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Percolation in models of thin film depositions
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We have studied the percolation behavior of deposits for diffef2tl)-dimensional models of surface
layer formation. The mixed model of deposition was used, where particles were deposited selectively accord-
ing to the randon{RD) and ballistic(BD) deposition rules. In the mixed one-component models with depo-
sition of only conducting particles, the mean height of the percolation lageasured in monolayergrows
continuously from 0.898 32 for the pure RD model to 2.605 for the pure BD model, but the percolation
transition belongs to the same universality class, as in the two-dimensg&iDjatandom percolation problem.
In two-component models with deposition of conducting and isolating particles, the percolation layer height
approaches infinity as concentration of the isolating particles becomes higher than some critical value. The
crossover transition from 2D to 3D percolation was observed with increase of the percolation layer height.
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The thin-film formation processes by deposition of par-particle gets stuck to the substrate when any of its four ver-
ticles on a substrate are of great interest both from theoreticaical sides comes in contact with any previously deposited
as well as experimental point of vieli,2]. The different particle of the substrate or it directly lands on the substrate.
aspects of this problem are important in the technical applitn a mixed RD+BD model, thes fraction of particles is
cations for production of thin-film devices, metal-insulator deposited according to the BD rule and the remainingsl
mixture films, composite films with specific physical proper- fraction is deposited according to the RD rules. We call this
ties, etc[3]. model as: BRRD; _s model. The parameterallows a con-

The rather important field of investigation is related to thetinuous tuning between RD model with no interaction be-
electrical conductivity of thin films, which depends strongly yween particles and BD model with strong short-ranged in-
on their morphology and microstructure. Many works wereteraction between particles. The model of this type or other
devoted to investigations of the fractal, percolation and elecgjmjjar models where different kind of interactions between
trical properties of thin films and depos[té]. It was shown 4 rticles may exist are widely used for simulation of struc-
that th_e per_colatlon transition in very _thll(quc_':15|-two- ture of thin films with realistic morphologj12].
dimensional films belongs to the same universality class as In the one-component model all particles are considered
in the random percolation problefd,6]. The film electrical to be conducting. In the two-component model we have a

cpnducpwty shows aIsp a (;Iear transition fr_om _the WO-fraction of insulating particles and the-If fraction of con-
dimensional to three-dimensional behavior with film thick- ducting particles

ness mrc]:reaseﬁ(?j,B]._ Somedcorrela_tlorfls \é\/ere Qbserved _be- Particles are deposited on the substrate one after another
tween the conductivity and porosity for deposits grown In a, 4 the average height of the deposit grows. Conduction

model qf baIIi;tic depositio_ﬁg]. Jengeret _al.[lO] and Fam- takes place between two conducting particles when they
ily [11] investigated in their numerical simulation works the have one surface in contact. We stop the growth process

percolgtlon behav[or for'd|ﬁerent models of submononolayerwhen the deposit starts conducting for the first time in the
deposits on two-dimensional substrates.

Th f thi Ki dv th lation b direction parallel to the surface. At this percolation point, a
e purpose of this work is to study the percolation be-g o nning cluster across the system is formed along they

havior for different lattice models of three-dimensional de- ;e ction (Fig. 1). The percolation point is easily checked by
posits growing on the plane substrates. The spanning CI”StﬁrHoshen-KopeIman algorithi13].

forms in the substrate plane. The percolation in deposits has During the deposition process, the time elapsed is mea-

a correlated character, because the sites of lattice get fiIIeQJred in units of the number of equivalent complete layers
dynamically during the growth in accordance with the depo-yeqgited. Therefordy particles have been deposited in time

sition rules. In our model the particles are modeled by unitt:N/Lz_ On the other hand the mean height of the deposit at
time t is F=Ex,yhxy(t)/L2. The percolation density is the

cubes. They are deposited on an initially flat horizontal sur-

face on thex-y plane of size. X L. The particles come down ; . .
volume fractionp of the conducting particles at the percola-
'|c_>n point i.e., the ratio of the number of conducting particles

vertically along the—z direction with the integek,y coor-
dinates and are deposited on the substrate either by the bdl s
listic deposition(BD) process or by the random deposition Nc and the total volume of the depogit=N/(hL?). In
(RD) process or by a mixture of both the processes. In th@ne-component modé&l.=N andp=t/h. For RD model the
RD process a particle comes down vertically till it lands overbulk of the deposit is compadwithout any pores in the
a particle on the substrate where as in the BD process theertical columng but it has a rough interface. Therefore the
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FIG. 1. Scheme of percolation cluster formation f@1)- §om o5 om 1 °%
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dimensional deposition model.

o B B FIG. 2. Plots of heighRo (lattice unit3 and densityp,, of de-
RD limit at s=0 corresponds t@=1. For BD model as it in percolation point vs parametefor one-component mixed

=1 the deposit is porous and consequemtiyl. For a bi- gp RD; _s model. The data error is of order of data symbol size.
component model we have a mixture of conducting and inThe lines serve as a guide to the eye.

sulating particles. Here the total density of the deposit in-

cluding conducting and insulating particles iBiai  wherep,g..=0.59274 . . . is thepercolation concentration
=N/(hL?) and N,=N(1-f) and p=t(1—f)/h in the limit of infinite system [ —) andv,=4/3 is a cor-
=Piotal(1—1). relation length scaling exponefit4], we obtain

For finite extensiongl) of the substrates the percolation o
heighth(L) andp(L) areL dependent. The values b{L) h(L)=—IN(1~pag .. —apqpL ~*"?) (6)

andp(L) are determined for different substrate sitegar-
ied from 8 to 2048 and the periodical boundary conditions _
were applied in deposition rules along the directigrandy. =h,+In| 1—
Results were averaged over 100-5000 different runs, de-
pending on the size of the lattice and required precision.
In analogy with the corresponding finite size behaviors inWhereh..= —In(1—paq.)~0.898 32,8,= aq /(1 P2q.-),

the ordinary percolation, we assume the following relationsh= Vp-
We see that for pure RD mode},=v,=4/3. So, the RD

p(L)=pw+apL‘1/Vp (1) model belong to same class of umversahty as the two-
dimensional random percolation model. This fact reflect the

and small mean height of2+1)-dimensional random deposit
h,,~0.898 32, which is only slightly higher than mean

height of two-dimensional random depoﬁ;%O.SQZ 746.
where v, , v,~4/3. On the basis of numerical simulations we estimate that for

The probability that a particle is deposited along a parpure BD ats=1, h..=2.605+0.005 andp..=0.620+0.005
ticular vertical line on thex-y plane is 1L? which is very in the limit L=c. Using these asymptotic values we plot
small whenlL is large such that the mean heighis main-  h.,—h(L) andp..—p(L) vs L on double logarithmic scales
tained at a fixed value wheN particles are deposited. This and in both cases plots correspond to the slope-874,
implies that in the RD model the numblerof particles in an ~ which meansy,= v,=4/3.

A2d,p

——P | ~h,—a L Y (7
(1—p2d,m>L”Vp) " "

h(L)=h()+azL =, (2)

arbitrary column of particles follow a Poisson distribution Percolation heighlt,, and the percolation densitigs. are
T similarly calculated for the mixed BJRD; ¢ model varying
P(h)=(e ") (h")/h!. (3)  the mixing parametes and plotted in Fig. 2. The height of

the deposith,, increases and its density decreases smoothly
with increase of the fraction of deposited BD patrticles. In the
limit of pure RD model, the theoretical valle,~0.898 32
P(0)=1—p —e N @) is observed well. Same as both pure BD and RD models, the
2d ' mixed BD,RD;_ also displays the scaling behavior de-
wherep,q is the percolation threshold for the square latticeSCTiPed by Egs(1) and (2) with scaling exponenty= v,
site percolation problem. ~4/3. Using the calculatetl.,(s) and p..(s) dependencies
Taking into account the finite size scaling behavioppf —and substituting,= v,=4/3 into Eqs.(1) and(2) the coef-
ficients a,, and a, versuss were obtained. Both of these
Pog(L)= p2d'w+a2d,pL‘1"’p, (5) coefficientsa,, anda,, increase witts. It is important to note

Therefore, the probability of an empty columh=0) is
equal toP(0)=e"". In percolation point
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o FIG. 4. Plots of scaling exponentg and v, in Egs.(1) and(2)

FIG. 3. Plots of height., (lattice unit3 and densityp.. of de-  vs fraction of isolating particles for two-component BD and RD
posit in percolation point vs fraction of isolating particles for two- models. The solid lines serve as a guide to the eye. Vertical dashed
component BD and RD models. In cases when it is not show ditines show the critical concentration which afg=0.227+0.001
rectly the data error is of order of data symbol size. The solid linefor BD model andf,=0.70+0.01 for BD model.
serve as a guide to the eye. Vertical dashed lines show the critical
concentrations which arg,=0.227+0.001 andf ,=0.70+=0.01 for

s For the RD model, the value gf is independent from
BD and RD models, respectively.

system size. by definition, so, onlyy,, dependency is pre-
sented at Fig. 4. The exponenf for the BD model continu-
that for the pure RD moded,=0. It means that there is N0 ously grows withs from »,~4/3 characteristic for single-
finite size scaling for the RD model, as for anytp=1 the component model tov,~2.4 near critical pointf = fc
deposit is compact without pores by definition. =0.227.

We can conclude that the mixed BRD,_ model, pre- The correlation length exponent, for BD model de-
sumably, belong to same class of universality as the tWogreases from, = v,4=4/3 characteristic for the 2D systems
dimensional random percolation model_at any valus.of (atf=0) to v,=vay=9/10 characteristic for the 3D systems

Figure 3 presents the deposit height and density of (at f=f.=0.227)[14]. This behavior can be easily under-
conducting particlep.. in the percolation point estimated in stood, as far as the height of percolation deposit at High-
the limit of L—o vs fraction of isolating particle$. The increases and approaches the infinity at the critical concen-
dependencies di..(f) show the typical percolation behav- tration of i_solating_ pgrticles. So, the BD-model per(_:olation
ior: asf reaches some critical valdg the value oh., goesto  ©f deposit in the vicinity off = f,=0.227 may be considered
infinity; it means that there is no percolation at any finite @S & percolatlon Ina three-d|rr_1enS|onaI system and the uni-
height of deposit. The estimated values of critical concentra?€'S2lity class of this percolation model is presumably the
tions of the isolating particles afe(BD)=0.227+0.001 for ~Sa@me as for the random percolation model.
the BD model and .(RD)=0.70+0.01 for RD model. The dependence of, vsf for the RD model is not very

For the RD model, the total density of particlespis pronounced at<0.15 and the precision of, determination

=1 by definition, and, so, the density of conducting particles."’.lt higherf is rather _Iow, as the respective amplitu:.ﬂ‘econ—
is p=piowm(l—f)=1—f. The linear law ofp. decrease tinuously grows vylthf. We can suppose the existence c_)f
with f increase is actually observed in simulation data for thez_D_'tO'gD percolation crossover for the BD model in the vi-

RD model, this law is rather close to linear for the BD model MY of f:fc,:O'227' Note, that the gxistence of the 2b-

(Fig. 3. In the critical pointf=f ., the density of conducting to-3D percolation crossover was experimentally supported in

particles is equal t@, ..=0 232Ct,0 001 for the BD model random metal-insulator mixture films when thickness of the
C,» . . )

andp, .= 0.30+0.01 for the RD model. This value for the flmS deposited was increas¢sl. .
RD model is very close to percolation concentration for the As fir as atf<f¢, (L—e) the height of a percolation
random perco|ati0n on a Simp|e cubic |att|pe: 0.311609 cluster hOc remains finite even for |nf|n|_tE|y Iarge substrate
[15]. The estimated value of the total density of depositdimension, it is interesting to chegk, vsh., for existence of
Ptotal~=0.300+0.001 for the BD model coincides with the scaling:
previously reported data for the deposit density extrapolated
to the infinite-system limit for the BD modél6].

The scaling exponents, , v, obtained by the least square
fit of Egs. (1) and(2) versusf are presented at Fig. 4 for the ) )
BD and RD models. All fitting procedures were done at the  Figure 5 shows the log-log presentation mf—pe .. vs
fixed values ofp.., two free parameters and correlation co- h.. for the BD and RD models. For the BD model, we put
efficients were higher than 0.998. Pc=0.232. The solid line 1 corresponds to best fit of Eq.

P =P, T ath7 l/Vph- (8

0
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as a guide to the eyes and the scaling is rather poor. But
when we put a somewhat higher valpg..=0.30 (remind

that the value obtained frorh,, vs f dependencies ig. ..
=0.30+£0.01) we get the data represented by filled triangles.
Now the scaling is rather good and the solid line 3 corre-
sponds to best fit of Eq8) to the datd(filled triangles with
parameters/p,=1.04+0.01 anda,,=0.633+0.004.

In summary, we have investigated the percolation in the
direction parallel to the surface for different models of depo-
sition layer formation. In one-component models with depo-
sition of only conducting particles, the height of deposits in

the point of percolation is finite and 5,=0.898 32 for the

RD model h,,=2.605 for the BD model. The mixed

BD,RD,;_s model, presumably, belongs to the universality
class of 2D-random percolation problem. In two-component
models with conducting and isolating particles, the percola-

FIG. 5. Log-log plot ofp..— ... vs h,, (lattice units for two- tion layer heighhm can b_e var_ied in W!de range by tuning of
component BD(squares and RD (triangle3 models. See the text a cor)(_:entratlon of the isolating p{:lrtlc_lésand a crossover
for the details. transition from 2D to 3D percolation is observed with in-
crease oh.,. The percolation in layer is impossible whén
exceeds some critical concentratibp. The weakening of
interparticle interaction results in increasing of threshold
value off., from 0.227 for BD modek=0.7 for RD model.

03

0.2

Peo -pC,oo

0.1

(8) to the data(filled squarep with parametersy,,=1.20
*+0.01 anda,,=0.883+0.001.

Putting the valuep...=0.311609 for the RD model,
which is equal exactly to the concentration for the random DST, Government of India and Ministry of Ukraine for
percolation problem on simple cubic lattice, we obtain dataEducation and Science, are gratefully acknowledged for a
represented by the open triangles. The dashed line 2 is dravgrant from an Indo-Ukrainian collaboration project.
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