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Mutual learning in a tree parity machine and its application to cryptography
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Mutual learning of a pair of tree parity machines with continuous and discrete weight vectors is studied
analytically. The analysis is based on a mapping procedure that maps the mutual learning in tree parity
machines onto mutual learning in noisy perceptrons. The stationary solution of the mutual learning in the case
of continuous tree parity machines depends on the learning rate where a phase transition from partial to full
synchronization is observed. In the discrete case the learning process is based on a finite increment and a full
synchronized state is achieved in a finite number of steps. The synchronization of discrete parity machines is
introduced in order to construct an ephemeral key-exchange protocol. The dynamic learning of a third tree
parity machingan attackerthat tries to imitate one of the two machines while the two still update their weight
vectors is also analyzed. In particular, the synchronization times of the naive attacker and the flipping attacker
recently introduced in Ref9] are analyzed. All analytical results are found to be in good agreement with
simulation results.
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[. INTRODUCTION generic method of analyzing mutual learning in feedforward
tree multilayer networks where we concentrate on the tree

Artificial neural networks are known for their ability to parity machingTPM) [5-7]. The method is based on a map-
learn[1,2]. They produce an output from a given input ac- ping procedure that maps the mutual learning in TPMs onto
cording to some weight vector and a transfer function. Traimutual learning in noisy perceptrons.
ditionally, there are two types of learning. One type is unsu- A different cryptosystem composed of two parity ma-
pervised learning where a network receives input and tries tohines that synchronize has recently attracted much attention
learn about the input distribution. The other type is the[8-11]. A host of simulation results show that discrete TPMs
teacher-student scenario, when the so-called teacher receivesn synchronize very fast and a third machine that tries to
inputs, produces outputs and gives another machine, the stearn their weight vector achieves only partial success. These
called student, both the inputs and their assigned outputs. properties make mutual learning in TPMs attractive for ap-
such a scenario the teacher is static, i.e., its weight vectaglications in secure communications, as an information-
does not change during the learning, and the student tries teearing message can be hidden within a complicated struc-
imitate the teacher so as to produce the same output in a netwre of the TPM'’s weight vectors and still be reconstructed at
unknown example by dynamically updating its weight vec-the receiver using another TPM whose parameters are ex-
tor. The state in which the student achieves the same weiglaictly matched to those of the first one. This type of crypto-
vector as that of the teacher and can therefore perform thgystem can provide a basis for security much different from
same output as that of the teacher is referred to as perfectrrently used cryptosystems that involve large integers and
learning. are based upon number thed?].

During the past few years a different type of learning The discrete machines studied carried out an updating
scenario has been introduced and is under discussion: thgocedure different from the conventional learning proce-
mutual learningprocedure. In the mutual learning proceduredures analyzed in neural networks. In the discrete machine
there is no distinction between the teacher role and the styprocedure the increment of the weight vector in each step is
dent role; both networks function the same way. They refinite and not infinitesimally small. Since the methods of
ceive inputs, calculate the outputs, and update their weighdnalyzing discrete online learning in contemporary research,
vector according to the match between their mutual outputsee Refs[13—17, are not applicable to this case, we intro-
[3,4]. This is an online learning procedure where in each stegluce here a method for analyzing mutual learning in net-
one input vector is given, the output in both machines isworks with discrete weight vectors and a learning process
calculated and the resulting increment of each weight vectothat is based on a finite increment. First, we describe mutual
is added accordingly. It was found that perceptrons that unlearning with discretgerceptronsand then we exploit the
dergomutual learningmight end up in a synchronized state method of mapping mutual learning between TPMs onto mu-
when the weight vectors of both machines are eithetual learning between noisy perceptrons and analyze mutual
parallel—exactly the same, or antiparallel—exactly the op4earning in discrete TPMs.
posite (depending on their specific updating rulé@he sta- In cryptography, one of the most important aspects of the
tionary synchronized solution is equivalent to the stationarychannel is its security. Therefore, potential algorithms of
perfect learning solution in the teacher-student scenario. Weavesdroppers are included in our analysis. Such algorithms
extend the analysis of mutual learning between perceptrorare actually sophisticated learning procedures where the par-
to mutual learning between parity machines. We introduce dies are the teachers and their weights are time dependent,
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and the eavesdropper is the student. In the following we
name this time-dependent-teacher-student scemgmamic
learning

In this paper, we analyze mutual learning and dynamic
learning in TPMs of two kinds: machines with continuous
weight vectordthe spherical constraint, see H) below]
and with discrete weight vectors and finite incremgsee
Eqg. (3) below]. We introduce a method that maps mutual
learning in two layered parity machines onto mutual learning
in noisy perceptrons. The spherical tree parity machine is
studied using the same tool box used for studying mutual
learning in the perceptrof3]. The interesting behavior of
full synchronization for a certain regime in the learning rate
space and partial synchronization in the other regime is also
found in the mutual learning of TPMs. Mutual learning in a
TPM when the weight vectors are continuous is described by
equations of motion that reveal the evolution of the order
parameters in time. The derivation of the equations of motion
is based on the assumption that the order parameters are 1
self-averaging quantitigd.8,19. This assumption is violated hi :\/T/S\Ni "Xy @
when the increment of the weight vectors in each step is
finite and not infinitesimally small, as in the case of the dis-and the output in théth hidden unit is derived by taking the

crete weight vector studied here. Therefore we develop difsign of the local field. The output of the tree parity machine
ferent analytical tools for the case of discrete weight vectorsis therefore given by

This paper is an extension of R¢L0]. It contains a full,
detailed description of the analytical methods and discus-
sions that were not included in R¢1.0]. An advanced attack
suggested recently by Shamiet al. [9]—the flipping
attack—is also analyzed. The paper is organized as follows: L ) .
in Sec. Il we introduce the TPM model. We employ a generaCU @nalysis is limited to TPMs with three hidden unis,

framework to present its application to cryptography in Sec.— 3 merely for simplicity of the representation of the analy-

Il A. The dynamics studied are presented in Sec. Il B and th&§!S: The extension of the formalism to any number of hidden

order parameters and local-field distributions are discussed S IS straightforward. o
Sec. Il C. The mapping procedure is detailed in Sec. Ill. The 1€ weight vectors of the TPMs are initiated at random
learning in continuous TPMs is given in Sec. IV, where weaccording to a certain constraint. We studied two different

divided the section into mutual learningec. IV A), and ~ C@Ses: the case when the weight vectors are confined to a

dynamic learning(Sec. IV B. The section is summarized SPhere,
and the results are discussed in Sec. IV C. Discrete learning
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FIG. 1. A tree parity machin&l:3:1.
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is presented in Sec. V. We first describe mutual learning in
perceptrons in Sec. V A. The extension to mutual learning in

N
> Wi=N, @
=1

parity machines is given in Sec. V B. Two dynamic learning

attacks are studied, the naive attackarSec. V Q, and the  and are initiated randomly according to a Gaussian distribu-
flipping attacker(in Sec. V D. A discussion and an overview tion; and the case when there are a finite number of available
are given in Sec. V E. All analytical results are found to be ininteger values that each component of the weight vector can

good agreement with simulation results as indicated in eactake,

section.

Il. THE MODEL

We consider a TPM withK binary hidden units;==*=1,
i=1,... K feeding a binary outpur=1II'_, 7;, see Fig. 1.

Wji:il_,i(l__l),...,il,o, (3)
and the weight vector components are initiated at random
from a flat distribution with equal probability for each value.
These two scenarios are referred to as the continuous case
and the discrete case.

The networks consist of either a continuous or a discrete We studied the mutual and dynamic learning of such

coupling vectow,=Wj;, ..
putsx;=Xy;, ..

., Wy; and disjointed sets of in-
., Xyi containingN elements each. The input weight vector is the unknown secret information. Two ma-

TPMs in various scenarios where the initial random selected

elements are random variables with zero mean and unit varghinesA andB, perform mutual learning and try to synchro-

ance. We confine the input componentsxfpo= =1 without
losing generality. The local field in thegh hidden unit is
defined as

nize by updating their weights according to the match be-
tween their output such that at the end they achieve full
synchronization. The third machin€, performs dynamic
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learning by trying to learn the weight vectors of one of the It is now easy to see that as soon as the TPMs are syn-
two machines, saf\, and uses an attack strategy to update itschronized they will remain synchronized, i.e.,w’rfz —WiB
weight vectors such that at the end of the procedure they willor all i, theno”=— ¢ and will remain so. A training step

be identical to the weight vector of playAr The application in a uniti is performed only if both output bits disagree and
of these procedures to the field of cryptography is discusseid the two 7, disagree accordingly. Hence, after the synchro-

in the following section. nization state is achieved they either perform a coherent
training step or they do not change their paramefesferred
A. Cryptography based on synchronization: to as a quiet stepA pair of synchronized hidden units per-
General framework forms a kind of random walk in parameter space but remains

Before we develop the detailed equations for mutualsynchronlzed.

learning in TPMs. we introduce the general conceot of Svn- This is different when the two hidden units are not iden-
ng I ' roduce the g . PLOT SYN%ical. Let us consider théirst hidden unit, where there are
chronization and learning in discrete parity machines i

. . . Mtour distinct cases.
terms of a mean-field-like approach, and discuss the qualita- (@ oP=05: nothing moves and the next step is per-

tive ability to construct an ephemeral key-exchange prOtOqurme d

based on mutual learning between TPMs. b) A_ A B_B oA _ B poth ; ‘
First, let us consider two parties and B who wish to ~ ,\* 712 71=0", 0=~ 0" DOW parameter vectors

agree on a secret key over a public channel. The weight's andxvl are Cé)hergntl;/: chan%ed. N

vectors,w/'®, are the parameters of each unit which are ©) g1 T#F0, 0°=—0" 01y F07, 11=0", O

changed during the training procedure. Both parties start ~ ¢ - Only one pie:rgmeter vector is changed and moves

with secret initial parameters which may be generated ran- incoherently, hence; increases.

domly. After a number of training steps, the set of parameters (@) 71'# o, 77#0®, ¢*=—¢®: both parameter vectors

is synchronized and becomes ttime-dependencommon  are not changed.

B A

key_ At each training step a common random mpu’s gen- The probablllty of finding_these four cases can be calcu-
erated for both of the parties; it is public and known to pos-lated from the knowledge of". For example, the probabil-
sible eavesdroppers. ity of finding the configuration shown above; ++ and

Each party of the secure channel consists of three hidder + +, is 5(1—€™)(e")?. All 64 configurations can be di-
units with corresponding three parameter vectors. For &ided into three categories: the probability of having an at-
given inputx; each party calculates an output bif/® and  tractive stepp, [case(b)]; the probability of having a repul-
sends it over the public channel. A training step is performedive step,p, [case(c)]; or the probability of having a quiet
only if the two output bits disagree and only for the hiddenstep,p, [cases(@ and(d)]. These probabilities are found to
units which agree with their output be

AwWAB= ABy ) 0( — P oB) O( AIB /B ' 4 1 . ) .
g(o i)0(—0"0") (o Tj ) 4 pazz[(l_€|n)3+(1_6m)(€m)2],

where g is an odd function. As an example consider the

following configuration of the hidden units: + + for TPM —oq Ny 2 1

A and —++ for TPM B. The output bits have the values Pr=2(1=€M(eD%  Pg=1Pa=Ppr. ©

N B : . . .

o"=1, 0°=—1. HenceAtrains all of its units according to | the remainder of this section the three probabilities

x;, while B changes only the weight vector of its first unit 3pove are employed in order to explain the synchronization

according to—Xx; . _ e phenomenon, and to demonstrate the superiority of the syn-
Synchronization between the two machines indicates @nronization process over a possible attacker that also tries to

full antiparallel state where each machine produces exaCt|¥ynchronize WithA andB.

the opposite output.of Fhe other for any given input. The_ Close to synchronizatiore"~0, the probability of hav-

success of synchronization can be measured by the probab;h-g a repulsive step is proportional pp~ (€™)2 whereas the

ity of an mcoherent state, i.e., the_ probability of havmg theprobability of having an attractive stepjis~ $ (quiet steps

same output instead of the opposite one. The probability fog o always possibleLet us assume that the change of the

anincoherent statee'", that two corresponding hidden units grror ¢in depends only on a function @f" itself. Later we

are mistaken and instead of producing exactly the oppositg;i| derive the exact equations, which are more complex.

output they agree on a random input, is given by Then, the average changeélf in one step is obtained by

€"=Prob (7/'(x; W) = 70 (x; ,WP)). (5) Ae=a(eM)p,—r(eMp;. @)

The functiong used for training must be chosen so that onClose to synchronization a repulsive step affects all of the
the averagelover random inpute"” is decreased. In this parameters while an attractive step can only synchronize the
section we simplify the presentation by assuming symmetryew parameters which are not yet identical. Hence we expect
among the three hidden unitg' = €. The full detailed de- for small values ofe'",

scription of the dynamical process beyond this mean-field-

like framework is given in Sec. V. a(eM)~age", r(eM)~rg. (8)
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Therefore, in the leading order one obtainexage™. Close 2 y T - | y T . T
to synchronization the attractive force is dominant, indepen-
dent of the detailed mechanism of learning. The parity ma-
chine suppresses the repulsive steps by reducing their af 15| W, -
pearance frequency. ’
This relation does not hold for the committee machine [ i
which maps the hidden units to their majority vote, p/p, 1 e _
=sgn(r,+ 7o+ 73) [20,21. For this case one finds e

pa=;(l—ei”)3+(l—ei“)z(e”‘)+ %(1—6”1)(6"1)2, 05 PR —

1 in\2, _in iny iny2 0 o 02 03 o4 s
Pr=§(1—6 )(eM)+(1-€M)(eM)". 9 - : - : -

Now, close to synchronizatiop,~ €' and repulsion and at- FIG. 2. The ratio betweep, andp, as a function ofe" in the

tractive forces are of the same order, Eg). This competi-  ¢35e of mutual learning in TPMs, E¢p) (solid ling), and in the
tion between attraction and repulsion supports possible atase of the naive attack, EALO) (dashed ling

tackers, as discussed below.
Let us go back to the parity output and consider an ating is better than the performance of the naive attacker that
tackerC who knows all the details of the algorithm and can performs many more repulsive moves compared to hers at-
listen to the communication betweénandB. We know that  tractive moves. Therefore, a more sophisticated attacker was
the initial configurations of the parameters Afand B are  recently suggested in R¢®], the flipping attacker. Her per-
unknown. The attacke€ has the same architectuf€PM),  formance cannot be measured in the scope of this general
the same number of hidden units (3) and uses the sanfeamework since her strategy depends on the local fields in
learning algorithm, Eq(4). What is a good algorithm fo€  the hidden units and therefore cannot be included under the
to synchronize, i.e., to learA and to be antiparallel t8? If  rubric of Eq.(4), whereg depends only omr; .
C is synchronized then she should remain so. Hence she In the following, before delving into details we introduce
should use the identical training step in case of agreemenhe dynamic$Eqg. (4)] more specifically. We discuss some of
with A. Let us consider an attack€rwho simulates partA  the relevant order parameters and their distributions. We
after synchronization betweeh and B is achievedC uses present the strategy of the flipping attacker and an intuitive
the complete algorithm explained above for pafty This  explanation for her success.
means tha# always makes some moves of her parameters
while C moves her parameters corresponding to the units B. The dynamics
whose outputs bit" are identical tar* (in the following we
named this attackhe naive attacksee Sec. V € This strat-

. e dynamics that lead to a synchronized state.
egy forC gengrates many repulsion steps bet_ .dA.' (a) The parties update their weight vectors whenever their
In fact, assuming the error between all matching units is the

i tputs mismatcho”+ B, as appears in E¢4)], and each
same,e"=Prob (-C# ) [where we use the same symbol *: , . e .
for €M as in Eq.(5), although seemingly different, in both unit updates according to the input multiplied by the opposite

. of its output.
cases It refers to the error, see Se_c. Il C and(&Q. below] (b) The parties update their weight vectors whenever their
and summing up all possibilities yields

outputs mismatcho”+# o8, as appears in E¢4)], and each
unit updates according to the input multiplied by its output.
pa:%(l— M3+ %(1_ €M) (eM2+(1—e)2eM, (c) The partiei up%ate their weight_ vectors wheneV(_ar their
outputs match§”= o), and each unit updates according to
the input multiplied by the opposite of its output.
pr=(1—€M2e"+2(1— ™) (eM?+ (M3 (10 (d) The parties update their weight vectors whenever their
outputs match§”*= o), and each unit updates according to
The essential difference between paftyand attackeiC is  the input multiplied by its output.
that the probability of finding a repulsive step scales with |n all the dynamics mentioned above, tiie hidden unit
(¢™? in the mutual learning betweef and B and scales s updated only if it matches the overall output in that party,
with € in the dynamic learning betweed andA, close to  if r,=¢. The two parties that try to synchronize might end
synchronizationA andB react to their mutual output whilé up in an antiparallel stateasega) and(b)], or in a parallel
cannot influenceé?; this yields a different behavior for small state[cases(c) and(d)]. Although Eq.(4) does not describe
values of the erroe'". casegc) and(d), the discussion in Sec. Il A s relevant to all
The full scheme of the ratiq, /p,, derived from Eqs(6)  cases.
and(10) as a function ok'" is presented in Fig. 2. Itis clear In this paper, we introduce a detailed presentation of case
that at any value o&¢'" the performance of the mutual learn- (a). In each step an update is made only if both machiAes,

In principle, one can consider the following classes of
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andB, disagreeg,# o, and each unit updates according to €{A,B,C}. The angle between each pair of weight vectéys
the input multiplied by the opposite of its output. In the is given by the normalized overlap between the weight vec-
spherical case we normalize the weight vector after each ugers,

dating such that its norm does not change. The dependence

of the weight vector in a new step on the weight vector in the VTALRYYA
former one in the continuous case is p""=cosf" = ———. (14)
w1 w?l|
wﬁ+ in 0(— " a®) 6( UATiB)UB We know that there are no direct correlations between differ-
WAt = N ent hidden units due to the tree architecture and therefore the
: WA 7 A B N R overlaps between different units is zero.

Pt Xid(—ote )0(a 7)o In the framework of statistical mechanics analysis of on-
line learning the order parameters play an important role in
taking the averages over the random inputs, or equivalently

W:3+ ﬂxi 0(— o o®) a(o_BTiB)O_A over the Iocal-fielq _distributior_l._ Acpor_ding to the central

B N limit theorem, the joint probability distribution of the local
Wi = 7 ' (1) fields in each triplet of matching hidden units taken from the
‘ we+ N 6(— ") 6(aB7P) 0" three different machines depends only on the set of order

parametersP(h”,hB hC|{R,Q}) (where we omitted the sub-
scripti from all parametepsand can be found from the cor-
relation matrix. When all weight vectors are normalized,
QM=1, itis found to be

where 6(y) is the Heaviside function, i.e., equals zero for
y<0 and 1 otherwise,n is the learning rate, and

=1,... K. The analysis of the dynamics is in the thermo-
dynamic limit whereN—«~ and the weight vectors are up- F
dated by an infinitely small quantity in each step. ex% - _>
In the discrete scenario, the update is made in a similar _ 2E (15)
manner, yet there are two important differences from the (277)3/2\/E '
dynamics point of view. One is that in each step the vectors’
components are changed to the next integer value and not hyhere F=(h%)2G%+ (h")2G"+ (hB)2GB—2n*hBDC
an infinitesimally small one as in the continuous cigg.  —2h”h®DB—2hhBDA, E=1—(p"B)2—(p*C)2—(pB©)?

(1D)]. The second difference is that when there is an updatet 2p*BpACpBC Gk=(1—p"M?2 DK=p!m—pkmykl gand
the components which have reached the boundary wlue k,I,me{A,B,C}. This complicated expression can be much
==+L , and their absolute value should be increagéd= simplified if we assume that the two machinésandB, are
+(L+1), are not changed, and remain with the boundaryalready antiparallel. In that case the joint probability distri-
value. Mathematically, the learning is phrased as follows: bution of the local fields is given by

e~ (U9 +(hH)? =20 hCp Ol L - (A7) N
P= S(h"+hB),
2m\1—phC
WiB+=WiB+ D(WiB-XiO'A)Xia'AG(UBTiB) 6(— o™o®), (16)
12

Wf‘Jr =Wf‘+ D(W{N X oB)x O'AG(O'ATiA) 0(— o"o®),

where §() stand for the Dirac delta function.

At this stage it is possible to calculate the probabilities
defined in Sec. Il A and to show that indee€d has the same
meaning and the same dependencyadn the two cases: Eq.

whereD(y)=1- 4, , andé is the Kronecker delta function.

C. Order parameters and joint probability distributions (5) and later when the attacker is introduced. Averaging over
nite number of weight vector components is based upon std€arning in E'.nzl—(ll/ﬂ)cigs_lpA‘B and in the case of dy-
tistical mechanics analysis of several order parameters. THE@Mic learning we finde™=(1/m)cos *p™™. In order to
standard order parameters used are compare these two errors, where in the first one Iearnlng IS

described by negative and in the second by positive, we
S R definep=|p™B|=|p™°|. Substitutingp into both functions
Qr=NEW Wi above, we get
1 e‘”=l cos tp. (17
Rim’nIN—/BWim- WIn ) (13 ™
We present in this paper a flipping attacker, which makes
where the indexi represents theith hidden unit, i use of the absolute value of the local field. The attacker
=1,... K and m,n denote the specific partym,n estimates that the unit with the smallest absolute local field is
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the one that is most probably wrong—that has different out- 1

puts, 7°# 7*. The origin of this assumption can be easily €= cos 'p. (20)
explained by averaging over the local field distribution. The
average of the absolute value of the local-fié|ti°|), given

an overlapp™© between two matching hidden units and
norm QC of the weight vector in this unit is found to be

We concentrate on a specific pair of matched hidden units.
Given that the outputs of the hidden units are different, there
is a probabilityP, that the TPMs results are different and in
onehalf of the cases the TPM output has the same output as

c 1 /Q¢ Ac its hidden unit and therefore both hidden units in both ma-
(=)= >V Z(lip =) (18 chines are updated. This probability is given by

where the sign in the right-hand side of the equation is plus P,=P(c”# 0B # P) =€+ (1— €)% (21
for agreement between the outputs and minus for disagree-

ment. Sincep varies between-1 and 1 and in a state of gjmjlarly, the probability that there is a mismatch between

partial learning 8<p<1, a small absolute local field signals the two TPMs, given that there is agreement between two
a mistake in the unit's output. The flipping attacker uses thisigden units, is given by

knowledge in her learning procedure, as discussed in Sec.
V D.

The analytical study of this attacker includes averages
over probability distribution of the local field in the third

party, the attacke€, given the local fields of the two ma- In this case only one of the hidden units has the same sign as
chines. This probability is given by the output in its TPM and only that hidden unit is updated.

These probabilities are introduced into the updating pro-
C B LC cedure of the hidden units, the perceptrons. In the continuous
hClhB KA _ P(h™h%h*[{p.Q}) case they affect the form of the equations of mofisee Eq.
P(h*|h®,h* {p,Q}) , (19 : . . )
P(h”,hB|{p,Q}) (23)]. In the discrete case they are introduced in a different
manner, as described in Sec. V.

Pr=P(chtad =) =2e(le). (22

where P(h®,hB hC|{p,Q}) and P(h®hB|{p,Ql) are the

joint probability distributions of the three local fields and two IV. CONTINUOUS TREE PARITY MACHINES
local fields, respectively, and they are derived from the cor-
relation matrix similar to Eq(15). Counting on the mapping procedure described above, mu-

tual and dynamic learning in continuous TPMs can be
mapped onto learning scenarios in continuous perceptrons.
The updating rule can be redefined so that it will be suitable
. ) for a perceptron where the kind of updating depends on the
One can map mutual learning in the parity case onto Muzpae probabilities?,; andP,, Egs.(21) and(22). The stan-
wal [earnmg InK perceptrons. Th? mapping to NOISY PErcep-qarg online equations consist of an average over the order
Fron mtroduc;ed for analyzing onl|ne' learning in THEZ] IS parameter§2], and now contain additional random variables.
inadequate in the case ofutuallearning where the updating 1,0 average over these additional variables is taken by in-

depends on the matching between the outputs but is indepegy,y,cing auxiliary random parameters, as described in the
dent of their specific sign. Nevertheless, a different mappin ollowing section

from TPM to noisy perceptrons can be used for the mutual

learning case. The mapping presentation is much simplified ) _

in the continuous case since assuming random initial condi- A. Antiparallel learning

tions to all hidden units results in the same overlap for all |n this scenario the updating rules of the TPMs are given
hidden units,p;=pV i. Therefore, we first assume that all jn Egs.(11) where we have three hidden unité=3. Map-

the overlaps between matching hidden units are the samging the rules onto a perceptron learning by employing the
Hence, updatingk perceptrons is equivalent to one updating probabilities above is done by introducing auxiliary random
in the TPM. The presentation of the mapplng below is Sim-parameterspa' Pg, Pys which are equa”y distributed be-
plified by the restriction oK =3 and the generalization to tween 0 and 1. The updating rule is calculated as a function

any K is straightforward. of these parameters in the following manner:
We have TPMs that consist of nonoverlapping receptive

fields with random inputs. Hence in each of the TPMs all ” ”

eight internal representations appear with equal probability. wA+ NXTBAA wB+ NXTAAB
A specific hidden unit is updated when the following two WA t=—————— wBt=
conditions are fulfilleda) there is a mismatch between the WAL ijBA

results of the two TPMs, an(b) the state of the hidden unit N A
is the same as the output of the TPM. We make use tiie (23
probability of having different results in the two hidden units

such that the overlap between thenpisgiven by where

IIl. MAPPING PROCEDURE

WB+%XTAAB‘
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Ap=0(—7®) 9(%_ pa) —0( 1) 0(P,— Pp)

1 02

X 0 E—py , 3

0.4

_ B Py B Py

Ag=0(—71°)0| 5 —p, | — 0(*7%) 6(P,—pp)

2 -0.6

0 ! |

X0\ Py~ 3] 0.8

The introduction of the auxiliary random variables is done
according to the following logic: in one half of the cases of -1 T T e

) . . 0.5 1 1.5 2 2.5 3
disagreement between the units and disagreement betwee n
the TPMs, no update occurs in the uriggce their sign does
not match the TPM’s signand henceP, is divided by 2 in FIG. 3. The fixed poinp; as a function ofy for the continuous
the equation above. The second scenario where updating OTPM as obtained from the solution of E5) (solid line). Simu-
curs is when the units have the same sign, the TPMs disagrédattion results in some instances gfare presented by stars. Inset:
and therefore one of the units is updated and the other is naanalytical (solid lineg and simulation results in the case pf=2
The auxiliary random numbaey, is the one that determines (triangles and =3 (circles for (p) as a function ofx. All simu-

(randomly which unit of the two is updated. lations are carried out witN=5000 and averaged over 20 samples.
In order to calculate the equations of motion, one has to
multiply the updated vectors, E3), first, and then to per- In Fig. 3 we plotted the fixed points as a functiompfas

form the two averages; average over the joint probabilityyas found numerically from Eq25). Simulation results for
distributions of the local fields and over the random paramspherical TPMs wittN = 5000 and averaged over 20 samples
eters,p,, pg, andp, . The result of these two averages is anare in agreement with the analysis as indicated by the few
equation over the normalized overlap that depends only tested cases presented by the symbols. Clearly, the system
on p or equivalently on the anglé [see Eq(14)], undergoes a phase transition from a partial to a perfect anti-

5 ) parallel state atn.~2.68. One instance for each of the
0 0
e
w2 ™

dp

&, phases is given in the inset of Fig. 3. The development of the
da

averaged p), averaged over the three hidden units and 20
samples, in the case of partial mutual learnimgs 2 (tri-
,. 0 0 , 0 9\2 angles, and the case of _antiparallel s_ynchr(_)nizatiop;_S
- E(l—P ); 1- Py S 1- Py (cwcles?, asa funcupn ofx is presenteq in the m;et of Fig. 3.
Numerical calculations of the analytical equation, Ezg4),
(24) are presented by the solid lines.

(1+p)

_(1_ )_7]_0
2z P 2n

wherea is the number of examples per input dimension. The
points p==*1 are fixed points of the equation of motion B. Dynamic learning
above. Both are repulsive when the learning ratis small.

As s00n asy> 7.~ 2.68 a phase transition occurs, the In the last section we show a procedure that leads to full

1 fixed point becomes an attractive one and a new phas‘%/nchronlzat|on. In the following we check the ability of a

)
arises, where the two machines are fully synchronized. ThE;;g;'Pq_AH:Th?rtéa&kaeghitg éeiag:r;ﬁevgig?r;\i{;fgriO(fjgt]:smo
asymptotic decay op to synchronization scales exponen- b : ' » UP

tially with @, as can be found by expanding the terms in Eq its weight vector only when the two parties are updated and
(24) around 6= . Apart from the fixed points discussed only the hidden units that match the output of paitiMath-

above, for anyn smaller thany, there is a different attrac- ematically, this is defined as follows:
tive fixed point, as can be found by solving numerically Eq.

(24). The fixed pointé;(ps) is the exact angléoverlap in a WiC+ in 0(— a”a®) g(aATiC)UB
specific learning ratey, in which the right-hand side of Eq. WCt = N (26)
(24) becomes zero, : c. M A B AC. B '
W, +in6(—0' o°)0(o" 7)o
2
—ﬂsinzaf( 1— %)
0f o
n= P PRE g2 Continuing the same line of introducing probabilities in the
(1+ cosé;) SISV I A I PP cos&(l— _f) mutual learning procedure, one can write a set of updating
a2 ™ ™ rules for the dynamic and mutual learning in perceptrons

(25)  which is equivalent to TPMs learning. This is given by

066135-7
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FIG. 4. The analytical curve of the averaged overap in a
dynamic learning of TPMs as obtained from E(8) (solid line),
with »=10. The initial state ip=0. Inset: analytical results for the
where dynamic learning with the initial state=0.98. Symbols represent
the corresponding simulations, carried out witk- 5000 and aver-

WC+:‘—’ (27)

~ 1 aged over 20 runs.
AA=0(—TATB)0(P1—pa)0(§—p5 - L o
over the joint probability distributions that is given in Eq.
1 (16). It depends on the learning rate and the oveplgie and
+ (A B) (P y— pﬁ)g(z_ P, |, is given explicitly by

-~ 1 ———=—|1-—cos 'pac—pac|- (28)
AB=9<—TATB>0<P1—pa>e(§—p5 de 2% 7
This equation describes the development of the overlap be-
tween the attacker and one of the two machines that are
' synchronized in both cases, when each machine learns the
opposite of its result, Eq26).
1 As can be derived from Eq(28), independent of the
Ac=6(— 7B 6(A7%) 6(P,—p.) 9(__ pa) learning rate, there is a unique fixed poipt~0.79. The
2 point p=1 is not a fixed point at all. Note that this fixed
1 point describes only the failure of the continuous attacker,
+0(78) 0(A70) (P, — Ps) 9(5_ py) the equivalendiscreteattacker might synchronize and gain
p=1, as discussed in Sec. V C. In Fig. 4 we present analyti-

Y

|
) d 2 1
|

1
+6(7A7°) 6(P,— pg)ﬂ( P35

1 cal (solid lineg and simulation result§symbols for the
—0(— "B o(— ) 0(PL—p,) 0( Ps— 5) overlap between that attacker and plapepac. We carried
out simulations withN=5000, and each result averaged 20
1 times. A good agreement between simulation results and ana-
+0(2) 0(— ) 0(Py—pp) 0( p,— 5). lytical results is presented in Fig. 4 in both cases; when the

overlap is initialized zeropac=0 and in the inset, when the
initial value of the overlap is almost 1nac=0.98. All re-

We introduce another random parameggy, which is redun- sults are for full synchronization betweeh and B, pag

dant when one calculates only the mutual learning, (28), _
and it is necessary for deriving equations of motion for the
order parameters in the case of dynamic learning. The four
terms in A; represent the four possibilities that cause an
updating in the attacker hidden unit. For instance, the first In summary, we showed that an initiated pair of random
term of A represents the case where the hidden unit in th@PMs performs mutual learning results in a full synchroni-
attacker and in the first TPM have the same state, the TPMgation state for;> 7.. We introduce here a specific dynam-
outputs are differenfindicated byP,) and the outputs in the ics where the parties update only in a mismatch between the
hidden units ofA and B are the same as their TPMthe  outputs, the updating is in opposite directions of each other
probability for such an event i). and they are normalized in each s{epse(a) in Sec. Il B].

The equation of motion after synchronization, i.e., whenAnalyzing casgb), for instance, reveals that for af}, the
pas=—1, pac=—pgc, is derived by averaging Eq&7)  stationary solution is a synchronized state. Using the dynam-

C. Summary

066135-8
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ics appearing in Sec. Il B but without normalizing the weight WiA+ :WiA+ D(wiA- X;oB)x;oB0(— P a®),
vectors does not end in a synchronization state at all. The
specific algorithm we chose contains the reach phenomenon

of phase transitiofi23]. Moreover, its synchronization abili- WP =W+ D(W - x0")x 02 0(— 0”0 ®), (30)
ties are closely related to the discrete synchronization studied
in the following section. where ¢*/® represents the output of TPM/B, and w*/B

The attacker tries to learn the parties’ weight vectors buepresents its weight vector.

manages to achieve only partial success. This difficulty in The update of the elements of the maffixis calculated
learning that such a naive attacker faces as indicated by tk@recﬂy from Eq. (30), where one must average over the
fixed point that differs from 1, also characterizes the naivqnput component¥;; . In the discrete case, since the incre-
attacker in the other cases presented in Sec. Il B. Howevepent is finite[see for instance Eq12)], the regular order
the analysis is not relevant for the discrete case studied b?)arameters—the vectors’ overlaps—no longer suffice for the
low. In the discrete case the naive attacker performance iﬁ1acroscopical description of the dynamics even in the ther-
restric_ted_ too but perfect learning is possible, see Sec. V Gnodynamic limit,N—c. However, the distributions of the
The flipping attacker that makes use of the local fielse  |oca] fields do hold. The dynamics cannot be analyzed with
Sec. VD has a better performance in the discrete case. Afne standard equations of motion based on differential equa-
open question which deserves further research, is how tgons of the order parameters with respectatothe number

analyze the continuous flipping attacker. of examples per input dimension. On the average, half of the
updated weights in one machine are increased by 1, while the
V. DISCRETE MACHINES matching weights in the other machine are decreased by 1

d vice versa.

: . . n
The study of discrete networks requires different method§' The possibility for agreement or disagreement between

of analysis than those used for the continuous case. We fou Co .
y qge parties is a function of the current overlap between them,

that instead of examining the evolution RfandQ, we must . . ) -
examine (2 +1)X(2L+1) parameters, which describe the _calculated using the matricésee Eq(29)]. This probability

: s : s implemented by choosing a random parameper,be-
mutual learning process. By writing a Markovian processI L : :
that describes the development of these parameters, Oﬁ\geen[o,l]. If itis smaller thare, as defined in E¢20), the

gains an insight into the learning procedure. Thus we defin arties dlsagr_ee, othgrvvlse they agr.ee. The updating O.f ma-
a (2L +1)x (2L+1) matrix, F*, in which the state of the rix elements is described as follows: for the elements with

machines in the time step is represented. The elements of ta;]ndr Véh'tCh arrt]a Sotv\?rriltthneir?ouni?slriq fnikna?dri L)
Farefy , whereq,r=—-L,...—1,0,1...L. The element € update can be € a simple manner,

fqr represents the fraction of components in a weight vector L

in which theA’s components are equal tpand the matching v

components ird unit B are equal tar. Hence, the overlap far=0Pa= &g+ 0(e=Pa)| 5Tgrr-1t5Tg-1r41]
between the two units as well as their norms are defined (31
through this matrix,

For elements with both indices on the boundary, the update is

L
R= f
q,ZtL qar. fE,L:‘g(pa_é)fL,L1

. - fr i =0pa—e)f | 1,
Q= 2 g Q%= 2 rffe. (29

1
. . . fl-:—Lza(pa_E)<§fL,—L)+0(8_pa)
The matrix elements are updated, if and only if, an update of
the weight vectors occurs.

X

1 1
EfL—l,—L+l+ EfL—l,—L+§fL,—L+1 ,
A. Learning with discrete perceptrons

The mutual learning scenario is much simplified in the fr L =0(pa—e)f_LL+6(e—p,)
case of the perceptron, therefore, we present here the full
description of the analytical procedure used for this case.
Updating is done in the case of a mismatch, and the aim is to
arrive at a state in which the weight vectors are antiparallel,
p=—1 (we could aim afjp=1 instead, see the manifold of
possible dynamics in Sec. Il A, and the results would be
equivalent. The dependence of the weight vector in a newFor elements with just one of the indices on the boundary
step on the weight vector in the former one is given by (g==L andr# =L or vice versy the update is

X

1
§f7L+1,L71+ §f7L+1,L+ sz,Ll)-

(32
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500 samples and the nonzero standard deviations are not
presented in order to simplify the presentation. Simulation
results withL=1 (W,==*1,0) andN=10*, averaged over
500 samples are presented by the circles; error bars are stan-
dard deviations. Note that even though the matrix elements
were initiated with the same values in each run, there is still
a nonzero standard deviation due to fluctuations in the local
fields as a function of the particular set of random inputs
even in the thermodynamic limit.

For the perceptron, synchronization is much easier and
faster to achieve than for the TPM. Take for example the
case wherd_=1. If for three consecutive steps, both the
other party’s output and; were positive, an attacker can
surely know thatw,=1, while this is not so in the TPM
No. of steps case, as the attacker cannot know for sure whether the unit
was updated or not. Therefore, the TPM is much more suit-

FIG. 5. The averaged overldp) and its standard deviation as a gple for building a cryptosystem than the perceptron.
function of the number of steps as found from the analytical results

(solid line) and simulation resultécircles of mutual learning in
TPMs. Inset: analytical resultsolid line) and simulation results
(circles for the perceptron, witt.=1 andN=10". Mutual learning in discrete TPMs is described by mutual
learning discrete noisy perceptrons. As the TPM consists of
1 three hidden unitgeach evolving differently we now have
Efq+1,Ll+§fq+1,L)a three different anglesy, wherei=1,2,3, for each hidden
unit. Since the dynamics are not self-averaged, we use prob-
+ _ _ abilities similar to those introduced in E(R1). The defini-
fo-L=0(Pa—€)fq -+ 0(e—p,) tions of these probabilities are extended to include all three
1 ) hidden units, and each one is characterized by its own angle,

02H

04
<p>

-0.6

-0.8

B. Synchronization in TPMs

foL=0(p,—€)fq i+ 0(e—p,)

X5ttt 511 P!, P,. The probability ofP;(c*# o8| 7'+ 7°) is given by

Pi=€et(1—¢)(1—€). (34)

1
fl =0(p,—e)fL +0(e—p,) Ele,r+l+§fL,r+l)7

Similarly, the probability that there is a mismatch between
the two TPMs, given that there is agreement betweeritthe
fr r=0(p,—e)f | +0(e—p,) pair of hidden units, for instance, is given by

X Pizzfj(l_fk)+6k(1_6j). (35)

1 1
Ef—L+1,r—1+§f—L,r—1)- (33
Here, as well as in the continuous case, we chose a sequence
The main quantity of interest is the number of steps re-of random parameters to represent the particular choice of
quired in order to arrive at a state of full synchronization. Inrandom inputs.
simulations there is a discrete transition from an overlap We follow each hidden unit separately and therefore we
which is almost antiparallel to a completely antiparallel statehave three matrices;'. We initialize the weights randomly,
This is due to the finite nature of the vectors, the largestherefore the matrices in the initial state have the values of
value of overlap before synchronization-isl+O(1/N). In  1/(2L+1)? in each entry. In each step, two sets of random
simulations withN=10%, for example, the largest value of parameters are chosen and are used to set a specific realiza-
the overlap before full synchronization js=0.99999, and tion of the internal presentation for the parties. The first set is
this is the value we used in our analytical procedure, forused to define agreement or disagreement between each pair
defining full synchronization for comparison to simulations of hidden units, as done in the perceptron case in Sec. V A.

with N=10%. All in all, due to inversion symmetry, whek =3 there
Our results indicate that the order parameters are not selare four possible results for the internal presentations,
averaged quantitigd 9]. Several runs with the samdéresult  +++, +——, —+—, or ——+ and accordingly %4

in different curves for the order parameters as a function opossible states, for which the parties’ output does not match,
the number of steps, see Fig. 5. This explains the nonzerand an update is performed. We then use the second set of
variance ofp as a result of the fluctuations in the local fields random parameters for defining the specific internal presen-

induced by the input even in the thermodynamic limit. tation in one of the TPMs, and therefore immediately in the
In the inset of Fig. 5 we present the averaged numericabther, according to their agreement or disagreement.
results derived from the analytical equatiaidd), (32), and The case when the three hidden units disagree is exempli-

(33) of synchronization in the perceptrdsolid line) with fied below. There is a possibility that all hidden units are
L=1, W,==1,0. The analytical results are averaged overupdated case(b) in Sec. Il A], or only one of thenjcase(b)
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FIG. 6. The synchronization tim@ashed lingand the dynamic FIG. 7. The synchronization time and learning time distribution

learning .time (solid line) distribution, of gnalyti_cal results fOI_’ for the flipping attacker, obtained by simulations whik- 10° [dia-
TPMs, withL=1. Symbols stand for the simulations results, with monds(stars for synchronizatior(learning] and analytical calcu-
N=10000. lations [squares(circles for synchronization(learning] with L

; . . . =3, averaged over fQuns.
describes two of the hidden units and cédedescribes the

third]. In two of the eight such internal presentations all thewhere we limit the description only tq,r which are not on
three hidden units are updated whereas in the other six, onf€ boundary. An example is the case when the internal pre-
one of them is updated, so that we must choose which oné€ntation of partyAis —+ + and that ofB is — —+. Then

All of these possibilities are equally probable, independent oParty A updates unit 1, Eq37) with i=1, while partyB

9, . Therefore, we take all the possible internal scenarios int¢/Pdates unit 3, Eq38) withi=3. ,

account and, for instance, when after using the auxiliary ran- !N Fig- 6 we present the distribution of time steps for

dom numbers, all three hidden units disagree, we choose %l/nchronization according to simulations with=10 000,
randomp,, and accordingly update ), andaccording to the analytl_cal resultsolid line) in the_
“« ’ case ofL=1, taken from 500 different runs. The evolution

of the average overlap in this case is given in Fig. 5. A solid

f:q+r:0 E_pa) Efic]+lr_l+_ ;_“H) line represents the analytical results and circles stand for
’ 4 2 ' 2 ’ simulation results. Both standard deviations are indicated by
i1 i1 1 the error bars. There is good agreement between the analyti-
16 __pa) 9( P, _)(_f' PP S 1r+1>' cal and simulation results. _ o
4 4)\2 at% 2 974 An attacker does not have to achieve full synchronization

(36) in order to decipher the secret code. For filNteeven a state
close enough to synchronization is sufficient to break the
The first term corresponds to the case where all three hidde¢pde, thus making the system insecure. Moreover, the analy-
units are updatedvith probability 2). The second term cor- sis and the simulations are faster when the aim is to arrive at
responds to the case where only one hidden unit is update8. partlalloverlap state. We therefore considered an attacker
Equation(36) is valid only forq andr which are not on the Who achievegp)=0.9, a successful attacker, and synchro-
boundary. nization and learning times given in Fig. 7 and in Table | are
In the case of the perceptron when an update occurs, bofer achieving(p)=0.9.
sides perform the update, in opposite directions. In the case _
of the TPMs, two matching units do not always perform an C. The naive attacker
update together; in many cases one of the parties updates The aim of an attacker is to synchronize with one of the
unit i, while the other updates unifi#j, as described in parties and reveal the secret klge weights of the partig¢s
case(c) in Sec. Il A. In such a case, E(B6) is not sufficient, o ) o
TABLE I. Average synchronization and dynamic learning times,

and we should add a description of the matrices’ updat _ - i
when only one party is updated. Let us say the party repre-or the naive attacker and the flipping attacker, for different values

sented by the matrix rows is updated. Then we have of L.
i i i t thaio th
flqurzéflcﬁl,r_*'%f:qfl,r , (37) synch naive flipp
] i . L=1 25+14 36£18 32£19
and if the party represented by the matrix columns is up- | =» 79+138 239+ 145 108+ 58
dated, we have L=3 166+ 67 3320+ 3039 221106
L=4 298+113 176 816179 446 38a:-159

fi{r:%fiq,wl"'%fiq,r—lv (39
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hence her natural strategy is to imitate one of them, party WiC+:WiC+ D(WiC-Xi a®)x;aBo(— o B)

for instance, by using the same learning rule. The attacker,

eavesdropping on the public channel connecting the parties, X[0(aCo™) 6(aC7C) + 6(— aCo™) 0(”70)],
knows the input vectox; and the outpuO”'B. When O

#08B, the parties update their weights, and so does the at-

tacker. In the case where the attacker’s internal presentation . _ o R _
is the same a#’s, they update the same units, an attractiveWhereri=—; if [h<|h;|, V j#i and 7= 7 otherwise.

step occurs, and the attacker gets closer to her goal. Yet when The analysis used here is the same as for the naive at-
the internal presentations of the attacker and the party diffefacker. Here too, we follow the development of nine matrices

she updates some wrong units, a repulsive step occurs, atlich are updated at every time step, as described in Sec.
this delays her. Thet2 1-fold degeneracy in the output is the V_B. However, in cases where the attacker’s o_u_tput disagrees
main reason for the attacker’s failure. The dependence of th&ith the As output, we compute the probability for every

attacker’s weight vector in a new step on the weight vector !Nt to be the one with the lowest absolute local-field value.
the former one is given by For instance, wheh;”>0, V i, the probability forh, being

the smallest is given by

(40)

wEt=wE+D(WE-x08)x,080(— 0" 0B). (39

The analysis is similar to the synchronization process, given P(h{<hS,h$< hg):f P(h§|h},h8 . {p,Q})dh{

by Eqg.(36). We now create nine matrices, each representing 0

the state of two matching hidden units among two parties, %

and the attacker and each party. We must set the parties’ XJCP(h§|hA,h§,{p,Qt})dhg

internal presentation, as well as the attacker’'s. We decide hy

which one of the & 8X8 internal presentations occurs in w0

each step, following the correlation between the parties and X f P(hgIh%,h5,{p,Q})dh§,

the attacker, and update the matrices accordingly, as de- hy

scribed in Sec. V B. (41)
Although the attacker may synchronize before the parties,

the average learning time is around twice the synchronizayhere the conditional probabilities are given by Etg).
tioq timg forL=1, and is around 200 times the synchro_ni- The generalization to other cases in whh;-‘ﬁ is not nec-
zation time forlL =3. It seems that the reason for the naive gsqarily positive, is straightforward. We choose at random
attacker’s weakness is that too many repulsive steps occug,, specific local fields for the two partiés' andh®, from
fcherefore, when trying to improve her_ abilities, we need Otheir joint probability distribution which is derived from the
Increase th_g probability for_ an afiractive step, and decreasé?orrelation matrix, making use of the overlap between the
the probability for a repulswe one. It has been shd@ﬂ] parties’ units. We then proceed to calculate the probability of
that a small absolute local-field value indicates a high pmbéach unit of the attacker to be the one with the lowest abso-
ability for an error. In .the following sectiqn we present an, ..o i field value, given by Eq41). Once we havéP;
advanced attacker which makes use of this knowledge. i=1,2,3 (P, is the probability that unit has the lowest local-
o field valug, we use an auxiliary random number,, to
D. The flipping attacker choose the unit to be flipped,

The flipping attacker’s strategy, recently introduced in
Ref. [9], adds a different move to the strategy of the naive 97— — T T T T T T 1
attacker when disagreement occurs between the outputs ¢
the attacker and partf. In this case, the attacker is certain %%~ 7
that either one or three of her hidden units are in disagree: 1
ment withA'’s units, and therefore a repulsive step will occur.
Since disagreement of three units is less likely than disagree
ment of one-unit, the attacker’s strategy treats all cases as
one unit disagreement. The flipping attacker tries to preven
the repulsive step by using a “flipping” approach; she ne-
gates the sign of one of her units, before performing the
update. If the correct unit was chosen, then the internal pre: |
sentation matches that of the party, and the same units will be .1
updated by both, thus performing an attractive step. To raise
her chances of flipping the right unit, the attacker chooses the
one whose absolute local-field value is the lowest of the
three :7;=— 7, for i that minimizesh;|.

The learning rules are the same as those given byIEj. FIG. 8. The distribution of the rati®=t|gan/tsynch, Obtained
for the mutual synchronization, but the attacker’s learning isby simulations(dashed ling with N=10%, and analytical(solid
different, line) results, withL =3, averaged over fQuns.

005 -

0.03 -

0.02-

ratio
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i—1

value, results in a synchronization state that is achieved in a
1-26| p,— > P,

T =T

i
0( Pj_pa)
=1

, (420 finite number of steps even in the thermodynamic limit. The
=1 good fit in that limit between analytical results and simula-
tions results is indicated in Figs. 6, 7, and 8. We presented
wherePo=0. here analytical results in the case of continuous as well as

Simulations and analytical calculations with=3, N giscrete weight vectors. Recent{1] the scaling betweeN
=10° averaged over T0runs, indicate that the flipping at- andL was discussed, based on large scale simulations with
tacker is successful. In Fig. 7 we plotted the synchronizationjifferentL. andN values. It may be interesting to develop the
time and learning time distribution for the flipping attack, numerical equations in the limit of infinite and to find the
obtained by simulationgcircles for synchronization and appropriate interplay between these two quantities.
squares for learningand analytical calculationsquares for We conclude by presenting the potential of the TPMs to
synchronization and triangles for learnjnghe flipping at- serve as a public key cryptosystem. This is based upon the
tacker’s ability can be measured by the ratio of the attackefollowing features: the synchronization state may serve as
learning time and the parties’ synchronization tiniR, the key in a certain encryption and decryption rule. This key
=tiearn/tsynch- Figure 8 shows the distribution of this ratio evolves in public without the need of prior communication;
for simulations(dashed ling and analytical(solid line) re-  one needs only to perform a finite number of steps of ex-
sults. The probability of the flipping attacker to finish learn- changing inputs and outputs in order to converge to a syn-
ing before synchronization is achieved by the parties is 28%¢hronized state. The analytical derivation shows that even for
as presented in Fig. 8. infinite large systemd\— oo, there will be finite distribution

of synchronization time¢where synchronization time is de-
E. Discussion fined by p=— 1+ € where smalle is a coefficient and the
. . . .__synchronization time itself will be finite. The flipping at-

In the preceding section we introduced macrodynamicagscyer succeeds in revealing the secret for sinathlues, as
updating equations that imitate t.he simulation .results of disy. enlarges the task becomes harder for[idt. It is yet to be
crete mutual and dynamic learning. All numeric runs of theetermined whether it is possible to make better use of the
macrodynamical equations are in good agreement with SiMYptormation in the channel, and to device a strategy that per-

lations. The TPMs that perform mutual learning synchroniz&qmg perfect learning on the average in the same number of
in a finite number of steps that scales withNrj11]. The steps typical for synchronization even for larige
macrodynamical updating equations describe the system in

the limit of N— <0, and they result in an exponential decay of
the order parametep to —1, where receiving the exact
value of —1 depends on computer accuracy. However, de- [|.K. acknowledges partial support of the Israel Academy
fining the synchronization by any finite and close tdl  of Science.
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