsequently triggelj’ —i elements until the avalanche

®I'(U—(k+hH®B,U—kpB)|, (C7)

m—i,m’

stops,
I™'OU—(k+hHp)= U Q5" —i).  (CH
i
Inserting Eq{(C5) into Eq.(C4), and comparing Eq$C2)
(C4), one obtains after changing the precedence of the
unions over andj’,

This expression is the required recursion formula.

2. Subtraction of the noninhabited region

For the following considerations, we introduce the abbre-

moo m meo viation ®":=I1"(U - (k+1) 8,U —kp).
jylﬂk’|(1)2i91| ; jU ket 1il) _')) We defineQ) by subtractingAN from Q,
- = dlimelim\ ] =i
®H‘(U—(k+|)B,U—k,8)| AN (OO, =0M(HedN M, \ANa,U).
Imfi,m (C8)
m
=UJ U u Q?;Iii(j’—i) If k+I<N, using Egs. (A2) and (A3) reveals that
jr=1i=1l neT ' ®"NAN(@,U)=@. Through this property, Eq(C7) re-

mains valid if one replaces tHe’s by the{)'s.

. (C8) Thus it suffices to explicitly comput€',(j) for j=0.
Inserting Eq.(A3) into Eqg. (C8), and using LemmagAb),

lm—i,m (A9), and(A11) yields

IT'(U—(k+1)B,U—kpB)

R @@,

m
=0 0edN M, N U U I'N(a,U,J; ) [Eq.(A6)]

=1 NClmn
= (0@, \NAM(am/N,U)RTIN"MOU)|,  [Eq.(A9)]

maU/N

U-(krnp O (KFDB

=[QE](0)\A”“< }@@N—mhm [Eq.(A11)]. (C9)

Erom this expressiorﬁ[\(O) can be extracted as 3. Calculation of the volumes of the regions

M m m{ _Ma With S7,(j) =VQ (i) and S?\ () =VQ\ (i), Eas.
Qii(0) =iy (ONA (U—(k+|),8’u_(k+|)'8 : (C3 and(CIY) define IFelcursions forI configuraiilon space vol-
(C10 umes
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U—(k+DHp)™, j=0 To obtain a closed expression for the volurSendsS, we
mos ) will now prove the following proposition.
Sa)= > (T)(|ﬁ)i3r<n+|ii(j_i)a j<m, (€13 Proposition.For U>0k+1+j<N, andj<m,
(U= (kDA™ HU~(k+1+m)B), =0 s =( )81+ s -ae1+1ppm s
QMo j o _
=) ;1 (T)('ﬁ)lﬁrl:',i(j —i), J=m,
(€12 §L‘?.<i>=(?)ﬂjl<1+l>i1<U—<k+|+j>ﬁ>mi1
wheregL‘fl(O) was possible to calculate fro8{'(0) by sim- X (U= (m+k+1)B). (C15

ply subtracting the volume oA™, because its size in Eq.

(C10 has been scaled not to extend oﬂe[f,(O), The proof is possible by induction over, and it is very

m iimilar for SandS. We will therefore only give the proof for
SM(0)=S7(0)—aU—(U—(k+1)B™ L. (C13  Sin order to shorten this appendix.
N Basis.For m=1, j can either be 0 or 1, and using Eq.

Using similar arguments, one also obtains a recursion foffCl3) leads to

the vqumesDE](j) corresponding to regions of avalanche

durations), S(0)=U-(1+k+DB)Y, (16
m—j+1 m
m iy _ imm=—i /i
Dk,I(J)_ Z:l ( i )(IB) Dk+|,i(] 1)= (C14) §kl,|(l):(|:8)l- (Cl?)
for 0<j=<N andDy;,(0)=S,(0). Correcting for the nonin- Induction.For the induction we assume that EG15) has
@bited volume leads tolhe samgrecursion for the VO|Ume§een proven fom=n—1. Thus we have to prove that Eq
Dyi(j) for 0<j=<N with D},(0)=S;(0). (C19 holds also fom=n,
j
om m iem—i :
51<,|(J):i:1 ( i )('ﬁ) Scni(j—1)

m dm=i\ . . )
( i )(IB)'( =i )BJ'(U—(m+k+l)l3)(U—(k+|+J)B)’“J1I(J—I+I)"1

=1

|

-1,
(-)BJ(U—(kHﬂ')B)’“j1(U—(m+k+|)ﬁ)[l > (’i,l)li’j“”"]
i"=0

j .
rjn)ﬂJ’(tJ—(kH+j>ﬂ)"“l"1(u—(m+k+l>ﬁ)[21 "(f)iji‘“l]

3

—

3

:( . )/3J|(|+j)f1(U—(k+|+j),3)mi1(u—(m+k+|)/3). [
(C18

—

With this closed expression, it will be possible to finally gptained by multiplyingAU with §.'§‘,11(L—l) andS(’}‘gl(L

calculate an expression of the avalanche probabilities. —1), respectively. These specif§s are the volumes of the
subsets of dimensiolN—1 containing states for which
4. Avalanche probabilities =L —1 neurons will subsequently fire, triggered by an input

An avalanche starts if one unit is triggered by an input ofof | 8 with [=1. V(O,N,a) andV(ON,«) can be compute-
strength AU to fire. Thus the phase space volumesdas the remaining part of the whole phase space, and we
V(L,N,a) and V(L,N,a) for avalanches of size>0 are obtain
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uN"Yu-AU), L=0

V(LN.a)= AUSNTYL-1), L>0,

uN-Yu-aAuv), L=0

=1 AU -1\ (La\"" Y  La\Nt
e P c19
L L—1/\ "N N

and
UN-1(1— @) U—AU(l—a—%) , L=0
VILN@=1 4y Wy N=1)[La\-" Y La|N ~0 (€20
I P i v B v (1= a), '

The probability of an avalanche(L,N, ) is then given  noninhabited region, the final expression would have read
by P(L,N,a)=V(L,N,a)/VAIN(0,a)\AN(0,a)). With Eq.  [50]

(B1), VIIN(0,a)\AN(0,a))=UN(1— «a); then using Eq(3) 1/N—1\/ e\t |\ N-L
leads to the final resufsee also Eq(8)] p(L,N,a)= [( L_1 (LN) (1— LN) .
LN V(L,N,a) l(N—l (C22
P(LN,a)=—7 = =LlL-1 With similar arguments, the expression for the avalanche
UT(1-a)=V(ON, ) durationspy(L,N,«) becomes
L-1 N—-L-1 _
% Lﬁ) (1_L3) N(l—a')' AUEB‘Il(L—l)
N N N—(N-1)« p4(L,N,a)= : o
€2y UN(1-a)|1-U+AU[1-a-
If p(L,N,a) had been calculated without subtracting the (C23
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