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Finite-size effects of avalanche dynamics
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We study the avalanche dynamics of a system of globally coupled threshold elements receiving random
input. The model belongs to the same universality class as the random-neighbor version of the Olami-Feder-
Christensen stick-slip model. A closed expression for avalanche size distributions is derived for arbitrary
system sizesN using geometrical arguments in the system’s configuration space. For finite systems, approxi-
mate power-law behavior is obtained in the nonconservative regime, whereas forN→`, critical behavior with
an exponent of23/2 is found in the conservative case only. We compare these results to the avalanche
properties found in networks of integrate-and-fire neurons, and relate the different dynamical regimes to the
emergence of synchronization with and without oscillatory components.
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I. INTRODUCTION

In the last decade, a considerable number of publicati
have been dedicated to the occurrence of power-law beha
in systems involving interacting threshold elements driv
by slow external input. The dynamics accounts for pheno
ena occurring in such diverse systems as piles of gran
matter@1#, earthquakes@2#, the game of life@3#, friction @4#,
and sound generated in the lung during breathing@5#. An
avalanche of theoretical investigations was triggered by B
Tang, and Wiesenfeld@6# who linked the occurrence o
power laws to the notion of self-organized criticality~SOC!.
In the so-called sandpile models, locally connected elem
receiving random input self-organize into a critical sta
characterized by power-law distributions of avalanches w
out the explicit tuning of a model parameter~e.g., Refs.
@7–18#!. Analytical results were derived for sandpile mode
@14,15#, and it was shown that the existence of a conser
tion law is a necessary prerequisite to obtain SOC@16–18#.

A second class of models inspired by earthquake dyn
ics employs continuous driving and nonconservative inter
tion between the elements of the system@4,19#. In the Olami-
Feder-Christensen~OFC! model @19#, where the amount o
dissipation is controlled by a parametera, power-law behav-
ior of avalanches occurs for a wide range ofa values. Sub-
sequent investigations emphasized the importance of bo
ary conditions and tied the existence of the observed sca
behavior to synchronization phenomena induced by spa
inhomogeneities@20–24#. More specifically, Lise and Jense
@25# introduced a random-neighbor interaction in the O
model to avoid the buildup of spatial correlations. Furth
analysis indeed revealed that the random-neighbor O
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model does not display SOC in the dissipative regime@26–
28#.

In these avalanche models with nonconservative inte
tion, analytical results have been obtained only for syst
size N→` so far @26,29#. Here we introduce a model tha
not only circumvents the problem of system boundaries,
yields an analytical access also for finite system sizesN. The
elements are globally connected, which makes the syste
mean-field model. Randomness is not introduced thro
random neighbors but by providing a random external inp
During an avalanche, the elements become unstable an
lax in a fixed order determined by the state of the syst
immediately prior to the avalanche. Therefore, the system
strictly Abelian for dissipation parametersa smaller than a
threshold value, which can be readily worked out. In th
case, a geometrical approach in theN-dimensional configu-
ration space yields an exact equation for the distribution
avalanche sizes.

In Sec. II, the model is specified and compared with ot
dissipative avalanche models, in particular, with the rando
neighbor OFC model. In Sec. III, avalanche properties
presented both numerically and analytically, whereby det
of the analytical calculation of the avalanche size distrib
tions can be found in Appendixes A–C. Extensions and
plications of the model are formulated in the terminology
neural networks: The model allows for an interpretation
terms of a fully connected neural network of nonlea
integrate-and-fire neurons. Implications of this view such
the synchronization behavior of local, densely connec
populations of cortical neurons will be discussed in Sec.
The paper concludes with a brief summary and discussio

II. THE AVALANCHE MODEL

A. Definition

In the model, time is measured in discrete stepst
50,1,2, . . . . Consider a set ofN identical threshold ele-
©2002 The American Physical Society37-1
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EURICH, HERRMANN, AND ERNST PHYSICAL REVIEW E66, 066137 ~2002!
ments characterized by a state variableu>0, which will
henceforth be calledenergy. The system is initialized with
arbitrary valuesuiP@0,U)( i 51, . . . ,N), where U is the
threshold above which elements become unstable and r
Depending on the state of the system at timet, the i th ele-
ment receives external inputI i

ext(t) or internal inputI i
int(t)

from other elements, resulting in an activationũ at time t
11,

ũi~ t11!5ui~ t !1I i
ext~ t !1I i

int~ t !. ~1!

From the activationũi(t11), the energy of thei th ele-
ment at timet11 is computed as

ui~ t11!5H ũi~ t11! if ũi~ t11!,U,

e~ ũi~ t11!2U ! if ũi~ t11!>U,
~2!

i.e., if the activation exceeds the thresholdU, it is reset but
retains a fractione(0<e<1) of the suprathreshold portio
ũi(t11)2U of the energy.

For the external inputI i
ext(t), one element is randomly

chosen from a uniform distribution at each time step, an
constant amount of energyDUP(0,U# is added to the el-
ement’s energy. The external input is considered to be de
ered slowly compared to the internal relaxation dynam
i.e., it occurs only if no element has exceeded the thresh
in the previous time step. This corresponds to an infin
separation of the time scales of external driving and a
lanche dynamics discussed in the SOC literature@11–13#.
The external input can formally be written asI i

ext(t)
5d r (t),idM (t21),0DU. r (t) is an integer random variabl
drawn at time stept from a uniform distribution between 1
andN, indicating the chosen element,M (t21) is the num-
ber of suprathreshold elements in the previous time step,
d i , j is the Kronecker delta.

The internal input I i
int(t) is given by I i

int(t)5M (t
21)aU/N, whereaU/N is the coupling strength betwee
the elements. We assume connections to be excitatory,
is, a.0.

At some timet0 an avalanche starts,M (t0)51, provided
the element receiving external input becomes unstable.
system is globally coupled, such that during an avalanche
elements receive internal input, including the unstable e
ments themselves. The avalanche durationD>0 is defined
to be the smallest integer for which the stopping condit
M (t01D)50 is satisfied. The avalanche sizeL is given by
L5(k50

D21M (t01k). The model allows the calculation of th
probability P(L,N,a) of an avalanche of sizeL>0 in the
regime 0<L<N of a system consisting ofN elements with
coupling parametera. Avalanche size distributions can alte
natively be described by a functionp(L,N,a) for L>1,
which is related toP(L,N,a) via

p~L,N,a![
P~L,N,a!

12P~0,N,a!
. ~3!

Avalanche duration distributions will be denoted b
pd(D,N,a)(D>1).
06613
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Due to the global coupling of the elements, there are
boundary conditions to be specified in the model.

B. The caseeÄ1

Both the coupling parametera and the reset parametere
control the amount of dissipation in the system. An analyti
approach will be possible fore51, that is, if all suprathresh
old elements are reset such that they lose an identical am
U of energy@cf. Eq. ~2!#. We will therefore restrict further
analysis to this case and only briefly return to the gene
situation in Sec. IV.

For e51, the valuea51 corresponds to the conservativ
case with respect to the internal dynamics: upon resettin
a suprathreshold element, the energy it loses is comple
distributed in the network. Fora>1, an infinite avalanche
may eventually occur and we will therefore restrict ourselv
to the casea,1. In order to avoid side effects resultin
from the null set of rational values ofa, U, or DU, we
assume one of the fractionsa/U or DU/U to be irrational.
As will be shown below, a variation ofa leads to qualita-
tively different avalanche size distributions.

C. Comparison with other avalanche models

A class of models discussed in the SOC literature empl
a parameter controlling the amount of dissipation@4,19–28#.
The numerically observed power-law behavior in such s
tems, however, could be ascribed to spatial inhomogene
and the employed boundary conditions~e.g., @21–24#!. In
order to study avalanches of activity in the presence of d
sipation independent of spatial correlations among eleme
Lise and Jensen@25# introduced a random-neighbor versio
of the Olami-Feder-Christensen model described in R
@19#. In this model, threshold elements receive a consta
uniform input and have random nearest neighbors to wh
they are connected during an avalanche. The temporal v
ability of the network connectivity avoids the buildup of sp
tial correlations, thus ruling out boundary effects in shap
avalanche distributions. Subsequent studies, however, d
onstrated that the random-neighbor OFC model does
have scaling behavior in the dissipative regime@26–28#.

Bröker and Grassberger@26#, in their analytical consider-
ations of the random-neighbor OFC model, applied
theory of branching processes to yield avalanche size di
butions. For this purpose it was necessary to consider
limits d→` ~where d is the dimension of the lattice! and
N→` in order to make the model effectively Abelian an
avoid correlations among elements@26#. This prevents ava-
lanches from visiting elements more than once and allo
subavalanches to spread independently of each other
that each suprathreshold element has a distinctive prede
sor which triggered it.

Our model poses an alternative of the random-neigh
OFC model: the global coupling of elements prevents spa
correlations and the putative dependence of the system
havior on boundary conditions. Randomness is introdu
through the external input rather than the random assignm
of nearest neighbors. This approach has the advantage o
requiring the limitN→`: For e51, the system is Abelian
7-2
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FINITE-SIZE EFFECTS OF AVALANCHE DYNAMICS PHYSICAL REVIEW E66, 066137 ~2002!
for an arbitrary system sizeN because at each time stept
during an avalanche, all elements receive the same inpu
pending only on the numberM (t21) of suprathreshold ele
ments at timet21.

The random-neighbor OFC model and the globa
coupled model are complementary in the following sense
the random-neighbor OFC model, randomness is introdu
through the random choice of neighbors during the a
lanche activity, while the interavalanche dynamics is
simple shift of the energy distributionr(u) on theu axis due
to the uniform input. In our globally coupled model, th
stochasticity is due to the random external input betw
avalanches, whereas the avalanche activity corresponds
rotation of r(u) on a circle@0,U) with periodic boundary
conditions. The latter property is due to~i! the fact that all
elements—including the unstable ones—receive the sam
put I i

int(t) at each time step, and~ii ! the update rule~2! which
reinjects unstable elements according to the suprathres
portion ũi(t11)2U of their energy. Therefore, the elemen
become unstable in a fixed order depending on the ac
distributionr(u). Below it will be shown that for coupling
coefficients a,max$12DU/U,N/(N11)%, avalanche sizes
may not exceedN, which means that each element can
activated only once. In this regime, avalanche distributio
turn out to be very similar for the random-neighbor OF
model and the current model, demonstrating that the dif

FIG. 1. Probability distributions of avalanche sizes,p(x,N,a),
and avalanche durations,pd(x,N,a), in the subcritical@~a!, a
50.8], critical @~b!, a50.99], supracritical@~c!, a50.999], and
multipeaked @~d!, a50.999 97] regime.~a!–~c! Solid lines and
symbols denote the analytical and the numerical results for the
lanche size distributions, respectively. In~d!, the solid line shows
the numerically calculated avalanche size distribution. The das
lines in ~a!–~d! show the numerically evaluated avalanche durat
distributions. In all cases, the presented curves are temporal a
ages over 107 avalanches withN510 000, DU50.022, andU
51.
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ences between the models barely change the statistical p
erties of the avalanches. However, in the globally coup
model, this regime can be described by a closed expres
for avalanche distributions,p(L,N,a).

III. AVALANCHE PROPERTIES

A. Avalanche sizes

Figure 1 shows avalanche size distributions for differe
values ofa. N510 000 was chosen as the system size,
the curves look very similar for any other choice ofN.

Four qualitatively different regimes can be distinguish
which will be termed subcritical, critical, supracritical, an
multipeaked. For small values ofa, subcritical avalanche
size distributions exist, which can be approximated by
general expression

p~L,N,a!' p̂~L,N,a!5Lgexp~2L/l!, ~4!

whereg is an exponent independent ofN to be characterized
below, andl5l(N,a) describes the range of avalanch
sizes over which power-law behavior is observed@Fig. 1~a!#.
For fixedN, l(N,a) is a monotonically increasing functio
of a as long asa,ac which we refer to as the ‘‘critical
case’’ ~Fig. 2!. For ac , the system has avalanche distrib
tions with an approximate power-law behavior with exp
nent 23/2 from L51 almost up to the size of the system
where the usual exponential cutoff is observed@49# @Fig.
1~b!#. For finiteN, ac is in the dissipative regime. Above th
critical valueac , avalanche size distributions become no
monotonic@Fig. 1~c!#. Such supracritical curves have a min
mum at some intermediate avalanche size.

In order to find the critical coupling coefficientac as a
function of system sizeN, we computed a conveniently de
fined distanceK(a) between the distributionp(L,N,a) and

a-

ed
n
er-

FIG. 2. Rangel(N,a) of avalanche sizes over which power-la
behavior is observed in the subcritical regime.l(N,a) has been
plotted for four different system sizes, namely, forN5102 ~solid
line!, N5103 ~dashed line!, N5104 ~dashed-dotted line!, and N

5105 ~dotted line!. To obtainl, p̂(L,N,a) as defined in Eq.~4! has
been fitted to the analytically calculated avalanche size distribu
p(L,N,a) by maximizing the symmetric version of the Kullback

Leibler distance K(l) as defined by K(l)5(L(p2 p̂)@ ln(p)

2ln(p̂)#.
7-3
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EURICH, HERRMANN, AND ERNST PHYSICAL REVIEW E66, 066137 ~2002!
an ‘‘ideal’’ power-law distributionp̃(L,N)5L23/2/(LL23/2.
ThenK(a) was numerically minimized to yield the param
eterac for which the distribution is closest to a power law
We chose the symmetric version of the Kullback-Leibler d
tance as defined byK(a)5(L(p2 p̃)@ ln(p)2ln(p̃)#, which
revealed a critical coupling constant

ac~N!'12N2m with m50.560.01 ~5!

~obtained for system sizes ranging fromN5102 up to N
5107). An alternative approach to obtain the exponentm is
to compute the slope of the avalanche size distribut
p(L,N,a) for avalanche sizesL5N/2 using the analytica
expression to be derived below. The result ism50.5, in
agreement with the numerics.

Above the supracritical case, a fourth regime exists
values ofa close to 1, where the distributions show multip
peaks located atL5N,2N11,3N11, . . . . These peaks aris
from the high coupling strength because elements can
come suprathreshold more than only once during an a
lanche. This is not possible in the subcritical, critical, a
supracritical regimes. Figure 1~d! shows an example with
three peaks~note that the last maximum is not referred to
a peak!.

Conditions for the occurrence ofk peaks in the avalanch
size distributions can be readily worked out. Consider
casek51 corresponding to the situation that neurons m
fire twice at most during an avalanche. First, an avalan
size L5N11 must be possible. Since all elements rece
the same internal input and fire in a fixed order as descri
above, this is equivalent to the condition that the elem
which originally triggered the avalanche may fire twice. A
ter N firing events, this element has received the total in
DU1aU. A second firing can thus occur if this input ex
ceeds the threshold, ora.12DU/U. Second, afterN11
firing events, the total internal input to each element m
exceed the threshold to allow for further firing, (N
11)aU/N.U or a.N/(N11). Similar arguments hold
for the general case ofk peaks. The above conditions mu
then be replaced by

a.amin~k!5maxH 12
DU

kU
,

kN

kN11J . ~6!

amin(k),a<amin(k11) then gives the range of coupling co
stants for whichk peaks can be observed.

Examples for avalanche distributions in the multipeak
regime are shown in Fig. 3. The distribution functions b
tween two peaks atL5kN andL5(k11)N are always non-
monotonic. This can be seen as follows: In an avalanch
size larger thankN, the energiesui must have been in an
appropriate order to allow for this size. Because the intera
lanche dynamics corresponds to a simple shift ofr~U! on the
circle ~0,U!, the ordering afterkN events is nearly similar to
the ordering prior to the start of the avalanche, except for
element which received external input. This element
been responsible for triggering the avalanche, and only
element has changed its position relative to the others. Th
fore, it is highly probable that again allN elements will take
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part in the continuing avalanche, which explains the incre
of the distribution towardsL5(k11)N. As can be seen
from Fig. 3, all distributions have minima at avalanche siz
L5N/2,3N/2, . . . ,(k11/2)N, . . . .

B. Avalanche durations

In comparison to the avalanche size distributions
scribed before, Fig. 1 also shows examples of avalanchedu-
ration distributions in the four different regimes. Qualita
tively, the duration distributions have similar shapes. In
subcritical regime, the distributions are described by mo
tonically decreasing functions as in Eq.~4!, and above the
critical regime, the functions show one or more maxima
the couplinga increases, going from the supracritical to th
multipeaked regime.

The critical case occurs for the same valueac for which
the size distribution is also critical@Fig. 1~b!#, and the critical
exponent is the same. This holds for all system sizesN we
have tested~data not shown!. That is, the dependence of th
critical a on the system sizeN is given by the same expres
sion ~5! for the avalanche sizes and the avalanche duratio

The main difference to size distributions lies in the fa
that duration distributions start to differ from an ‘‘ideal
power-law distribution at lower values ofL. This behavior
can be explained by an intuitive argument. For avalan
sizes of L5N, it is unimportant how many elements a
triggered in each step of the avalanche as long as the
number of toppling elements isN. For an avalancheduration
of N, it is not only required that the avalanche composed
N elements is being triggered, but it is also necessary tha
each step of the avalanche, exactlyoneelement is triggered.
Hence large avalanche durations have a far lower probab
than large avalanche sizes.

C. Analytical considerations

We use combinatorial arguments in the system
N-dimensional configuration space to derive expressions
avalanche size distributions in the subcritical, critical, a
supracritical regimes. The configuration spacePN(0,U) ~or
simply PiN) is defined to be the Cartesian produ

FIG. 3. Different avalanche size distributionsp(L,N,a) with
a50.996 for N550 ~thin solid line, four peaks!, N5100 ~thin
dashed line, two peaks!, N5200 ~thick solid line, one peak!, and
N5250~thick dashed line!. The curves show maxima atL5kN and
minima at L5(k10.5)N ~both marked with dotted lines!. In all
cases, the presented curves are temporal averages over 23108 ava-
lanches withDU50.022 andU51.
7-4
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FINITE-SIZE EFFECTS OF AVALANCHE DYNAMICS PHYSICAL REVIEW E66, 066137 ~2002!
PN(0,U)5@0,U)N with periodic boundary conditions, i.e.,
has the topology of anN-torus ~see Appendix A!.

1. An example with two elements

The caseN52 demonstrates the basic mechanisms
evaluating the avalanche dynamics. The avalanche distr
tion is calculated by determining the equilibrium density
states inP2, r(u1 ,u2), and subsequently considering th
regions which lead to avalanches of sizes 0,1, and 2. Fig
4 shows the configuration spaceP2 and the shifts resulting
from external inputDU, internal input aU/2, and ava-
lanches of sizeL51. In the latter case, the system leavesP2

and is reinjected on the opposite side. We considerr(u1 ,u2)
only at times between avalanches. Then, the total inte
input distributed during an avalanche leads to a shift vec
which guarantees that systems will never be reinjected
the region denoted byL2(a,U), i.e., r(u1 ,u2)50 for
(u1 ,u2)PL2. The density inP2\L2 is solely determined by
the randomly distributed external input. This input can
decomposed into deterministic shifts of sizeDU/A2 along
the diagonalu15u2 and a random walk orthogonally tou1
5u2. As a consequence of this stochasticity in combinat
with the reinjection after avalanches, the density inP2\L2

becomes constant for large timest, and a normalization
yields the valuer(u1 ,u2)5@U2(12a)#21. Figure 4 also
identifies those regions inP2 which lead to avalanches o
sizes 0 (B), 1 (C), and 2 ~D! following external input to
element 1. Avalanche probabilitiesP(L,2,a) are obtained by
integratingr(u1 ,u2) over the respective region. Using E
~3!, the result is

p~1,2,a!5
2~12a!

22a
and p~2,2,a!5

a

22a
. ~7!

FIG. 4. The dynamics in the configuration space forN52 ele-
ments. Effects of an external input to element 1~line marked as
DU/U) followed by an avalanche of size 1 resulting in an input
both elements~arrow pointing along the diagonal!. L2 denotes the
region where the density of states eventually vanishes;A, B, andC
denote regions leading to avalanches of sizeL50,1,2, respectively,
if triggered by an external input to element 1. The hatched a
leads to an avalanche of size 1 but lies withinL2.
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2. The general case ofN elements

Similar arguments hold for the general situation ofN el-
ements. The topology of regionLN—the region which is not
inhabited between avalanches after transients h
decayed—and the regions leading to avalanches of ce
sizes, however, are more complicated. We will outline t
derivation of the distribution functions in the following; th
detailed, rather tedious calculations can be found in App
dixes A–C. The first step is to obtain a general expression
the volume of regionLN, V„LN(a,U)…, in PN. For this
purpose, a rule can be derived showing howLN is composed
of direct products ofN-dimensional and lower-dimensiona
hypercubes of varying side lengths;V(LN) is then given by
the sum of the products of the volumes of these hypercu
As a result, the particularly simple expressionV„LN(a,U)…
5aUN is obtained for arbitraryN ~see Appendixes A and B!.

For the regions inPN(0,U) leading to different avalanche
sizes, we suppose without loss of generality that the exte
input DU is given to element 1. Upon receiving input, el
ment 1 fires ifu1.U2DU. In the second step, the corre
sponding phase space region, whose volume is given
UN21 DU, has to be partitioned into regions whereL21
50,1,2, . . . ,N21 further elements will fire in the respectiv
avalanche. The volumes of these regions will be denoted
Z(L,N,a). The regions and their volumes are construc
iteratively as shown in Appendix C. In the last step, av
lanche probabilitiesp(L,N,a) are obtained by subtractin
the volumes of the intersections of the regionsZ(L,N,a)
with region LN, and subsequently normalizing by the vo
ume of PN\LN ~see Appendix C!. Using Eq.~3!, the ava-
lanche distributions become independent ofDU andU,

p~L,N,a!5LL22S N21
L21 D S a

ND L21S 12L
a

ND N2L21

3
N~12a!

N2~N21!a
for 1<L<N. ~8!

As an example, Figs. 1~a!–1~c! demonstrate the perfec
agreement between the analytical result~8! and the numeri-
cal avalanche size distributions forN5104.

Equation ~8! resembles the avalanche size distributi
which Bröker and Grassberger@@26#, Eq. ~36!# have found
for the random-neighbor OFC model using branching theo
The results differ, in that the result in Ref.@26# yields an
expression for avalanche sizes in systems of an arbitrary
N, but is valid only in the infinite-size limit where simulta
neous avalanches are nonoverlapping. In contrast, Eq.~8!
holds for arbitrary system sizesN in our model. Formally,
Eq. ~8! contains a correction factor which is calculated
considering the regionLN where the density of states eve
tually vanishes, instead of assuming a uniform density o
the whole configuration spacePN(0,U) divided into regions
leading to different avalanche sizes.

3. The thermodynamic limit

Avalanche behavior in the thermodynamic limitN→`
can directly be assessed from Eq.~8!. Numerical results and

a

7-5
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EURICH, HERRMANN, AND ERNST PHYSICAL REVIEW E66, 066137 ~2002!
analytical considerations@26# suggest a critical coupling pa
rameterac51 for N→`. Indeed, an evaluation of Eq.~8!
shows that the local exponent

g~L !5 lim
a→1

lim
N→`

ln
p~L,N,a!

p~L11,N,a!Y ln
L

L11
~9!

becomes constant forL→`: limL→`g(L)523/2. Thus, in
the conservative system, power-law behavior with an ex
nent of 23/2 is reached in the regime of large avalanc
sizes. The critical exponent is identical to that of the rando
neighbor OFC model@26# and, for example, for mean-fiel
percolation@30#.

For finite L, the distribution is actually very close t
power-law behavior. Since the critical case corresponds
the conservative systema51, the supracritical regime be
comes smaller and smaller asN→`: the occurrence of non
monotonic avalanches is a finite-size effect.

4. Avalanche durations

For avalanche durationspd(D,N,a), an iterative equation
for the corresponding regions and their volumes in the c
figuration space can be derived; cf. Eq.~C23!. A closed ex-
pression corresponding to the avalanche size distribution~8!,
however, is not available.

IV. EXTENSIONS AND APPLICATIONS OF THE MODEL
IN THE CONTEXT OF NEURAL NETWORKS

Models of SOC can usually be interpreted in terms
neural networks~e.g., Refs.@23,31–34#!. Single elements are
identified with model neurons that receive both external a
internal input. The energy variable corresponds to some
ternal state of a neuron, usually interpreted as its excita
or membrane potential. Upon reaching a threshold, the n
ron is reset and subsequently sends an input to other neu
in the network. In the following, we will study extension
and applications of the avalanche model using neural
work terminology.

A. The caseeË1

The results described in Sec. III are valid for the Abeli
casee51. In terms of neural networks, this corresponds t
fast neural relaxation such that the excess energyũi2U is
accumulatedafter the reset. Fore,1 in Eq. ~2!, the reset of
a neuron is slower, such that a fraction 12e of the excess
energy is lost@34#.

We show examples of avalanche size distributions in F
5~a!, and examples of duration distributions in Fig. 5~b!, for
e50.1.

A conspicuous feature is the appearance of additio
peaks also in the regime where avalanches are restricte
sizesL<N. The distributions thus deviate from a power la
with a single exponent as in the conservative casee51.
When some neurons cross the threshold, the differences
tween their membrane potentials before the avalancheui
2uj , will become smaller after the avalanche stopp
e(ui2uj ). Thereforee,1 induces peaks inr(u), which
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introduce length scales in the distributionsp and pd , when
r(u) is rotated inu during an avalanche. The difference
between distributions fore51 and e,1 are most pro-
nounced abovea5ac , as can easily be seen in Fig. 5. Sm
e can also prevent avalanches larger thanN in the multi-
peaked regime—the dissipation during the reset of the m
brane potentials eats up the excess energy which other
would make the same neuron fire twice during an avalanc

Similar avalanche size distributions were described
Corralet al. @23# for locally connected networks of integrate
and-fire neurons receiving uniform input to which som
noise was added. As in our model, the dissipation of ene
was responsible for the occurrence of the peaks wherea
the conservative case, approximate power-law behavior
observed.

B. Avalanches in networks of leaky integrate-and-fire neurons

In the context of biologically motivated neural network
additional parameters such as time delays of interaction

FIG. 5. Distributions of~a! avalanche sizes and~b! avalanche
durations for a subcritical coupling strengtha50.8 ~dashed line!
for a critical couplinga50.99 ~solid line!, a supracritical coupling
a50.999 ~dashed-dotted line!, and a coupling strength ofa
50.9998~dotted line!. Compare also the distributions shown in Fi
1 using identicala ’s. In all cases, the presented curves are tempo
averages over 106 avalanches withN510 000, DU50.022, e
50.1, andU51. For comparison, the thick solid line in~a! shows
the critical size distribution fore51.
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decay time constants for the elements’ dynamical variabu
are usually employed~see, e.g., Refs.@35–41#!. Here we
briefly show how the avalanche statistics changes by the
troduction of a leak term into the dynamical equation~1!.
Without input to elementi, this leak term yields an exponen
tial decay ofui to zero with time constantt. For our simu-
lations with leaky threshold neurons, we used a discreti
version of the continuous dynamical system

tu̇i~ t !52ui~ t !1I i
ext~ t !1I i

int~ t ! ~ i 51, . . . ,N!, ~10!

with external inputI i
ext(t)5d(t2kDt)d r (k),iDU, kPZ. We

defineDU to be

DU5u0@12exp~2Dt/t!N#, ~11!

where 1/Dt is the rate of the external input andu0 the
asymptotic energy to which an uncoupled neuron would
driven in the absence of a firing threshold. If neuroni reaches
its thresholdU, the energy is reset toui50.

In the previous, Abelian case we had only one param
DU controlling the input, which had apparently no influen
on the shape of the avalanche distributions@see Eq.~8!#.
Now, there are two parameters controlling the neuro
input-output characteristics,u0 andDt. In the following, we
demonstrate the phenomena resulting from varying these
put parameters.

In Fig. 6, we choose the critical casea5ac in a system of
N51000 neurons, while varyingu0. The respective time in-
terval Dt is chosen such that the inputDU is constant. Ef-
fectively, the caseu05` @Fig. 6~a!# corresponds to neuron
without leakage, and decreasingu0 yields the network be-
havior for increasing leakage. Such a decrease imposes
changes: first, large avalanches get more and more imp
able, and second, oscillations are induced into the size
tributions. Both effects can be understood by observing
energy densitiesr(u) ~small insets in Fig. 6!. While in the
nonleaky case@Fig. 6~a!#, r is nearly uniform, a leaky inte-
gration causes more neurons to have energies near the
thresholdU than energies near the resting potential, fina
introducing oscillations and peaks inr @Figs. 6~b–d!#. These
density oscillations lead to the observed oscillations in
size distributions due to the deterministic readout mechan
of the avalanches: during an avalanche, the neural ene
are uniformly shifted on theu axis. We observe that th
number of oscillatory peaks decreases asu0 decreases, while
the oscillation amplitude increases.

In a second numerical experiment, we held the leakin
constant, while we varied both the rate 1/Dt at which exter-
nal input DU was delivered, and the coupling constanta
such that a transition from subcritical to supracritical o
curred. Our results are summarized in Fig. 7. With high
variable external driving, and subcritical coupling~upper left
plot in Fig. 7!, the neurons do not show any sign of synch
nization. When the external driving gets more freque
~lower left plot in Fig. 7!, even a small coupling leads t
synchronization, accompanied by a strong oscillation. Thi
do not change significantly when the coupling gets stron
~lower right plot in Fig. 7!, only the oscillation period gets
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shorter and the noise appears to have a stronger influenc
the dynamics. When both the variability of the external inp
and the coupling is high, the system synchronizeswithout
oscillating. Here, one element is likely to trigger a large p
tion of the other elements in the network~synchronization!,
but the input variability ensures that the membrane potent
of the elements get desynchronized before another avala
is triggered, preventing an oscillatory component to build
in the cross-correlation functions.

V. SUMMARY AND CONCLUSION

In summary, we presented an avalanche model involv
random input and global coupling between its elements. A
lanche size distributions can be calculated exactly for an
bitrary system size through combinatorial arguments in
system’s configuration space. The model therefore acco
for phenomena in finite systems and elucidates the trans
to the thermodynamic limit.

The model belongs to the same universality class as
random-neighbor OFC model, showing similar distributio
in the subcritical and critical regimes, and the same criti
exponent23/2 in the conservative casea51 asN→`.

The analytical access to avalanche size and duration
tributions infinite systemsis especially important when mod
eling systems that in reality have some 100 to 10 000 e
ments. For example, cortical columns are examples ne
networks with an order of 1000 to 10 000 elements which

FIG. 6. Distributions of avalanche sizes,p(L,N,a), of a fully
connected network of leaky threshold elements receiving rand
input for different leakiness constantsu0, namely, for~a! u05`,
~b! u055, ~c! u051.5, and~d! u051.01. The insets show the cor
responding mean energy densitiesr(u). In all cases, the presente
curves are temporal averages over 106 avalanches withN51000,
U51, DU50.17, andt51. With these parameters, the discretiz
tion time stepDt was chosen to satisfy Eq.~11!.
7-7
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FIG. 7. Raster plots showing
the firing dynamics of a network
of N5100 neurons. Each spike i
drawn as a small black tick in de
pendence of the timet, and the
number of the neuron which emit
ted that spike. The coupling pa
rameter a was chosen to bea
50.6 ~top left!, 0.92 ~top right!,
0.6 ~bottom left!, and 0.92~bot-
tom right!, while the time interval
between two external inputs wa
given byDt520/N,20/N,1/N and
1/N m, respectively. The insets
show the mean over the cross
correlation functions from 300
pairs selected out of theN5100
neurons. The cross-correlatio
functions have been scaled arb
trarily, but identically for all four
insets. u0 was chosen to beu0

51.05 andt532.84 ms, yielding
an output rate of 10 Hz for an un
coupled neuron. The critical cou
pling strength forN5100 neurons
is acrit50.9.
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densely connected to each other, but sparsely connecte
other columns. Our approach may help to understand
synchronization properties of these local networks receiv
apparently stochastic input. Even when the analytically so
able Abelian model may abstract from a real neuron,
properties of the avalanche distributions are stable with
spect to changes in the underlying model itself—we alre
pointed out its similarity with the distributions seen in th
random-neighbor OFC model. In general, it is not easy
motivate the random-neighbor OFC model, because it
ploys a coupling changing randomlyin each stepof an ava-
lanche. In the neuronal context, however, the model may
an example of a constantly driven, densely connected
work of elements subjected to synaptic failures that oc
relatively often in reality.

Among other dynamical properties, we also observe s
chronization without oscillations. While this phenomen
has already been observed in biology@42# and modeling
studies~see, e.g., Refs.@43,44#!, we link its occurrence to the
transition from the critical to the supracritical regime. T
fact that the latter disappears for large networks goes
gether with the synchronized dephasing due to finite size
mentioned in Ref.@45# ~cf. also Ref.@43#!.

With the advance of experimental technologies such
e.g., stable long-time multielectrode recordings, the ques
of whether one can find similar phenomena in our ‘‘to
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model as well as in reality arises—our analysis could th
provide a tool to understand the mechanisms behind the
namics. While there are hints that in some cases, power l
can be found in the brain’s dynamics@46–48#, it remains to
elucidate which functional advantage a critical state m
have for the information processing going on in the brain
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APPENDIX A: PRELIMINARIES

In the appendixes, we derive the exact avalanche distr
tions p(L,N,a) for arbitrary system sizesN. Appendix A
will introduce a suitable notation for partitioning the co
figuration spaceP into products of lower-dimensional sub
sets. In Appendix B, we calculate the volume of the regionL
in phase space which is not inhabited between avalanc
by using a partitioning of the configuration space leading
a recursion formula for subregions. In Appendix C, a rec
7-8



ifi
b

lly

ze

s

re
ite

e

y

et

ts
-

ha

ri-
.

of

a-
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sion formula for regions leading to avalanches of a spec
sizeL will be derived, and subsequently be modified by su
tracting the noninhabited regions. This modification fina
leads to the exact avalanche distributionsp(L,N,a).

Before starting the analysis, we will shortly summari
the terminology used in the appendix:x,y,zPR, and x,y,z
PRm; i , j ,k,l ,m,n,p,q,r PN denote indices;I ,J,K denote
sets of indices.I,J,K denote second-order sets of indice
Pm,Vm,Gm,Qm,Fm#Rm denote subsets inRm; D,S,V de-
note volumes of subsets. Overlined symbols will denote
gions and volumes excluding the subset of the non-inhab
volume in configuration space.

1. Subsets and sets of indices

Let I k,m denote an arbitraryk-element subset ofI m
ª$1, . . . ,m%. The superset of all differentI k,m is denoted by
Ik,m . Ik,m contains thus (k

m) k-element subsets ofI m as its
elements.

For the following analysis, it is convenient to defin
m-dimensional subsetsPm,

Pm~xmin ,xmax!ª$xP@xmin ,xmax!
m#Rm%. ~A1!

The configuration space ofN units can then be denoted b
PN(0,U).

We also define subsetsGk
m(l,u,I k,m) for 0,k<m and 0

,l<1,

Gk
m~l,u,I k,m!ªH xPPm~0,u!Uxi,l

k

m
u,i PI k,mJ .

~A2!

Let Lm denote a union ofGk
m’s,

Lm~l,u!ª ø
k51

m

ø
I k,mPIk,m

Gk
m~l,u,I k,m!. ~A3!

For the special case ofl51, Gm
m(1,u)5Pm(0,u) and, there-

fore,

Lm~1,u!5Pm~0,u!. ~A4!

In order to be able to combine lower-dimensional subs
we finally define the direct productQk

^ Fm2ku I k,m
between

two subsets.I k,m determines the indices of the componen
of the elementsy in the resulting volume assigned to com
ponents belonging to elementsx in Qk,

Qk
ª$xPA#Rk%,

Fm2k
ª$xPB#Rm2k%,

Qk
^ Fm2ku I k,m

5$yPRmu$yi% i PI k,m
PA,$yi% i PI m\I k,m

PB%.
~A5!

Note that this definition is well defined only for setsA being
invariant under a permutation of the components ofxPA.
The operator̂ is assumed to have higher precedence t
ø ,ù, and\.
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2. Lemmas

The following three lemmas will help to shorten the de
vation of the recursion formulas in the following sections

Lemma 1.;k,l<m;;u.0;;l:0,l<1,

AªP l~0,lu! ^ Pm2 l~lu,u!uJl ,m
ùGk

m~l,u,I k,m!

ÞB⇔I k,m#Jl ,m . ~A6!

Proof. Let us choose a suitable disjoint decomposition
the index setI m as

I m5~ I k,mùJl ,m!

ø~ I k,m\Jl ,m!

ø~Jl ,m\I k,m!

ø~ I m\„I k,møJl ,m!…. ~A7!

Using Eqs.~A1!, ~A3!, and ~A5!, we can then explicitly
write A as

A5$xPRmu0<xi,luk/m: i PI k,mùJl ,m ,

lu<xi,luk/m: i PI k,m\Jl ,m ,

0<xi,lu: i PJl ,m\I k,m ,

lu<xi,u: i PI m\~ I k,møJl ,m!%. ~A8!

Because oflu>luk/m, A is nonempty if and only if
I k,m\Jl ,m5B; and this implies thatI k,m#Jl ,m⇔AÞB. Note
that if k. l , conditionI k,m#Jl ,m is never fulfilled.

Lemma 2.; l<m;;u.0;;l:0,l<1,

ø
k51

l

ø
I k,m

#Jl ,mGk
m~l,u,I k,m!

5L l~l l /m,u! ^ Pm2 l~0,u!uJl ,m
. ~A9!

Proof. Inserting definition~A2! into the innermost union
in Eq. ~A9! yields

ø
I k,m#Jl ,m

Gk
m~l,u,I k,m!

5 ø
I k,m#Jl ,m

H xPPm~0,u!Uxj,l
k

m
u, j PI k,mJ .

In this union, exactlym2 l components ofx cover the whole
interval @0,u). By separating these components forming
7-9
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subsetPm2 l(0,u), the union can be written as a direct pro
uct of Pm2 l with a union of dimensionl, using suitably
chosen index setsKk,l ;

S ø
Kk,lPKk,l

H xPP l~0,u!Uxj PKk,l
,l

l

m

k

l
uJ D

^ Pm2 l~0,u!uJl ,m

5S ø
Kk,lPKl ,k

Gk
l ~l l /m,u!D ^ Pm2 l~0,u!U

Jl ,m

.

~A10!

Then Eq.~A9! follows immediately, using the definition
~A3! for L l .

Lemma 3.;z<y,

Lm~x,y!ùPm~0,z!5Lm~xy/z,z!. ~A11!

Proof.This can be achieved by rescaling the parameteu
andl in definition ~A2! to the smaller subsetPm(0,z), and
inserting the rescaled definition into Eq.~A3!.

APPENDIX B: CALCULATION OF THE NONINHABITED
VOLUME

In a configuration space of dimensionN and volumeUN,
the volume not inhabited between avalanches mediated
coupling of strengthaU/N is denoted byLN(a,U). The
purpose of this section will be to calculate its volumeV,
which is done iteratively. The reason for using this strate
can be illustrated by comparing the phase spaces and
partitionings forN52 ~Fig. 4! andN53 ~Fig. 8!. The par-
titioning for N52 is similar to the partitioning of theu1-u2
plane in Fig. 8, except for a change in the side lengths of
volumes. This ‘‘self-similiarity’’ continues when proceedin
to higherN and enables the iterative calculation of the v
umesLN. Note that alreadyL3 has a relatively complex
structure.

Theorem.;l,u and ;m.0, V„Lm(l,u)… is given by
the particularly simple expression

V„Lm~l,u!…5lum. ~B1!

The proof will be given by induction overm.
Basis.From definitions~A3! and ~A2! it is obvious that

for m51,

V„L1~l,u!…5V„G1
1~l,u,I 1,1!…5lu. ~B2!

Induction.For the induction we assume that Eq.~B2! has
been proven form5n21. Thus we have to prove that Eq
~B2! holds also form5n.
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The phase spacePn(0,u) can be expressed as a union
disjoint subsets,

Pn~0,u!5 ø
l 50

n

ø
Jl ,nPIl ,n

P l~0,lu! ^ Pn2 l~lu,u!uJl ,n
,

~B3!

whose volumes are related to a binomial expansion
V(Pn),

V„Pn~0,u!…5un@l1~12l!#n5un(
l 50

n S n
l Dl l~12l!n2 l .

~B4!

Using the definitions ~A1! ~A3!, it is clear that
Ln(l,u)#Pn(0,u)\Pn(lu,u). Inserting Eqs.~A3! ~B3!
into this expression,

Ln~l,u!5@Pn~0,u!\Pn~lu,u!#ùLn~l,u!

5S ø
l 51

n

ø
Jl ,nPIl ,n

P l~0,lu! ^ Pn2 l~lu,u!uJl ,nD
ùS ø

k51

n

ø
I k,nPIk,n

Gk
n~l,u,I k,n!D .

We subsequently use Lemmas~A6!, ~A9!, and ~A11! and
obtain

FIG. 8. Example of the configuration spaceP3 and its partition-
ing. The noninhabited volumeL3 is highlighted in shades of gray

The volumesV̄(L,3,a) leading to avalanches of sizesL50, L
51, L52, andL53 are outlined with thick black lines at thei
edges.
7-10
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l 51 Jl ,n
PIl ,n

S l ,n
k51I k,n#Jl ,n

D
5 ø

l 51

n

ø
Jl ,n

PIl ,n

SP l~0,lu! ^ Pn2 l~lu,u!uJl ,n
ùL l~l l /n,u! ^ Pn2 l~0,u!uJl ,n

D @Eq. ~A9!#

5 ø
l 51

n

ø
Jl ,nPIl ,n

„P l~0,lu!ùL l~l l /n,u!…^ „Pn2 l~lu,u!ùPn2 l~0,u!…uJl ,n
,

5 ø
l 51

n

ø
Jl ,n

PIl ,n

L l S l

n
,luD ^ Pn2 l~lu,u!U

Jl ,n

@Eq. ~A11!#. ~B5!

By construction@see Eq.~B3!#, the subsets are disjoint and
the volumeV of their union can be written as a sum over the

preceding appendix, we will use an iterative procedure,
suggested by comparing Figs. 4 and 8.
in
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subvolumes. In addition, volumes of subsets for different
dex setsJl ,n for fixed n and l are identical. Thus we can
insert Eq.~B1! for l ,n, and Eq.~A4! for l 5n. Through this
procedure we close the induction

V„Ln~l,u!…5(
l 51

n S n
l D l

n
~lu! lun2 l~12l!n2 l

5lun(
l 51

n S n21
l 21 Dl l 21~12l!n2 l

5lun(
k50

n21 S n21
k Dlk~12l!(n21)2k5lun. j

~B6!

By choosingn5N, u5U, andl5a, we obtain the vol-
umeV for the noninhabited region as

V„LN~a,U !…5aUN. ~B7!

APPENDIX C: AVALANCHE DISTRIBUTIONS

In this section, we will prove the following theorem fo
the avalanche probabilitiesp(L,N,a).

Theorem.

p~L,N,a!5LL22S N21
L21 D S a

ND L21

3S 12L
a

ND N2L21 N~12a!

N2~N21!a
. ~C1!

Proof. It is convenient to divide the proof into three step
The first step will be to identify the regions in configuratio
space leading to avalanches of a certain sizeL. The second
step will be to subtract the noninhabited subsetLN from
these regions. By calculating their volume, one finally o
tains the correct avalanche probabilitiesp(L,N,a). As in the
06613
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1. Regions representing different avalanche sizes

To convey the idea behind the analysis, we first recall
dynamics during one event in an avalanche. Typically,m
units have still not been active yet,l units are just firing,k
elements have already fired and will not be activated ag
and j of the m remaining units will be activated until the
avalanche stops. If the coupling strength isb5aU/N, no
state variableu of the remainingm units could have been
initially larger than U2kb. We will denote the
m-dimensional subsets of the configuration space, which
evolve into the situation described above, withVk,l

m ( j ). The
following considerations will lead to a recursion formula f
Vk,l

m ( j ) over the variablej.
Let us start with the subspacePm(0,U2kb), which can

be written as a union over allV ’s with fixed k, l, andm,

Pm~0,U2kb!5 ø
j 50

m

Vk,l
m ~ j !. ~C2!

In other words, Eq.~C2! expresses that anm-dimensional
configuration space of side lengthU2kb, onto which an
input of lb is given, can be decomposed into subsets wh
j units will fire. It is obvious that for the casej 50 in which
an avalanche stops, the subsetVk,l

m (0) is given by

Vk,l
m ~0!5Pm

„0,U2~k1 l !b…. ~C3!

While decomposition~C2! partitionsPm considering the
whole remaining part of an avalanche withj units firing, one
can equally well partitionPm considering only the next ste
in an avalanche, where the input oflb can trigger up tom
units to fire immediately. Withi denoting the number o
these units, the disjoint decomposition then reads
7-11
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Pm~0,U2kb!5 ø
i 50

m

ø
I i ,m

PIi ,m

Pm2 i
„0,U2~k1 l !b…

^ P i
„U2~k1 l !b,U2kb…U

I m2 i ,m

.

~C4!

Using an appropriately scaled~C2! as a decomposition o
Pm2 i , the common inputib due to thei units firing will
subsequently triggerj 82 i elements until the avalanch
stops,

Pm2 i
„0,U2~k1 l !b…5 ø

j 85 i

m

Vk1 l ,i
m2 i ~ j 82 i !. ~C5!

Inserting Eq.~C5! into Eq.~C4!, and comparing Eqs.~C2!
~C4!, one obtains after changing the precedence of
unions overi and j 8,

ø
j 51

m

Vk,l
m ~ j !5 ø

i 51

m

ø
I i ,mPIi ,m

S ø
j 85 i

m

Vk1 l ,i
m2 i ~ j 82 i !D

^ P i
„U2~k1 l !b,U2kb…U

I m2 i ,m

5 ø
j 851

m

ø
i 51

j 8

ø
I i ,mPIi ,m

Vk1 l ,i
m2 i ~ j 82 i !

^ P i
„U2~k1 l !b,U2kb…U

I m2 i ,m

. ~C6!
06613
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In Eq. ~C6!, we excluded subsets where the inputlb triggers
none of the units, because we already know the result fr
Eq. ~C3!.

If we require Eq.~C6! to represent a recursive descriptio
of the avalanche dynamics, then one specificVk,l

m ( j ) should
be composed of terms withj 8 satisfying (j 82 i )1 i 5 j ,

Vk,l
m ~ j !5 ø

i 51

j

ø I i ,mPIi ,m
Vk1 l ,i

m2 i ~ j 2 i !

^ P i
„U2~k1 l ! ^ b,U2kb…u I m2 i ,m

. ~C7!

This expression is the required recursion formula.

2. Subtraction of the noninhabited region

For the following considerations, we introduce the abb
viation Fn

ªPn
„U2(k1 l )b,U2kb….

We defineV̄ by subtractingLN from V,

V̄k,l
m ~ j ! ^ FN2mu I m,N

ªVk,l
m ~ j ! ^ FN2mu I m,N

\LN~a,U !.
~C8!

If k1 l<N, using Eqs. ~A2! and ~A3! reveals that
FnùLN(a,U)5B. Through this property, Eq.~C7! re-
mains valid if one replaces theV ’s by theV̄ ’s.

Thus it suffices to explicitly computeV̄k,l
m ( j ) for j 50.

Inserting Eq.~A3! into Eq. ~C8!, and using Lemmas~A6!,
~A9!, and~A11! yields
V̄k,l
m ~0! ^ FN2mu I m,N

5Vk,l
m ~0! ^ FN2mu I m,N

\ ø
i 51

m

ø
Ji ,N#I m,N

G i
N~a,U,Ji ,N! @Eq. ~A6!#

5Vk,l
m ~0! ^ FN2mu I m,N

\Lm~am/N,U ! ^ PN2m~0,U !u I m,N
@Eq. ~A9!#

5FVk,l
m ~0!\LmS maU/N

U2~k1 l !b
,U2~k1 l !b D G ^ FN2mu I m,N

@Eq. ~A11!#. ~C9!
l-
From this expression,V̄k,l
m (0) can be extracted as

V̄k,l
m ~0!5Vk,l

m ~0!\LmS maU/N

U2~k1 l !b
,U2~k1 l !b D .

~C10!
3. Calculation of the volumes of the regions

With Sk,l
m ( j )ªV„Vk,l

m ( j )… and S̄k,l
m ( j )ªV„V̄k,l

m ( j )…, Eqs.
~C3! and ~C7! define recursions for configuration space vo
umes
7-12
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Sk,l
m ~ j !5H „U2~k1 l !b…m, j 50

(
i 51

j S m
i D ~ lb! iSk1 l ,i

m2 i ~ j 2 i !, j <m,
~C11!

S̄k,l
m ~ j !5H „U2~k1 l !b…m21

„U2~k1 l 1m!b…, j 50

(
i 51

j S m
i D ~ lb! i S̄k1 l ,i

m2 i ~ j 2 i !, j <m,

~C12!

whereS̄k,l
m (0) was possible to calculate fromSk,l

m (0) by sim-
ply subtracting the volume ofLm, because its size in Eq
~C10! has been scaled not to extend overVk,l

m (0),

S̄k,l
m ~0!5Sk,l

m ~0!2aU
m

N
„U2~k1 l !b…m21. ~C13!

Using similar arguments, one also obtains a recursion
the volumesDk,l

m ( j ) corresponding to regions of avalanch
durationsj,

Dk,l
m ~ j !5 (

i 51

m2 j 11 S m
i D ~ lb! iDk1 l ,i

m2 i ~ j 21!, ~C14!

for 0, j <N andDk,l
m (0)5Sk,l

m (0). Correcting for the nonin-
habited volume leads to the same recursion for the volu
D̄k,l

m ( j ) for 0, j <N with D̄k,l
m (0)5S̄k,l

m (0).
ly

o
es
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To obtain a closed expression for the volumesSandS̄, we
will now prove the following proposition.

Proposition.For U.0,k1 l 1 j ,N, and j <m,

Sk,l
m ~ j !5S m

j Db j l ~ j 1 l ! j 21
„U2~k1 l 1 j !b…m2 j ,

S̄k,l
m ~ j !5S m

j Db j l ~ j 1 l ! j 21
„U2~k1 l 1 j !b…m2 j 21

3„U2~m1k1 l !b…. ~C15!

The proof is possible by induction overn, and it is very
similar for SandS̄. We will therefore only give the proof for
S̄ in order to shorten this appendix.

Basis.For m51, j can either be 0 or 1, and using E
~C13! leads to

S̄k,l
1 ~0!5„U2~11k1 l !b…1, ~C16!

S̄k,l
1 ~1!5~ lb!1. ~C17!

Induction.For the induction we assume that Eq.~C15! has
been proven form<n21. Thus we have to prove that Eq
~C15! holds also form5n,
S̄k,l
m ~ j !5(

i 51

j S m
i D ~ lb! i S̄k1 l ,i

m2 i ~ j 2 i !

5(
i 51

j S m
i D ~ lb! i S m2 i

j 2 i Db j 2 i
„U2~m1k1 l !b…„U2~k1 l 1 j !b…m2 j 21i ~ j 2 i 1 i ! j 2 i 21

5S m
j Db j

„U2~k1 l 1 j !b…m2 j 21
„U2~m1k1 l !b…H (

i 51

j

l i S j
i D i j j 2 i 21J

5S m
j Db j

„U2~k1 l 1 j !b…m2 j 21
„U2~m1k1 l !b…H l (

i 850

j 21 S j 21
i 8 D l i 8 j ( j 21)2 i 8J

5S m
j Db j l ~ l 1 j !r 21

„U2~k1 l 1 j !b…m2 j 21
„U2~m1k1 l !b…. j

~C18!
ut

we
With this closed expression, it will be possible to final
calculate an expression of the avalanche probabilities.

4. Avalanche probabilities

An avalanche starts if one unit is triggered by an input
strength DU to fire. Thus the phase space volum
V̄(L,N,a) and V(L,N,a) for avalanches of sizeL.0 are
f

obtained by multiplyingDU with S̄0,1
N21(L21) andS0,1

N21(L
21), respectively. These specificS’s are the volumes of the
subsets of dimensionN21 containing states for whichj
5L21 neurons will subsequently fire, triggered by an inp

of lb with l 51. V̄(0,N,a) andV(0,N,a) can be compute-
das the remaining part of the whole phase space, and
obtain
7-13
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V~L,N,a!5H UN21~U2DU !, L50

DUS0,1
N21~L21!, L.0,

5H UN21~U2DU !, L50

DU

L
UN21S N21

L21 D S La

N D L21S 12
La

N D N2L

, L.0
~C19!

and

V̄~L,N,a!5H UN21~12a!FU2DUS 12a2
a

ND G , L50

DU

L
UN21S N21

L21 D S La

N D L21S 12
La

N D N2L21

~12a!, L.0.

~C20!
he

ad

he
The probability of an avalancheP(L,N,a) is then given
by P(L,N,a)5V̄(L,N,a)/V„PN(0,a)\LN(0,a)…. With Eq.
~B1!, V„PN(0,a)\LN(0,a)…5UN(12a); then using Eq.~3!
leads to the final result@see also Eq.~8!#

p~L,N,a!5
V̄~L,N,a!

UN~12a!2V̄~0,N,a!
5

1

L S N21
L21 D

3S L
a

ND L21S 12L
a

ND N2L21 N~12a!

N2~N21!a
. j

~C21!

If p(L,N,a) had been calculated without subtracting t
.

d

. A

et

06613
noninhabited region, the final expression would have re
@50#

p~L,N,a!5
1

L S N21
L21 D S L

a

ND L21S 12L
a

ND N2L

.

~C22!

With similar arguments, the expression for the avalanc
durationspd(L,N,a) becomes

pd~L,N,a!5
DUD̄0,1

N21~L21!

UN~12a!F12U1DUS 12a2
a

ND G .

~C23!
ett.
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