PHYSICAL REVIEW E 66, 066131 (2002
Polygonal billiards and transport: Diffusion and heat conduction
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A detail study of the diffusive and heat conduction properties of a family of nonchaotic billiards is presented.
For dynamical systems with dynamical instability the relation between transport properties and characteristic
quantities of the chaotic dynamics naturally emerge. On the contrary, in dynamical systems withoutrchaos
the sense of exponential separation of nearby trajecjariash less is known. From numerical simulations we
compute several quantities related to diffusion, such as the mean square displacement, the behavior of the
hydrodynamic modes for long wavelengths, through the properties of the incoherent intermediate scattering
function and the velocity autocorrelation function, in connection with the Green-Kubo formula. The analysis of
all these quantities indicates that some systems among the family studied have normal diffusion and others
anomalous diffusion. The spectral measure associated with the velocity autocorrelation function is also studied.
The same analysis reveals that for all the systems treated there is not a well defined super Burnett coefficient.
The heat conduction is also explored and found that, naturally, it is valid for the systems that behave diffu-
sively.
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[. INTRODUCTION ied the so-called Lorentz channel, a simple Lorentz gas
model for which there is normal heat transppt6,16. In
The connections between dynamical and transport propefact this system can be considered a prototype for the so-
ties in dynamical systems are not completely explored. In thealled escape-rate formaligi#,17] and it can be included in
past decade the emphasis on the study of chaotic systems haglass of chaotic systems for which many analytical results
been fruitful and today there exist beautiful relations be-have been obtained.
tween chaotic and transport properties such as diffusion, heat We study in this work a modified version of the Lorentz
and momentum transport. A set of remarkable results estalzhannel in which the chain is made up of triangles instead of
lishes the links between diffusion and microscopic dynami-semicircles. Our systems are in this case polygonal billiards
cal quantities such as the Kolmogorov-Sinai entropy and thand thereforeno dynamical chaogin the sense of exponen-
Lyapunov exponents. In the case of other transport coeffitial separation of nearby trajectorjess present. To study
cients it has been also possible to prove their existence statransport in these systems we analyze the diffusion of par-
ing at a mechanical levé¢lL—7]. ticles within the billiard looking at the fluctuations of their
In particular, a full Liouvillian characterization of diffu- positions, in particular the mean square displacement. The
sion in specific chaotic models has illuminated the way inpolygonal billiards studied are ergodic, so mean time aver-
which it is possible to connect the above mentioned microages are equal to ensemble averages. We explicitly compute
scopic quantities with macroscopic onfgf)]. Another im-  the mean square displacement, which defines diffusion, and
portant result, for a class of hyperbolic systeftransitive  the next order fluctuation, which defines the super Burnett
Anosov), is the so-calledthaotic hypothesito describe non-  coefficient. If the mean square displacement grows linearly
equilibrium situationgd8]. In all these works the degree of in time the system is expected to be diffusive.
stochasticity needed to consistently describe irreversible phe- Nonetheless we would like to examine more carefully if
nomena and relaxation comes from the exponential instabikhe diffusion equation is valid in the systems studied. We
ity of the microscopic dynamics. Nonetheless many quesnumerically compute, following Van Ho\d 8], the behavior
tions arise, especially in relation to the necessary conditionsf the hydrodynamic modes and evaluate the Fourier trans-
that a microscopic motion should have in order to observdorm of the particle density of the system for long wave-
normal transport at macroscopic scale. lengths (the intermediate incoherent scattering function
However there is increasing numerical evidence that sys25]).
tems with weaker dynamical stochasticity may exhibit nor- Moreover, the Green-Kubo formula establishes the rela-
mal transporf9,11,12. There is also numerical evidence that tion between the diffusion coefficient and the integrated ve-
systems such as a class of triangular billiards may be mixingpcity autocorrelation function. In this respect we have ana-
[13,14. Therefore it is interesting to investigate in detail alyzed the decay of the velocity autocorrelation function. The
class of dynamical systems for which no dynamical chaos igorrelation functions are intimately related to spectral func-
present and try to seek their transport properties. tions. The correlation functions and spectral functions are
For a pure hyperbolic dynamics we have previously studjust two representations of the same object. The spectral
function is a Fourier transformation of the autocorrelation
function. Because of this, we have obtained the spectral mea-
*Email address: dalonso@ull.es sure and made a multifractal analysis of it.
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FIG. 2. Typical separation of two initial nearby paths by an
Polygonal chain edge.

FIG. 1. Schematic representation of the polygonal billiard chain
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and its parameters. The fundamental @lis also shown. striction of I, L.e., '=(x,y,6)=DXS’, where ¢ is the

angle of the velocity measured counterclockwise from the

Finally, to enrich the study of transport properties in Ioo_positivex axis. The prqblem scales with enetrgy and therefore
lygonal billiards we have also investigated the heat conducWe ¢an take the velocity as| =1. The flowd" preserves the
tion in these systems. For this purpose we put our polygondP'€asuredx dy dv. Within the billiard the particle moves
chain in contact with two heat reservoirs at different tem-freely and suffers elastic collisions &D. The boundary can
peraturesT, and T,. We continue in this way our previous P& parametrized by the arclengtiwith respect to some ori-
work on heat conduction in the Lorentz chanfs). gin O. Each colllsllon_pomt is Iabeleq by.the impact coordi-

The paper is organized as follows. In Sec. Il we give ahates and _the projection of the veIom_tleth respect to the
brief introduction of the model we will study. We emphasize Normal unit vector at the boundary, i.e., v-n=cosé. The
the known facts about polygonal billiards that have relevancélow @' induces a mapping between pairs §,cosf) that
in our study. In the next section we analyze the diffusion ofPreserves the measute d(cose). . _
particles in a polygonal chain. We give a brief theoretical Polygonal billiard tables show a very rich dynamics and
introduction of the quantities we compute. This section isaré extensively studied in the literature. However, they have
mainly concerned with the mean square displacement as wedftracted much less interest than chaotic billiards. In a po-
as the study of the incoherent intermediate scattering fundygonal billiard the collisions with the straight segments do
tion and the dispersion relation for the hydrodynamic modeg1°t induce chaos. Nonetheless nearby trajectories follow dif-
of diffusion. In Sec. IV we focus on the analysis of the ve-ferent paths as soon as they meet the vertices of the billiard
locity autocorrelation function and spectral measures. In Sedsee Fig. 2. so some stochasticity may be expected, not from
V we consider the analysis of heat conduction in the polygothe divergence of nearby trajectories, but from the splitting

nal chains studied. Finally in Sec. VI we put together theOf the paths at the vertices of the boundafy [19].
main conclusions. If the billiard is rational the dynamics takes place on a
surfaceS of genusg(S)=1. S has a nontrivial topology,
Il. DYNAMICAL SYSTEM whiqh is a consequence of the singular characte_r of the vec-
tor fields that can be constructed for the dynamics and that
Since our main interest is to study transport properties andre derived from the constants of motion that exi§f]. Such
their relation to specific dynamical properties we consider aector fields are singular for a rational polygon and hece
point particle confined to move inside a periodic chain. Theis topologically equivalent to a multihandled sphere. For a
fundamental celD of the chain is a polygon in the Euclidean simply connected billiard ofi rational anglesa;= 7p;/q;
plane &,y) =9:2. The border of the celfD, is composed of (i=1,...n), it is possible to give an explicit formula for
straight lines. On the bottom, along tkexis, there is a saw ¢(S). Let N be the least common multiple af;, then
structure with four equal lines forming two identical edges ofg(S)=1+A72=!"  (p;—1)/q; [20]. An example of a
angle m—2¢,. On the top there are two equal segmentsmultiple-connected billiard has been studied[#1]. Trivi-
forming an edge of angler—2¢;. The length of the cell ally, the dynamics is nonglobally ergodicd{S)>1. None-
along thex axis is 4 andh along they axis. Our billiard is  theless the flowb! can be decomposed into a one-parameter
constructed by translations @ along thex axis. In Fig. 1 family of flows ®!, on the surfaces, with 0<§<x/N. The
we show an schematic representation of the geometry of 0yjows ¢!, are calleddirectional flowsalong the directiors.
system. For almost all angles they are ergo@i0]. It is also known
If the segments of the polygonal cell form angles that argpat for a general polygon of sides there exists a dense set
rationally related torr, then it is said that the polygon is of ergodic polygons. In fact, if a polygon has an irrational
rational. On the other hand, if one of the angles is irratio- 3ngle such that it admits a superexponential fast rational ap-
nally related torr then it is said that the polygon igratio-  proximation then the dynamics is ergodic. In this sense it is
nal. . ) . . possible to construct irrational polygons that are ergodic
Associated with the billiard table there is a floW(—>  [23) For irrational polygons much less is known, however
<t<) in the phase spadé=(x,y,py,py), Where @,p,) there are numerical studies, especially for triangles, that give
is the momentum of the particle. Because of the conservatiogome insight on the properties of the dynamics for irrational
of energy the motion is confined to a three-dimensional repolygons. Artusq13] has shown numerically that they are at
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least weakly mixing and the numerical data is not incompat- |t is convenient to introduce the Fourier transfonk,t)
ible with mixing. Casati and Proségf4] extensively studied qf n(x,t) as[18,24,25

triangular billiards and their numerical data strongly suggests

that irrational triangles are mixing. To date, there is no math- - Kx

ematical theorem that supports these numerical results but, as n(k,t)=f dk e“n(xt). 4)
Gutkin pointed ouf22], there is no theorem that precludes

the possibility that irrational triangles are in fact mixing. If all the particles are initially distributed in the system ac-

We present in this work an analysis of the dynamics in acording to their positiong;(t=0)(i=1, . ..N) and because
class of irrational polygons. We are particularly concernedf the time evolution they are at positiorgt) at later time
with the transport properties that these billiards may develop, then the density(x,t) can be written as the average
such as diffusion, correlation decay, and heat transport.

We have taken our fundamental domain to be an irrational n(x,t)=(Sx—[x(t)—x;(0)])), 5

Fio?i},/g%r’]&?\,’g’tg)_ ¢1\/;e( \/gtoolk) ﬁlf 1 agcrj]d ¢é;g//(qtan<§5? whe.re. the averagg is pfarch)rmed over th& pgrticles. Thg
+tang,/2); with this choice no particle can travel along the €xPlicit form of the functiom(k,t) can be obtained combin-
chain without colliding with the boundary of the billiard. g the last two equations to get

Furthermore, the surface available for particles within a fun-

damental cell igi/2, equal for all members of the family of n(k t)= | dk @ 8(x—[x;(t) —x;(0)])) = (KD =xi(O)]y
systems. In all our calculations we have used the continuous

time as well as the discrete time. But first let us introduce ©®)

and discuss some relevant concepts for the later develogy,q functionn(x,t) is known, after Van Hové18], asself-
ments. space-time correlation functiomnd its Fourier transform

ﬁ(k,t) is calledincoherent intermediate scattering function
IIl. DIFFUSION It is obvious that if the self-space-time correlation function

To study diffusion we start with a system with (large satisfies the diffusion equation, with the condition that all

particles, such that is possible to define a densfty;t) that parti.cles are Ioc_ated at a single point at the i'nitial timg, then
depends on the spatial coordinatand the timet. This den- the mcoherent_mtgrmed_late scattering function satisfies the
sity gives the number of particles located at titnwithin a  diffusion equation in reciprocal space,

small volumedx centered on positior (we suppose a one- N D

dimensional system but generalization to more dimensions is an(k,t)=—k*Dn(k,1), @)
straightforwargl. Associated with this density we have a
mass currenf(x,t). The Fick’s law establishes a linephe-
nomenologicakelation between the small gradie¥in(x,t)
and the mass current, i.e.,

with the initial condition ﬁ(k,0)=1. This initial value
(Cauchy problem can be solved explicitly to give

n(k,t)=e Pt (8)
DVnO,H=1, @ In this manner the solutions of the diffusion equation are
then, with the help of Eq(4), a linear superposition dfy-

whereD is a constant independent of space and t{ptee- drodynamic modef40]

nomenological coefficientMoreover, if there is a local con-
servation of mass);n+V-j=0, then the densitn(x,t) sat-
isfies the diffusion equation

ne(x,t) = elkxe KDt 9

These hydrodynamic modes are solutions of the diffusion
equation and are spatially periodic with wave numiger
They decay exponentially in time, with characteristic time
(Dk?) 1. The longer the wavelength of the mode, the larger
the decay time. In other words, we have smaller damping,
which is a consequence of the mass conservatiorn 18y

It is convenient for our purposes to introduce, from the
n(x,t)= 1 ef(xfx0)2/4Dt_ 3) incoherent intermediate scattering function, the dispersion

(47Dt)Y? relation for the hydrodynamic mod¢g6]

dn=DV?n 2)

andD is the diffusion coefficient. This equation is valid for
large systems. If all particles are locatedxatx, at certain
initial time t=0, then the solution of Eq2) is

One interesting question is related to the specific condi-
tions that a microscopic dynamics should have, such that a
large system of particles satisfies a diffusion equation in its
time evolution. To be more specific, we can launch an enin terms of which the hydrodynamic modes are expressed as
semble of particles, construct the spatial distributig(x,t) [10]
for different times, and check if the resulting distribution .
evolves according to Ed2). Ne(x,t)=e**es, (11

1 .
S= Iim?ln n(k,t)=—k°D, (10)

t—o
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In general, the diffusion equation is a consequence of a first 14
approximation for the thermodynamic force conjugated to J
the mass current, which includes onlya(x,t) term(Fick’s 121 §
law). This leads to &?n term in the diffusion equation. If 10 5
n(x,t) varies rapidly in space the diffusion equation can be
extended to include higher spatial derivatives0f,t), such AN L
asV*n. Therefore an extra ternBV“n, appears in the dif- &) ¢
fusion equationB is called the super Burnett coefficient and £ 7
all that has been said remains validifs well defined. If so, 4
a more general expression fgy follows:
2-
L — 24 gK4 6 0
Sk—JETl?m n(k,t)——Dk +B +1}(k ). (12) 3 z P = P S 10 11 12 13

Int

An interesting feature of the incoherent intermediate scatter- FIG. 3. Mean square displacement of position @y=7/q (g

ing function is its relations to the spatial fluctuations. Such=3,4,5,6,7,8,9). The label on the right-hand side of each curve
relations can be derived in the following manner. First let ugndicates the value ofi. The simulations were done for x20°
notice thatﬁ(k=0,t)=l. The derivatives oﬁ(k,t) with re- partlclt_as_an_d up to time;=10°. The value of the slope for each
spect tok at k=0 can be computed: in particular the first Ve IS indicated in Table I.

derivative is
A. Ensemble numerical simulations

AN(K, 1) |z o= i &KW XONy | _ = (i Axe A%y, g In this section we present the results of our numerical
) simulations concerning the diffusive behavior of the polygo-
=i(Ax), (13 nal chain. First we compute the mean square displacement
and study its time variation in order to explore the validity of
whereAx=x(t) —x(0). Therefore, the first derivative of the the Einstein relation for diffusion. Due to the geometry of
incoherent intermediate scattering functiorkatO gives the  our system the particles have transport alongxtéection.
average value of the fluctuatior(t) —x(0). A similar rea- We integrated the motion for 1x210° particles up tot;
soning leads to an explicit relation between higher deriva=10° continuous time units. The mean square displacement
tives and higher order fluctuations. In particular, the secongyas computed from a Monte Carlo average over the par-
derivative and the mean square displacement are related agcles. We focused on the cases= 7/q, q=3,4,5,6,7,8,9.
Up to the maximum time we have considered the mean
A2.n(K,1)|—o= —((AX)?). (14)  square displacement for th,= 7/3 system grows as t*3,
which reflects a superdiffusive behavior. The cése= w/4
If the diffusion equation holds then the Einstein relation fordehaves subdiffusively, wittj(Ax)?)~t*%.All the other
diffusion follows systems have a power very close to one; from this data we
can infer that they satisfy the Einstein relation for diffusion.
20 _ These results are shown in Fig. 3 and Table 1.
((Ax)%)=2Dt. (15 The numerical results indicate that the family of systems

. _ . . _ considered presents both types of diffusive behavior, strange
In the same manner it is possible to derive relations involv-

) . . : . and normal, at least up to the time we can reach in our
Ny hl_gher order fluctuations. A short calculation gives thesimulations. As we have previously discussed, we would like
explicit formula ;

to check further the nature of the dynamics of an ensemble of

((Ax)%)— 3((5%)?)= 24Bt 16 particles within the chain. Another quantity of interest suit-
X)"y— X)“ye= ,

TABLE |. Diffusion with 1.2x 10° particles up to a continuous

which is an Einstein relation for the super Burnett coefﬂ—time 16. B was obtained from the fitting(Ax)2) = Ate.

cient.
If we center our attention on the mean square fluctuation, b» B
it follows that the analytic behavior of the incoherent inter-
mediate scattering function, at least up to or#ér is re- /3 1.30
quired in order for the mean square displacenié&b to be w4 0.86
well defined. Indeed if the analytic behavior is satisfied and /5 1.03
the Einstein relatiori15) holds, them(x,t) satisfies the dif- /6 1.04
fusion equation. a7 1.06
If the Einstein relation is satified then we speaknofmal I8 1.01
diffusion on the contrary, we havenomalous diffusioif the /9 1.01

mean square displacement does not grow linearly in time.
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0
/6
=2 A
= -4
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FIG. 4. Histograms ofx coordinates for an ensemble of
1.2x 1P particles at timet;=5x10?, for ¢,==/3 and for ¢, —— N=100000
= 7/4. The thick line ¢r/3) is the best Gaussian fitting to the data. 8- —— N=50000
O I [ N=10000
---- N=1000
able for this purpose is,, as defined in Eq.10), wherek is
the x component of the wave vector. We limit ourselves to -10 : : : :
wave vectors along direction. If the motion is diffusive we 0 0.2 04 06 0.8 1
should observe that for small valueslothe results are com- t (10" a.u.)

patible with Eq.(10). R

To clarify this question the following simulation was  FIG. 6. Inn(kt) vs time for ¢,= /6 computed with an increas-
done. We took an ensemble of X2(° particles and inte- N9 number of particle\. Notice how taking a largeN improves
grated their trajectories up to a timte=5x 1. From the the resolution of the exponentlgl decay.. In this figure and in the rest
data obtained we constructed the histograms pbsitions, ~ °f the Paper, a.u. refers to arbitrary units.
which are a numerical approximation ofx,t;). In Fig. 4
we show the results for the system#3 andw/4, and in Fig. ~ tions strongly suggest that the systems behave diffusively
5 the data for the systems/5 and /6. and probably develop hydrodynamic modes.

The figures also include the best Gaussian fitt{fay We could ask ourselves about the super Burnett coeffi-
comparisohnof the data. Clearly ther/4 system is far from a cient. Our data clearly indicates that the Einstein relation for
Gaussian shape, meanwhile the other systems seem closé€ super Burnett coefficient is not valid, but we will treat
The tails of the histograms are very well reproduced by &his point in the next section.

Gaussian profile fogp,= /5 and /6, while the tail of the
histogram for the¢,= 7/3 system shows some deviations B. ¢,=m/6 system: single particle simulations

from the Gaussian bel[. In order to study in more detail a system that shows dif-
We have computed(k,t) from a series of numerical fusive behavior, we consider in this section the particular
simulations with an increasing number of particles and aystem¢,= /6. In this case we compute the averages using
fixed value ofk,=k=0.01k,=0. In all cases it is observed the long time series generated from a single particle simula-
(see Figs. 6, 7, and)&hat the decay in time o, is better  tjon. Throughout the section time is discrete and corresponds
reproduced when the simulations involve a larger number of
particles. The question is if such decay is exponential. In Fig. 0
9 we have computed [In(n(k,t))|. From the data it seems /3
that the decay is not exponential f¢r= 7/3 and=/4, while v
for the other cases it seems to be exponential, at least up t
the time we are able to reach in our simulations. The data i< -4 -
compatible withn(k,t)=Ae" " with B=1 only for &,
=7/q,4=5,6,7,8,9. In these cases the numerical simula-

In|fi(k,t)|
)
o

—— N=100000
-12 1 —— N=50000
------------ N=10000
- --- N=1000
-16 . . . T
0.2 04 0.6 0.8 1
t (10° a.u.)
FIG. 5. The same as Fig. 4 for the systegis=7/5 and ¢,
=7/6. FIG. 7. The same as Fig. 6 faf,= 7/3.
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0 1000
/4 /6
1. X 100 ;
:; \'\' \\h NA 10 i
D ~2 3
S v
= = 1y
e
< -3
£
= —— N=100000 0;
—— N=50000
2 I [— N=10000 .
---- N=1000 v T V
1 10 100 1000 10000
5 Inn
0 0.2 0.4 s 0.6 03 1 FIG. 10. Mean square displacement computed from a single
t (10" a.u)

trajectory with 1.4,7,30, and 4910 collisions in a system with
¢,=ml6. As soon as the statistics is improved it is difficult to

FIG. 8. The same as Fig. 6 faf,= /4. distinguish the different curves.

to the collision time. To determine the consequences that th&ent[see Eq(16)], it should happen that,= a,, in such a

length of the time series has on the numerical results we ha‘(ﬁay that the difference (Ax)*) —3((Ax)2)2 should grow
used several time series with increasing length. linearly in time.

First we consider the mean square displacement. The re- oy numerical simulations give clear evidence that for our
sults are shown in Fig. 10 for different lengths of the timejjiards the Einstein relation for the super Burnett coeffi-
series. In aI.I the cases a diffusive behavior |s.clear. Th&ient is ill defined. We have numerically computed the
power that gives the growth of the mean square displacement,es for((Ax)*) and 3 (Ax)2)? for time series of different
in time is almost one, hence the Einstein relation for diﬁ“'lengths. For each curve we fitted the data to a functith
sion (15) is satisfied. + Bt+ v and extracted the coefficients; and a,. For hav-

'It i; interesting to compute hig4her or'der fluctuations. Toing a case to compare with, we have done the same evalua-
this aim we have calculate{Ax)®). This average grows iong for a Lorentz channdlL6]. For this system it is clear

quadr?tically in time ag,t*+ 8;t+ yy. In the same vein, as hat the coefficientsy; and a, get closer as soon as the
((A%) >2 ;Sat'Sf'eS the Einstein relatiofl5), the average giaristics is improvedsee Tables Il and Iil and Figs. 11, 12,
3((Ax)%)* also has a équadranc behavior with time, which 3nq 13, For the polygonal chain the results are drastically
can be expressed ast”+ B,t+ y,. Therefore, if there is & gigferent and drive us to the conclusion that there is not a
well defined Einstein relation for the super Burnett coeffi-\ya| defined super Burnett coefficient for these systems. So
we conclude from these results that the polygonal chain has

2 a well defined Einstein relation for diffusion, but not for the
super Burnett coefficient. These results were also observed in
0- our ensemble simulations. The fact that the higher moments
of Ax are not defined in a polygonal billiard has been previ-
= 21 TABLE II. Coefficients a; and a, for 3((Ax)?)%(t) = a,t?
i: + Bit+ vy, and((Ax)*) (1) = a,t?+ Byt + v, in the Lorentz channel.
= -4 N indicates the length of the trajectory over which averages are
E evaluated.
=
-6 NX10° 2 a,
84 7 0.06497 0.05737
14 0.05367 0.05103
35 0.05897 0.05796
-10 I+ 7 3 3 10 1 70 0.05645 0.05260
Int 140 0.06003 0.05914
300 0.06017 0.05955
FIG. 9. Inin(n(k,t))| vs Int for ¢,=/q(q=3,4,5,6,7,8,9). 350 0.06181 0.06152
The label on the right-hand side of each curve indicates the value of 490 0.06120 0.06125

g. The dotted line has slopel.
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TABLE Ill. The same as Table Il for the pseudointegrable chan- 6
nel (¢,=ml6). <(Ax)*>
e 3<(Ax)z>2
NX10° a, a; 41
7 0.003719 0.003822
14 0.004916 0.004591 2
35 0.005576 0.005315 _ (b)
70 0.005077 0.006768 ;! 0
140 0.004912 0.006875 °
300 0.00523 0.00675 °
350 0.00504 0.007102 4
490 0.005088 0.006907
2 4
ously studied by Dettmann and Cohidri]. Let us point out © @
that the disorder of the scatterers plays a role in their results : , , : . ,
while in our case the scatterers are ordered. 0 250 500 750 O 250 500 750 1000

n (Collision time)

IV. CORRELATION FUNCTIONS FIG. 12. Comparison of the fluctuatigAx)*) with 3((Ax)?2)?2

The nature of fluctuations contained in correlation func-for @ single particle simulation for the Lorentz chanria).is for a
tions plays a central role in the understanding of transporg|me series up o X10° collisions, (b) 7X10F, (c) 1.4x10", and
properties. From the behavior of some autocorrelation functd UP t0 4.9<10" collisions.
tions we can infer if the system will show some transport
property. In particular, because of the Green-Kubo formula€al continuous spectrum and fast enough decay of correla-

tion functions may present Gaussian fluctuations in their ap-
I d proach to equilibrium, in the sense of the central limit theo-
D= fo (vwordt, (17 rem. For such systems it is possible to have a well defined
transport coefficient. To study this question more deeply let
where the average is taken with respect to the proper invarids briefly introduce some concepts which will be useful in
ant measure, the decay of the velocity autocorrelation functhe forthcoming discussion.
tion is crucial to have a well defined diffusion coefficigfur Let us consider a dynamical systedr'(I", u), whered®'
a nice presentation of this subject we refef 24]). is a flow (t maybe discreteacting on a phase spatewith

For this relation to hold, the velocity autocorrelation func- an invariant measurg [33]. A dynamical system is said to
tion should decay fast enough. Therefore it is interesting tde mixing if for any pair of functionsf andg that belong to
analyze in more detail the properties of the correlation functhe Hilbert spacé{ of square integrable function&?(I", u.)
tions in our system. With respect to transport, systems witltorrelation functions decay in time, i.e.,

7 8
’;‘ ................ ’;
3 3 7
o 65 o
I° le
= )
g o =
g g
[>] 8 §1
2 2
b N
&
Z55- £
5 / g 4
(g "4 / o
x\v{r
r r 3 r T
1 10° 10’ 10° 10° 10° 10’ 10°
Length of the trajectory Length of the trajectory

FIG. 11. Graphical representation of data contained in Tab{e) land Table IlI(b).
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Ch()=Ch(1). (23
To study how statistical ensembles evolve we consider cor-
relation functions such as

Cly= eru(x)f(d)tX)g(X)— erw)f(x) frdu<x>g<x>.
(24)

If they decay to zero for any choice 6&ndg then we have

a system with the mixing property. It is relevant for our
purposes to consider the Fourier transform of the correlation
function, i.e., thespectral function

Sig(w)= f icdt & ICH(1). (25)

The spectral function contains information on how the sys-
tem evolves in time and which frequenciesare important
in such evolution. The frequencies can be real or complex.

4.9x 107 collisions. Figures 12 and 13 show how the super Burnett! N role of this frequency spectrum, in short gmectrumis

coefficient is well defined for the Lorentz channel but not for the
polygonal chain.

"mf dM(X)f(¢tX)g(X)=f d,U«(X)f(X)f du(X)g(x).
tmwd T r r
(18

The mixing condition implies a weaker propertyeak mix-
ing that requires the correlation functions to decay in th

mean
1 [t
Iim—j dr
tﬂoct 0

—J dM(X)f(X)J' du(x)g(x)
r r

JFdM(X)f(CDTX)g(X)

2
=0. (19

Another important property implied from mixing or weak
mixing is ergodicity which establishes the equivalence be-
tween the phase space and the time averages,

1t
fd,u(x)f(x)ZIim—f f(®™x)dr. (20
r tﬁ:x:t 0

e

better discussed in the context of spectral theories. Spectral
theories for real frequencies were developed by Koopman
[27] and Neunmanih28], in their context the spectrum may
have a discrete and a continuous component. A singular con-
tinuous spectrum may also be possil#é]. In addition there
is a spectral theory for complex frequencies that was devel-
oped by Pollicotf29] and Ruellg30]. The complex frequen-
cies are useful to deal with systems that show decay, either
exponential or algebraic, that can be characterized in terms
of the so-called Pollicot-Ruelle resonances. They are also
useful in the description of decay properties in chaotic scat-
tering[10,31. In this article we only consider the real spec-
trum.

The spectral analysis of a system starts fromebelution

operator U acting on the Hilbert spacé{=£?*",u) of
square integrable functions, with the scalar prod{fdy)
=[rf*(X)g(x)du(x). The evolution operator is defined
through the action of the flowb! asU'f(x) = f(d'x). Utis
unitary if ®' is invertible and therefore its spectrum is on the
unit circle. The properties of the flow can be described in
terms of the spectral properties of. The application of the
spectral theorem gives a spectral decompositiod oin all
its component$32-34.

In general we have a spectral resolution(f with the

At this point we can introduce the phase space correlatiofiorm

function of two observabletandg

Cly(h= eru<x>f<<btx>g<x>, (22)
and the time correlation function as
T (T
Cfg(t)=TI|mx?f0 drf(® X)g(PX). (22

In terms of these correlation functions ergodicity means

Ut:J dE, e et (26)

whereE,, is the spectral projector operator corresponding to
the real eigenvalue. The decomposition is complete in the

sense thaf dE,, is a resolution of the identity.

The nature of the spectrum can be analyzed if we have a
realization of a spectral measure associated with a particular
observable. For any functidrwithin £2(T", 1), in the ortho-
complement of the invariant subspace of unit eigenvalue,
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0.8

He=HOH -0y With E(wzoﬂszo, a spectral measure can o6 ] /6
be constructed ag(w)=(f|E, f). 0.4
The spectral measure is related to the autocorrelation -
function off in the following manner g _0.2'
é 0.4 1 /4
~ ~ . . = 0.2
Ch=(110')= [ (tlaE, he ™= | dugwre ™. z
" -0.2 4
@7 ¥ os
. ] 3
where we have used Eq26) and du(w)={(f|E, 4o ) z;
_<f||§wf>. In this manner the spectral measure associated O_WVWWMMMW
with f is the inverse Fourier transform of the autocorrelation 02 -
function of f. The nature of the spectrum is contained in 5 10 15 20 25 30 35 40 45 50

. . . t (a.u)
dus(w) or its cumulative function

FIG. 14. Velocity autocorrelation functions feb,= 7/6, /4,

J " dpg(0)=F(w). (29 ~and=/3.

@min
cover Eq.(17). To summarize, the spectral and correlation
functions are just different representations of the same ob-
?ect. Furthermore, they contain information about invariant
properties such as mixing, weak mixing, or ergodicity. In
. . . particular, for systems with continuous spectrum and fast
rise to adevil staircasetype curve forF¢(w). enough decay of correlations, generalized transport coeffi-
If for any choice off € 7/ the spectrum is continuous then cients may be defined and the Einstein relation and the

the system is mixing. However, if there is a point SpeCtrtuMgeen_Kubo formula are equivalent. In addition, the behav-
contribution the system cannot be mixing or even weak mix-

, - i “or of the spectral measure at zero frequency fixes the gen-
ing. The presence of the weak-mixing property without mix- g o1i-aq diffusion coefficient.
ing has been studied and related to the existence of singular
continuous components in the spectr{@i].

As it has been mentioned before, a system with continu- A. Numerical results
ous spectrum, and for which the autocorrelation function of
some observabledecays fast enough, may exhibit Gaussian,[io
fluctuations such thdt10,32

If there is a point spectrum thdf(w) will be a staircase
function. If on the other hand the spectrum is continuous th
cumulative function will be a continuous function and
dF{(w)/dw>0. A singular continuous spectrum will give

As we have already emphasized, the velocity autocorrela-
n function (VACF) plays an important role in the analysis
of diffusion because of the Green-Kubo formyl). If the
VACF decays in a convenient manner then there exists a well

T
J f(OX)dt—T(f), defined diffusion coefficient.

lim w| x 0 y[= L e ?2yz We have numerically obtained the VACF in the cases of

T—o ’ V2D¢T J2m) = ' ¢d,=l3, w4 and /6 for 10 particles, initially distributed

(29 at random in one fundamental cell, and integrated their tra-
_ _ o o . jectories over 2° time steps withAt=10"2. The results are
whereDy is a generalized diffusion coefficient defined by the shown in Fig. 14. The first point to notice is the oscillatory

variance form in the decay of the VACF, in contrast with the monoto-
1 . 2 nous decay in the Lorentz gas. In any case, the decay of the
D= lim — f f(DX)dt—T(f) _ (30) VACF can be. cpnadered as an |n.d|.cat|_on t_hat the systems
T2 T 0 K’ treated are mixing. Nonetheless, mixing implies that correla-
: tion functions decay foall observables and not just for the
The generalized diffusion coefficient is related to the autowvelocity. From Eq.(17) we can obtain the diffusion coeffi-
correlation function of by the Green-Kubo formula cient by integrating the VACF. In doing so we see that the
Green-Kubo formula gives results in good agreement with
D 1 drCL(7) 31) those obtained from the Einstein relation for diffusion. In the
2] . ff systemsr/3 the correlation function does not seem to decay

fast enough, and hence the diffusion coefficient diverges. See
with the condition lim_..(1/T)fT;d7|7/Cl{(7)=0. In  Fig. 15.
terms of the spectral functio®;(w) it follows then
2D,=S,1(0). (32) - - B. Spectral an-aly5|s |

It is also possible to extract information about the spec-

This equation links the behavior of the short frequencytrum from the VACF as previously discussed. If we use Egs.
modes with transport, encoded by the generalized diffusiofi25) and(27) we can obtain the spectral function. In Fig. 16
constantD; at dynamical level. In the case éFv we re- s plotted the spectral functions for the correlation functions
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0.6
05 ]
041
0.3 ]
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0.1
0.05 i /4

0

~0.05
0.5 ]
0.35 -
0.2 /3
0.05 |
0

/6

XN

66 132 198 264 330 —NIn2
t(a.u.)
FIG. 17. D, coefficient(see texk for the spectrum derived from
FIG. 15. The cumulative integral of the velocity autocorrelation the velocity autocorrelation function. The dotted line corresponds to

function (thin line) and ((x(t) —x(0))?)/2t (thick line). a line with slope—1.
numerically obtained, which are in good agreement with the 2" 5
expectations of Eq:32) for those cases in which correlations Xan=1In Zl #i(In,e)~—NDzIn2. (34)

decay.

The measure so reconstructed may exhibit interestinq;[
§ca|ing propertie$13,21], in particul_ar the correlat.ion and with the Hausdorff dimension of the measure. Thg coef-
information dimensions. The multifractal analysis of theficient is related to the integrated correlation function. In the

measure can be done as follows. The spectral interval is di- : . .
. . . . case of continuous spectrum the integrated correlation
vided in subintervaldy , (a=1, ... ). The generalized P g

dimensions of the measutbu(w), D1(ws), andD,(us), _ 1 [t
are the scaling exponents defined by cM(t)= YJ' d7|Cs(7)|? (35)
0

is known[21] that under certain assumptiobs coincides

X1,N—;ENl pilln)inmi(ly )~ —ND;yIn2, (33 of an observablé is expected to decay to zero as
Ci(t)~t P (36)
08
0.6 - w6
0.4 1
0.2 1
0
0.6 - /4
0.4 -
> 0.2 1
0
0.60 /3
0.40 1
0.20 -

0.00 T T T T T T — _8 T T
-2 -15 -1 -05 O 0.5 1.5 2 -2 0 2 4

o (a.u.) Int

vx((o) (a.u.)

S

ot ]

FIG. 16. Spectral functions corresponding to the velocity auto- FIG. 18. Integrated velocity autocorrelation functions; see Eq.
correlation functions in Fig. 14. (35). The dotted line corresponds to a line with slopé.
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To T

FIG. 19. Schematic representation of a polygonal billiard chain
put in contact with two heat reservoirs of temperatligeand T.

with D, defined in Eq(34). The multifractal analysis of the
spectral measure we obtaingke Fig. 1Yindicates thaD

is in all cases almost one, while our data is not precise
enough to give a good estimation Bf,. In any case, the
integrated correlation functions, see Fig. 18 and B%),
decay ag ™~ ; this suggests again that the systems could be
mixing. A more precise statement abdD} requires us to
have the VACF for longer time. This implies integrating a
much larger ensemble of particlé® improve the statistigs
further in time.

P(vy)

V. HEAT CONDUCTIVITY FIG. 20. Normalized velocity distributionv(, component In

. . (a) the distribution at the left heat reservoif = 1.00). In(b) the
We also studied the heat conductivity of the polygonalgisripution at the center of the billiard chain and(@ the distri-

chain. There is a major interest in simple models that may,tjon at the right reservoifTy = 1.05). The thick lines are the best
exhibit heat conductivity. A series of studié® which N0 Gaussian fitting of the histograms.

Markovian limit is involved has been devoted to one-
dimensional chains of nonlinear coupled oscillators and ther
is strong numerical evidend87] (see[ 35,36 for recent de-
velopments for the validity of the Fourier heat conduction
law in the so-calledling-a-ling (where oscillators exchange
energy via intermediate hard sphereshile the situation is of the fact that only,, is randomized, the, is finally dis-

con_siderably more complicated in the_ I:ermi'Pa‘St‘""'Ulanlributed according to a distribution that numerically seems
chain(where oscillators are coupled by third and fourth order,

i ¢ h b the chaoticity threshold very close to a Maxwell distribution. To illustrate this point
noniinear erm);w ere, even above the chaolicity thrésnold, ;o "paye computed the, velocity at each collision with a
heat cond.uc_t|V|ty Seems abnorrjﬁag]..Both _systems eXh'b.'t. heat reservoifwe remember that we keep this component of
exponential instability in numerical simulations, thus positiv-

it of L ‘ I bV b Hici he velocity unchanged during the collision with the heat
Ity of Lyapunov exponents cannot presumably be a SUTNCIeN} 4y ang evaluated its distribution. In Fig. 20 we show the
condition for inducing normal transport properties. More re-

" I heat t t has b red f ‘esults of a typical simulation for heat reservoirs with tem-
cently anomalous nheat transport has been reported for a (ﬁ)’eraturesTozl(a) andT;=1.05(). It is clear that they,
atomic one-dimensional ideal gg38].

In th f the Lorentz chanrjdls] normal heat con distribution is Maxwellian with the correct temperature, al-
ducti _te_casbe 0 g V(\)/ € i Ctac‘i . h'oh al hea col " though this component of the velocity is not taken at random
uclivity 1S observed. Ve will Study in whic Case‘ﬁi\.’&.l' during the collisions with the heat reservoir, as is the case for
ueg the heat conduction is normal in our polygonal billiards.

o X .
More recent result§12] suggest that it is possible to have Following Alonsoet al. [16] we computed the tempera-

Pormal hteat cznductiors E[\r;vthiﬁ ty[é)e of syst_em. I?Andlu(;te hea(sure field at the stationary state. To achieve this task we de-
r'rar?ts—ﬁ(;;dws?dezvci‘ 3:9 b.”%rde?h;(;seegvgrs 1‘; Thee r?e;uan ined a grid of points in configuration space; {y;), (i
'9 ' M '9. Ny,j=1,... Ny) around which there is a cel;; .

reservoirs are modeled by stochastic kemels of Gaussaphis set of cells defines a partition of the configuration space.

type, During the time evolution the particle crosses the Cgjlin

N;j; occasions; let us call, andE(ij) the time spent by the
particle and its energy during the visit to the cell (@
=1,... N;j)). We define a coarse grained temperature field

. o . T(ij) as the average
wherev is thex component of the velocity in the collision

with the heat bath at temperatufeThe minus sign is taken

the distribution(37). One may wonder if it is also necessary
to distribute thev,, velocity component according to a Max-

wellian distribution. In fact this is not needed in our case.
Actually, what happens is that after many collisions, in spite

+Me—v2/2T
t

P(v) (37

Nij

at the right-hand side and the plus sign at the left reservoir.

The Boltzmann’s constant is set to one. A comment is in = taBalil)

order here; in our simulations, when the particle collides T(ij)=(E)ij=—=; (39)
with the heat reservoir, thg component of the velocity is t

conserved and thhecomponent is changed in agreement with =1

066131-11



ALONSO, RUIZ, AND de VEGA PHYSICAL REVIEW E66, 066131 (2002

0

1 N
/s =i 2 AE. (40
N k=1

The stationary state is reached if for long enough tigpéne
heat flux is constant. In Fig. 21 we show a typical heat cur-
rent obtained during the simulations. It is clear how the heat
-4 1 current stabilizes at a constant value once the system reaches
the stationary state. We have numerically computed the tem-
perature field, as defined in E¢38), as well as the heat
current as a function of the system size. We have analyzed
how the heat flux scales with the system size. For a single
particle simulation and for a system withifundamental cells
(not to be confused with the cells defined for the evaluation
. . . of the temperatupewe have a flux,(n). In order to imple-
0.0 0.3 0.6 0.9 1.2 15 ment the thermodynamic limit correctly we should study the
t(109 a.a.) currentj,(n)=nj,(n) (for a density of one particle per fun-
damental cejl In our numerical simulations we found that

FIG. 21. Typical behavioffor ¢,=w/5) of the heat current at in(n) scales aSyn"S. We have to distinguish the casés
the boundaries as a function of time. After many collisions the_ /o and ¢,= /4 from ¢,=/q(q=5,6,7,8,9).

stationary state is reached and the current stabilizes at a constant For ¢,= /3 is clear that the heat flux is such that it leads

value. to an infinite heat conductivity coefficient. In this casge

_ _ _ _ . =0.72. For¢,=m/4 the heat current scales wih~1.63,
This procedure defines a two-dimensional field. As we havgynich yields a zero heat conductivity coefficient. All the
mentioned, the transport takes place alongxlrection so  gther systems have scaling exponents very close to/see
we will focus on thex—T(x,y) plane at some stages. Fig. 22.

Another quantity of interest is the heat flux at the station- The temperature fieldésee Fig. 23 are linear for small
ary state. The kinetic energy is constant within the billiardtemperature differences and show some structure induced by
and only changes when there is a collision with a reservoirihe geometry of the boundaries. We can conclude then that

A (10~% a.u.)

in which case it suffers a change in energy for ¢,=/q(q=5,6,7,8,9) the heat conduction is normal,
but not for the case&,= 7/3 and#/4, which are superdif-
AE=E;,—Eqy, (39) fusive and subdiffusive, respectively.

As noticed in[16] the temperature fields scale with length
as Tyo(X) =T y(X/L). In Fig. 24 we show the typical
with k an index for the collision. If we sum ovét of such  density plots of the two-dimensional temperature field. In all
events that take place over a tig we have for the heat the systems we have a complete consistency with the results

flux of the diffusive properties of the billiard chain.
-5 -2
@ T )
-7 -6
-9 1 -101
= =
£ £ F /s
=11 -14
n/3 /6
6 w7
-13 4 17 =18 4
13 18 8
/4 n/9
-15 T T T T =22 T T T T
0 1 2 3 4 0 1 2 3 4
Inn Inn

FIG. 22. Scaling behavior of the heat flux for the systetps- #/3,7/4 and /6 (a), and ¢,= 7/q (q=5,6,7,8,9)(b). The figures show
how the systemsb,= 7/3 and /4 have infinite and zero heat conductivity constant, respectively. The other cases show a scaling behavior
compatible with a well defined heat conductivity coefficient in the thermodynamic limib)lthe curves have been translated alongythe
axis in order to compare them.
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1.06 1.24

1.05 1.2 {
5‘/ 1.04 - 3 1.16 -
5] 5]
j::. 1.03 1 j::. 1.12
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& 101 & 1041

1 1-
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FIG. 23. Temperature profiles in the-T(x,y) plane for a system witl$,= /6, five fundamental cells anti,=1,T,=1.05(a) and
Ty=1,T,=1.2(b). The straight lines are the ideal Fourier profiles.

VI. CONCLUDING REMARKS sively, while for others the mean square displacement be-
haves in a strange way(either subdiffusively or

In conclusion, while one can agree that most of the as- e - .
pects in relation to the links between chaotic dynamics an uperdiffusively. On the other hand, the validity of the dif-

transport are more or less well known, much remains to ba!Sion équation has been explored through the study of the
done for nonchaotic systems with some degree of stochasticiSPersion relation for diffusion for long wavelengtfeee

ity, which has in this case a very different origin to the one inEAS: (5) and(10)]. . o

chaotic systems. In this regard, polygonal billiards are simple [N both cases our main conclusion is that there are some
prototype systems that constitute a natural step forward ifembers of the family of systems studied that satisfy the
the Study of the connections between transport and dynamEinStEin relation for diffusion. For these systems we also

cal properties. It is only recently that there is convincingshowed that the dispersion relation for hydrodynamic modes
numerical evidencg9,11] suggesting that some classes ofis compatible with the diffusion equation.

polygonal billiards may have well defined transport proper- Single particle simulations give us the same results. An
ties. Our goal in this work has been to go deeply in thesemportant point is that any member of the family has a well

matters, extending our previous research on the Lorentdefined super Burnett coefficient.

channel[16] to polygonal chains. The analysis of the velocity autocorrelation functions and

In our study of a family of polygonal chains we have their spectral functions lead us to the same conclusions. For
analyzed the diffusion of ensemble of particles as well as thénose systems that present a diffusive or subdiffusive behav-
heat conduction. Our strategy has been twofold. On ongy, the Green-Kubo formula holds and gives us the correct
hand, we computed the mean square displacement and Vegjitfusion coefficient(zero in the case of subdiffusiprThe
fied that for some members of the family it behaves diffu-gpectral function analysis is in agreement with these results.
The velocity autocorrelation functions oscillate and decay, so
such decay has to be analyzed more carefully, taking into
account the oscillations.

The multifractal analysis of the spectral measure reveals
that the Hausdorff dimension of the spectrum is probably one
for all systems. Our simulations do not allow us to give a
precise value of the correlation dimensibry. Nonetheless
there is numerical evidence that supports the statement that
the integrated correlation function decays a$ 2. Our
integrated autocorrelation functions decay-as . All this
data gives us indications that the polygonal billiards studied
may be mixing.

Finally, we have studied heat transport in the polygonal
chain and found that, naturally, those systems which present
diffusion also have normal heat transport. On the contrary,
for the systems with subdiffusiong(, = 7/4) the computa-
tions lead to a zero heat conductivity coefficient, and to an
infinite heat conductivity coefficient for the superdiffusive

FIG. 24. Density plot of the temperature field fos= /6, five ~ system (p,= m/3).
fundamental cellsT,=1, andT,=1.05. With respect to the nature of the nonequilibrium station-

80

100 200 300 400 500 600 700 800
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ary states for diffusion and heat conduction it would be in-
teresting to study if fractal or self-similar structures emerge,
as those observed for the Lorentz gas and other métié]s

As a last point let us mention that our results come from
finite time numerical simulations; it would be of great inter- In the same manner we define the mean kinetic energy as
est to have some mathematical results of these delicate mat-

1 rt
ne(zvt)ZEIOdTXE(Z_rT)' (A3)

1 [t
ters. Ez-1 [ drEr)sPe-r), a9
0
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APPENDIX: DEFINITION OF THE
TEMPERATURE FIELD

The point particle is located at=(x,y) at timet; the
number densityn(z,t) is defined as

n(z,t)=%ftd75(2)(z—r7), (A1)
0

where §4)(r) is Dirac’s delta. If we adopt aapproximate

representation 0d®)(r) as

?Xs(z_rt)i (AZ)

with x.(z—r;) the characteristic function of a cell centered
atzwith surfacee? such that is one if, is within the cell and
zero otherwise. Notice that foe—0 we recover Dirac’s

delta from Eq.(A2). For this finite resolution thecoarse-
grainednumber density is

f ArE(r)x.z—T,)
T(z,t)= °

: (A6)
f dTXE(Z_r’T)

0

If during the time interval (@) the trajectoryr . visits the
cell centered at Ntimes, and in each visit spends a time
then it follows from Eq.(A6) that

N
21 t,E(zt,)

a

Tzt)=——Fx——
>t
a=1

(A7)

If the timet is long enough we can reach a stationary state
andT.(zt) can be considered an approximation of the sta-
tionary temperature field of the system at scalelf the
two-dimensional coordinateis indexed byij we recover the
expressions used throughout the paper.
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