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Percolation in models of thin film depositions
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We have studied the percolation behavior of deposits for different~211!-dimensional models of surface
layer formation. The mixed model of deposition was used, where particles were deposited selectively accord-
ing to the random~RD! and ballistic~BD! deposition rules. In the mixed one-component models with depo-
sition of only conducting particles, the mean height of the percolation layer~measured in monolayers! grows
continuously from 0.898 32 for the pure RD model to 2.605 for the pure BD model, but the percolation
transition belongs to the same universality class, as in the two-dimensional~2D! random percolation problem.
In two-component models with deposition of conducting and isolating particles, the percolation layer height
approaches infinity as concentration of the isolating particles becomes higher than some critical value. The
crossover transition from 2D to 3D percolation was observed with increase of the percolation layer height.
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The thin-film formation processes by deposition of p
ticles on a substrate are of great interest both from theore
as well as experimental point of view@1,2#. The different
aspects of this problem are important in the technical ap
cations for production of thin-film devices, metal-insulat
mixture films, composite films with specific physical prope
ties, etc.@3#.

The rather important field of investigation is related to t
electrical conductivity of thin films, which depends strong
on their morphology and microstructure. Many works we
devoted to investigations of the fractal, percolation and e
trical properties of thin films and deposits@4#. It was shown
that the percolation transition in very thin~quasi-two-
dimensional! films belongs to the same universality class
in the random percolation problem@5,6#. The film electrical
conductivity shows also a clear transition from the tw
dimensional to three-dimensional behavior with film thic
ness increase@7,8#. Some correlations were observed b
tween the conductivity and porosity for deposits grown in
model of ballistic deposition@9#. Jensenet al. @10# and Fam-
ily @11# investigated in their numerical simulation works th
percolation behavior for different models of submononola
deposits on two-dimensional substrates.

The purpose of this work is to study the percolation b
havior for different lattice models of three-dimensional d
posits growing on the plane substrates. The spanning clu
forms in the substrate plane. The percolation in deposits
a correlated character, because the sites of lattice get fi
dynamically during the growth in accordance with the dep
sition rules. In our model the particles are modeled by u
cubes. They are deposited on an initially flat horizontal s
face on thex-y plane of sizeL3L. The particles come down
vertically along the2z direction with the integerx,y coor-
dinates and are deposited on the substrate either by the
listic deposition~BD! process or by the random depositio
~RD! process or by a mixture of both the processes. In
RD process a particle comes down vertically till it lands ov
a particle on the substrate where as in the BD process
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particle gets stuck to the substrate when any of its four v
tical sides comes in contact with any previously deposi
particle of the substrate or it directly lands on the substra
In a mixed RD1BD model, thes fraction of particles is
deposited according to the BD rule and the remaining 12s
fraction is deposited according to the RD rules. We call t
model as: BDsRD12s model. The parameters allows a con-
tinuous tuning between RD model with no interaction b
tween particles and BD model with strong short-ranged
teraction between particles. The model of this type or ot
similar models where different kind of interactions betwe
particles may exist are widely used for simulation of stru
ture of thin films with realistic morphology@12#.

In the one-component model all particles are conside
to be conducting. In the two-component model we havef
fraction of insulating particles and the 12 f fraction of con-
ducting particles.

Particles are deposited on the substrate one after ano
and the average height of the deposit grows. Conduc
takes place between two conducting particles when t
have one surface in contact. We stop the growth proc
when the deposit starts conducting for the first time in
direction parallel to the surface. At this percolation point
spanning cluster across the system is formed along thex or y
direction~Fig. 1!. The percolation point is easily checked b
a Hoshen-Kopelman algorithm@13#.

During the deposition process, the time elapsed is m
sured in units of the number of equivalent complete lay
deposited. Therefore,N particles have been deposited in tim
t5N/L2. On the other hand the mean height of the depos
time t is h̄5Sx,yhxy(t)/L

2. The percolation density is the
volume fractionp of the conducting particles at the percol
tion point i.e., the ratio of the number of conducting particl
Nc and the total volume of the depositp5Nc /(h̄L2). In
one-component modelNc5N andp5t/h̄. For RD model the
bulk of the deposit is compact~without any pores in the
vertical columns! but it has a rough interface. Therefore th
©2002 The American Physical Society34-1
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RD limit at s50 corresponds top51. For BD model ats
51 the deposit is porous and consequentlyp,1. For a bi-
component model we have a mixture of conducting and
sulating particles. Here the total density of the deposit
cluding conducting and insulating particles isptotal

5N/(h̄L2) and Nc5N(12 f ) and p5t(12 f )/h̄
5ptotal(12 f ).

For finite extensions~L! of the substrates the percolatio
height h̄(L) and p(L) areL dependent. The values ofh̄(L)
and p(L) are determined for different substrate sizesL var-
ied from 8 to 2048 and the periodical boundary conditio
were applied in deposition rules along the directionsx andy.
Results were averaged over 100–5000 different runs,
pending on the size of the lattice and required precision.

In analogy with the corresponding finite size behaviors
the ordinary percolation, we assume the following relatio

p~L !5p`1apL21/np ~1!

and

h̄~L !5h̄~`!1ahL21/nh, ~2!

wherenp ,nh'4/3.
The probability that a particle is deposited along a p

ticular vertical line on thex-y plane is 1/L2 which is very
small whenL is large such that the mean heighth̄ is main-
tained at a fixed value whenN particles are deposited. Thi
implies that in the RD model the numberh of particles in an
arbitrary column of particles follow a Poisson distribution

P~h!5~e2h̄!~ h̄h!/h!. ~3!

Therefore, the probability of an empty column (h50) is
equal toP(0)5e2h̄. In percolation point

P~0!512p2d5e2h̄, ~4!

wherep2d is the percolation threshold for the square latt
site percolation problem.

Taking into account the finite size scaling behavior ofp,

p2d~L !5p2d,`1a2d,pL21/np, ~5!

FIG. 1. Scheme of percolation cluster formation for~211!-
dimensional deposition model.
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wherep2d,`50.592 746 . . . is thepercolation concentration
in the limit of infinite system (L→`) andnp54/3 is a cor-
relation length scaling exponent@14#, we obtain

h̄~L !52 ln~12p2d,`2a2d,pL21/np! ~6!

5h̄`1 lnS 12
a2d,p

~12p2d,`!L1/np
D 'h̄`2ahL21/nh, ~7!

where h̄`52 ln(12p2d,`)'0.898 32,ah5a2d,p /(12p2d,`),
nh5np .

We see that for pure RD modelnh5np54/3. So, the RD
model belong to same class of universality as the tw
dimensional random percolation model. This fact reflect
small mean height of~211!-dimensional random depos
h̄`'0.898 32, which is only slightly higher than mea
height of two-dimensional random deposith̄`'0.592 746.

On the basis of numerical simulations we estimate that
pure BD ats51, h̄`52.60560.005 andp`50.62060.005
in the limit L5`. Using these asymptotic values we pl
h̄`2h̄(L) and p`2p(L) vs L on double logarithmic scale
and in both cases plots correspond to the slope of23/4,
which meansnh5np.4/3.

Percolation heighth̄` and the percolation densitiesp` are
similarly calculated for the mixed BDsRD12s model varying
the mixing parameters and plotted in Fig. 2. The height o
the deposith̄` increases and its density decreases smoo
with increase of the fraction of deposited BD particles. In t
limit of pure RD model, the theoretical valueh̄`'0.898 32
is observed well. Same as both pure BD and RD models,
mixed BDsRD12s also displays the scaling behavior d
scribed by Eqs.~1! and ~2! with scaling exponentnh5np

'4/3. Using the calculatedh̄`(s) and p`(s) dependencies
and substitutingnh5np54/3 into Eqs.~1! and ~2! the coef-
ficients ah and ap versuss were obtained. Both of thes
coefficientsah andap increase withs. It is important to note

FIG. 2. Plots of heighth̄` ~lattice units! and densityp` of de-
posit in percolation point vs parameters for one-component mixed
BDsRD12s model. The data error is of order of data symbol siz
The lines serve as a guide to the eye.
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that for the pure RD modelap50. It means that there is n
finite size scaling for the RD model, as for anyL at p51 the
deposit is compact without pores by definition.

We can conclude that the mixed BDsRD12s model, pre-
sumably, belong to same class of universality as the t
dimensional random percolation model at any value ofs.

Figure 3 presents the deposit heighth̄` and density of
conducting particlesp` in the percolation point estimated i
the limit of L→` vs fraction of isolating particlesf. The
dependencies ofh̄`( f ) show the typical percolation behav
ior: asf reaches some critical valuef c the value ofh̄` goes to
infinity; it means that there is no percolation at any fin
height of deposit. The estimated values of critical concen
tions of the isolating particles aref c(BD)50.22760.001 for
the BD model andf c(RD)50.7060.01 for RD model.

For the RD model, the total density of particles isptotal
51 by definition, and, so, the density of conducting partic
is p5ptotal(12 f )512 f . The linear law ofp` decrease
with f increase is actually observed in simulation data for
RD model, this law is rather close to linear for the BD mod
~Fig. 3!. In the critical pointf 5 f c , the density of conducting
particles is equal topc,`50.23260.001 for the BD model,
and pc,`50.3060.01 for the RD model. This value for th
RD model is very close to percolation concentration for
random percolation on a simple cubic latticep50.311 609
@15#. The estimated value of the total density of depo
ptotal,`50.30060.001 for the BD model coincides with th
previously reported data for the deposit density extrapola
to the infinite-system limit for the BD model@16#.

The scaling exponentsnh , np obtained by the least squar
fit of Eqs. ~1! and~2! versusf are presented at Fig. 4 for th
BD and RD models. All fitting procedures were done at t
fixed values ofp` , two free parameters and correlation c
efficients were higher than 0.998.

FIG. 3. Plots of heighth̄` ~lattice units! and densityp` of de-
posit in percolation point vs fraction of isolating particles for tw
component BD and RD models. In cases when it is not show
rectly the data error is of order of data symbol size. The solid li
serve as a guide to the eye. Vertical dashed lines show the cr
concentrations which aref c50.22760.001 andf c50.7060.01 for
BD and RD models, respectively.
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For the RD model, the value ofp is independent from
system sizeL by definition, so, onlynh dependency is pre
sented at Fig. 4. The exponentnh for the BD model continu-
ously grows withs from nh'4/3 characteristic for single
component model tonh'2.4 near critical point f 5 f c
50.227.

The correlation length exponentnp for BD model de-
creases fromnp5n2d54/3 characteristic for the 2D system
~at f 50) to np5n3d59/10 characteristic for the 3D system
~at f 5 f c50.227) @14#. This behavior can be easily unde
stood, as far as the height of percolation deposit at higf
increases and approaches the infinity at the critical conc
tration of isolating particles. So, the BD-model percolati
of deposit in the vicinity off 5 f c50.227 may be considere
as a percolation in a three-dimensional system and the
versality class of this percolation model is presumably
same as for the random percolation model.

The dependence ofnp vs f for the RD model is not very
pronounced atf ,0.15 and the precision ofnp determination
at higherf is rather low, as the respective amplitudeap con-
tinuously grows withf. We can suppose the existence
2D-to-3D percolation crossover for the BD model in the v
cinity of f 5 f c50.227. Note, that the existence of the 2D
to-3D percolation crossover was experimentally supporte
random metal-insulator mixture films when thickness of t
films deposited was increased@8#.

As far as atf , f c , (L→`) the height of a percolation
cluster h̄` remains finite even for infinitely large substra
dimension, it is interesting to checkp` vs h̄` for existence of
scaling:

p`5pc,`1aphh̄`
21/nph . ~8!

Figure 5 shows the log-log presentation ofp`2pc,` vs
h̄` for the BD and RD models. For the BD model, we p
pc,`50.232. The solid line 1 corresponds to best fit of E

i-
s
al

FIG. 4. Plots of scaling exponentsnh andnp in Eqs.~1! and~2!
vs fraction of isolating particles for two-component BD and R
models. The solid lines serve as a guide to the eye. Vertical da
lines show the critical concentration which aref c50.22760.001
for BD model andf c50.7060.01 for BD model.
4-3
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~8! to the data~filled squares! with parametersnph51.20
60.01 andaph50.88360.001.

Putting the valuepc,`50.311 609 for the RD model
which is equal exactly to the concentration for the rand
percolation problem on simple cubic lattice, we obtain d
represented by the open triangles. The dashed line 2 is dr

FIG. 5. Log-log plot ofp`2pc,` vs h̄` ~lattice units! for two-
component BD~squares! and RD ~triangles! models. See the tex
for the details.
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as a guide to the eyes and the scaling is rather poor.
when we put a somewhat higher valuepc,`50.30 ~remind

that the value obtained fromh̄` vs f dependencies ispc,`

50.3060.01) we get the data represented by filled triangl
Now the scaling is rather good and the solid line 3 cor
sponds to best fit of Eq.~8! to the data~filled triangles! with
parametersnph51.0460.01 andaph50.63360.004.

In summary, we have investigated the percolation in
direction parallel to the surface for different models of dep
sition layer formation. In one-component models with dep
sition of only conducting particles, the height of deposits

the point of percolation is finite and ish̄`50.898 32 for the

RD model h̄`52.605 for the BD model. The mixed
BDsRD12s model, presumably, belongs to the universal
class of 2D-random percolation problem. In two-compon
models with conducting and isolating particles, the perco
tion layer heighth̄` can be varied in wide range by tuning o
a concentration of the isolating particlesf and a crossover
transition from 2D to 3D percolation is observed with i
crease ofh̄` . The percolation in layer is impossible whenf
exceeds some critical concentrationf c . The weakening of
interparticle interaction results in increasing of thresho
value of f c , from 0.227 for BD model'0.7 for RD model.
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