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Analytical approximation of the two-dimensional percolation threshold for fields
of overlapping ellipses
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Percolation of particle arrays is of high interest in microstructural design of materials. While there have been
numerous contributions to theoretical modeling of percolation in particulate systems, no analytical approxima-
tion for the generalized problem of variable aspect-ratio ellipses has been reported. In the present Wiork, we
derive, and verify through simulation, an analytical percolation approach capable of identifying the percolation
point in two-phase materials containing generalized ellipses of uniform shape and siZ@) axglore the
dependence of percolation on the particle aspect ratio. We validate our technique with simulations tracking
both cluster sizes and percolation status, in networks of elliptical and circular particles. We also outline the
steps needed to extend our approach to three-dimensional patétiipsoids. For biological materials, we
ultimately aim to provide direct insight into the contribution of each single phase in multiphase tissues to
mechanical or conductive properties. For engineered materials, we aim to provide insight into the minimum
amount of a particular phase needed to strongly influence properties.
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I. INTRODUCTION mented. In early work, Kirkpatrick's simulation$21]
showed that the percolation thresheld, i.e., the density or
The determination of minimum amounts of phases revolume fraction of the fiber phases at percolation onset, ex-
quired for percolation is a key first step, for example, inhibited a power law dependence upon bond fractipex-
designing materials for mechanicgl—3], filtration [4—6],  Pressible as
and conductivgd 7—9] properties. Percolation concepts have _ ot
. pe(v)*(v—rc)" 1)
also been used, at a systems level, to model disease trans-
mission[10—13 and to design sensor arrayist—16. Math-  This power law relation was also found to hold for conduc-
ematically, general percolation processes and phenomeriity in fiber arrays, near the percolation point. Pike and
have been studied since the early part of the last century videager22] also examined conduction and percolation phe-
development of exact solutions for the percolation of parnomena in stick networksamong others using two-
ticles in a finite or infinite field, and through Monte Carlo dimensional(2D) and three-dimensionaBD) Monte Carlo
simulations of percolation of particles. simulations; the effects of hard core interactions, probabilis-
Two primary means of estimating percolation points haveliC and deterministic bonding parameters, and various forms
been used extensively. One general methodology involvet?r the bonding function were specifically investigated.

the use of Monte Carlo simulations to assign particle place- IHere V\:et_derl;/e,r?nd Ve”fﬁl/ th_rou%r]l 3|mu|at|qn, "f{‘.n anafd;t/rt]l-
ments in a given field, for a number of “realizations.” The cal percolation technique allowing the approximation of the

resulting fraction of percolated cases is then used as th ercolation point in arrays of generalized ellipses, of uniform

5 . shape and size. For biological materials, we ultimately aim to
probability of percolation. The other general rT]emOdomgyprovide direct insight into the contribution of each single

involves performing a series expa_nsion of an exp.ression fo hase in multiphase tissues to mechanical or conductive
mean cluster size or other statistical parameter in order t roperties; this insight may ultimately be useful for validat-

study the convergence properties of a sefe818. This g selection hypotheses involving particular types or mor-
“series expansion method” has been widely used as a powpnologies of tissué23]. For engineered materials, we aim to
erful toql to study both lattice percqlaﬂon and continuum provide insight into the minimum amount of a particular
percolation problems. It has been widely presumed, in factynase needed to strongly influence overall properties; this
that such solu'uons_ to percolation problems are derivablg probably be useful in the design of materials, e.g., the
only for a few special cases of ordered arrays of bonds angetermination of the amount of additives needed for signifi-
sites, or arrays of circular particl¢$9,20. Percolation phe- -gnt improvement of conductivity in composite media. We
nomena in other particle networks, e.g., arrays of fibers, havgajigate our solution using Monte Carlo simulations, and
been investigated primarily using numerical models for spey|so ysing prior analytical techniques for circular particles

cific cases(e.g., fiber aspect ratio&/D). , (the simplest case in the present theoretical development
Our present interests center on the design of heteroge-
neous materials containing various shapes of particles, in- Il. BACKGROUND

cluding fibers, which we can view generally as high aspect-
ratio elliptical or ellipsoidal particles. The fact that higher
aspect ratio phases percolate at lower volume or area frac- The technological importance of design near the percola-
tions than lower aspect ratio phases has been well docdion point cannot be overstated; selection of minimum

A. Conduction, conductive additives, and percolation

1063-651X/2002/6@)/066138)/$20.00 66 066130-1 ©2002 The American Physical Society



Y.-B. YI AND A. M. SASTRY PHYSICAL REVIEW E 66, 066130 (2002

amounts of additive phases reduces, cost, mass, and allows a
greater choice of manufacturing approach. Sastry and co-
workers [1,2,7,8, present wolkhave extensively investi-
gated transport in stochastic fibrous networks through simu-
lation and closed-form semiempirical approaches.

1. Aspect ratio, conduction, and percolation

A number of specific results were obtained for materials
relevant to battery technologies, wherein fibers of aspect ra- (@) ®)
tio of 50:1 and 100:1 were examined for their conductive 5 1 gschematic of Penrose's graph cond@gl, showing(a)

properties[7]. For example, at lower volume fractioi8— ¢, hossibleconnectedgraphs in a three-site problem, afig) a

10%) a significant advantage was found for use of highconnectedyrapha (formed by solid linesand adisconnectegraph
aspect-ratio fibers as conductive elements. For example, Wit§ (formed by dashed lingsn a random graplG consisting of six
no additional conductive mass, a fourfold increase in thesjtes, G=A+B.

aspect ratio(the ratio of fiber lengthL to diameterD) re-

sulted in a 50-fold improvement in conductivity, at 5% vol- tanq the analytical result to ellipses; the aim is to span the
ume fraction. Comparisons between two fiber types, havingnqerstandings gained from analytical approaches in circular
two different lengths relative to the simulation domain edgeyrrays, and direct simulation in fiber arrays, so that variance

length L, (L/L,=1L/D=100 andL/L,=1.5L/D=100), iy percolation, and dependence upon aspect ratio, can be bet-
showed that the effective conductivity and variance in consgr explored analytically.

ductivity are both relatively insensitive to the alteration of
staple lengti 7] in that regime of “window” sizes, or the o . . ) .
relative length of the simulation domain edge to the particle B- Estimation of the percolation point: Circular particles

size. The earliest investigation of this problem is attributable to
Hann and Zwanzi§28], who used a power series in number
2. Property variance near the percolation point density to systematically study the distribution of cluster size

As discussed, semiempirical models of percolation infor overlapping circles and squares in two dimensions, as

complex particle arrays can be used to deterministically pre€!l as spheres and cubes in three dimensions. Coniglio

dict a single-valued conductivity at a given particle density,&t @ [17,18 developed a general formalism to obtain a
though the variance in conductivity of real or simulated ar-Cl0S€d form series expansion of the average number of clus-
rays near the percolation point can be quite high The ters of parucles. That work fqlloweq Hill's |n|t|{al effort[QS_J]
effect of the staple aspect ratio on variances in simulate§tudying physical clusters with a diagrammatic expansion, to
effective conductivities was previously investigated using di-determine correlation functions. Similar expressions have
rect simulations of conduction in fiber arrays, with fibers of &S0 been reported using graph the¢Bg] and the con-
aspect ratioL/D =10 and 100, respectivelyL(L,= 1.5 in tinuum Potts mode(CPM) [30]. In this section we briefly

both cases [8]. Variances were approximately 20 times reiterate_the approach of th_e earlier workgg$—33 for de-
greater in the former case, demonstrating that the variancd§rmination of the percolation threshold for arrays of spa-
were strongly influenced by fiber shape. Therefore, not onlyi@lly uncorrelated, 2D circles.

can significant improvements in conductivity be achieved ASSUming circles are positioned @ty r5, ... I} respec-

with modest changes in fiber geometry, but variances can bively, we define the functiog(r;,r;) as the probability that
much better controlled. two circles positioned at;, r; are connected, by closing the

edge{r;,r;}. We define graplG as a cluster formed by con-
necting each pointsr(,r;) in{ry,r,,...,r} to the group; an
illustration of the connected graph concept is given as Fig. 1.

o . We find by the arrival metho@l31,43 that the number of
Semiempirical approaches generally underestimate thgossible ways to connektparticles is

conductivity of fiber array§21,24], as calculated from an

exact resistor network approach. The percolation threshold

for fibers of aspect ratios 100 is around 4.2%25,26| (and

also confirmed by experimental observations, ¢2y]). Per-

colation models are not valid below that point, though some ~ x{(2< ko—1)ke~k1...(2ki-a~ki-a—yki~ki-iy = ()

low-density networks will percolate, with high variance in

properties below the percolation point. with
Clearly, simulations allow direct determination percola-

tive properties of specific types of fiber arrays. Insight into Ci(i—1)(i—j+1)

the advantage of intermediate aspect ratio particles, for the l= .

full range between circles and high aspect ratio fibers, would !

be of high technological significance. Thus, we begin again

with the problem of percolation in arrays of circles, and ex-or equivalently,

3. Comparison: Recent simulations with semiempirical
approaches

ki —Kk, ki 1—ki_ 2 bt 2
Cll & Cimt 2200k kg™ Gl
1=Kkg<kp--<kj=k (Y i -1

, ©)
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(k—1)! e—rloarir®ds ©)
1=kg<ky--<ki=k (Kz=Kg)!---(Ki—kj_1)!

, i A combination of these expressions yields the probability
x 2Lko=kiF (kg =ko) -+ (ki =k _1)"1/2 that an arbitrary Poisson particle lies in a cluster consisting

(2 ¥o— 1ykeka. (2Kt 1)k, of k particles as

k-1
4 Pk:(lf—l)! fdszj dss---fdsKe’Pfgl(”<k))dsgz(r<k>),
(10

There are four possible ways to connect three particles, and
38 ways to connect four particléBlill [29]). This result can
be used to verify Eq4).

We define functiorg, as the probability that a circle cen-
tered atr is connected to the grapB, which is formed by
closing edgesr(,r;) in {ry,r,,....,r . Thatis,

where the factorial term reflects the interchangeability of the
particle positions within the cluster. The above equation is
equivalent to the expression proposed by Penf83g
The percolation threshold can be evaluated after expand-
ing the expression for mean cluster size, in a series. The
convergence properties of the series can then be determined
k as functions of bonding criteria. Quintanilla and Torquato
gy (r;r®Yy=gq(riry,ro,...r0=1-1[1 [1—g(r,rp]. [31,37 used Penrose’s integral expressi@3] to evaluate
=1 cluster properties for arrays of circles, and obtained power
() series expansions for cluster properties to estimate percola-
tion threshold. We define “mean cluster density; as the
We defineg, as the probability that the grapB is con-  particle-averaged number of clusters containkngarticles,

nected, per andn, can be written

ne=P,/k
9(r*)=go({r1,12,....1}) K
pk—l
=1/k—Jd fd Jd
=3 |IT orirpIl (2-0rirpl]. ) |<k—1>! R
e P! 91<”<k>>dsgz(r<k>)] : (11)
where the summation is taken over @lnnectedyraphsA on

{rq,r5,....,ry}. The first product is over all edges & the . . . .
second product is over all edges locatedia G — A or alternatively expressed in Taylor series expansion follow-

We use the customary definition of a cluster, i.e., a clustef"d the approach of Quintanilla and Torqu481,32 as

is an isolated group of particles in which there exists at least
one unblocked path between any two member particles. Us-
ing this definition, and the definitions of functiogg andg,, * koL

Penrose[33] independently derived an integral expression =2 (—1)'WJ' dszf dsg---f ds,
for the probability that an arbitrary Poisson particle lies in a 1=0 ( it

cluster consisting ok particles(or equivalently, a formula

for the density of such clustersusing the conventional X
theory of statistics.

A brief description of Penrose’s technique follows. As- The evaluation of each coefficient in the series in E®)

suming that the first particle, is fixed at the origin of the  oq,jires the same amount of computational effort as the di-
coordinate system, the probability tHaparticles are found o~ computation of, via Eq. (11). The coefficients can be

in small regions around points,....,rJ is given by used to obtain the low density expansions of the cluster sta-
tistics, including mean cluster siz& and average cluster

ng= Pk/k

f ga(r;r*yds| ga(r). (12

pds,pds;...pds.=p* tds,dsy - -ds, (77 numberQ, via
wherep is particle density and is area. The probability that S=> kP=2, k’n,=2, cp' (13)
thesek particles form a cluster is k=1 k=1 =0
y and
ga(r). ®

Qzl/ > nk:]-/ > api=>, bip', (14
k=1 i=0 i=0

From the theory of statistics, the probability that no Poisson
point is bonded to any dfr,r,,....r} (i.e., the probability
that the cluster is isolat¢dan be expressed as where coefficientd; anda; are related as
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+t 3 (19

The percolation thresholds can be estimated by checking the
convergence criteria of the power series of the above cluster
statistics. This can be done efficiently using the Pad approx
mants[34], in which the power series is approximated as a
ratio of two series, with the denominator being a series O(Nherel

order one. For example, we can obtain

i Eim:O'Aipi

S=D cip==——=—+0(p""?). 16
2 cr'=g 1g,, O™ (16)

The percolation threshold is reached when the seSiel
verges. Therefore,

Bo 1
pc™ B_l (17
IIl. METHODS

A. Approximation of the analytical solution

1. Integral expression for the problem of oriented particles

Penrose’s formula for the density of clusters was derive

PHYSICAL REVIEW E 66, 066130 (2002

i (X;;,6))

FIG. 2. Schematic of the geometric information required for the
igquisized ellipse problem. The orientation an@is zero for ellipse
A, and — 7= #=< 7 for other ellipses.

n Is a probability distribution function. Note in this
formula thatp is replaced by* = p/ 7, when the integration
domain isée(0,7). For the problem of identical ellipses
whose geometric centers are positioned according to Poisson
process, we have explicitly

p*kfl
nk:TJ dxzf dyzf d02---f dxkf dyy

Xf dgke*p*fgl(r;r<k>)dxdyd(fgz(r<k>), (19)

wherex;, y;, 6, are thex position,y position, and orienta-
tion angle, respectively, for thigh ellipse,i=2,...k.

2. Bonding criterion for ellipses

For two circles, the bonding, or overlap, criterion may be
Juritten as simplyd<R; +R;, whereR; andR; are the radii

in the context of Poisson points. In fact, the formula can beP! the two particles, and is the distance between their cen-

extended to the more general problem in which particles wit
a fixed shape are oriented at random angles. To do so,
introduce an additional degree of freed@rto the expression
for cluster density. For the ellipse problem, in particul@r,
can be defined as the inclination angle of the major axis with
respect to the horizon, as shown in Fig. 2. The integration is

thus performed over(x,y, #) instead ofr (x,y).

The previous integral equations assumed that particles
were identical. However, we can also introduce probability
distribution functions for any geometric parameter describ-

ing the particleqe.g., radi), in the integrand, as

p*kfl
M= f---ff(l&”,l<2'>,...>

XE(1P),.. e eee I T0T0E) gy iyl -ds

X ga(r)dIPdISY- - d1Pd1- - dsydsg - -ds,
(18)

Hers. For ellipses, the connection status can be analogously

wietermined by the numerical solution of their combined

equations, as

[(x—x;)cos;+(y—y;)sin6;]?
3.2

N [(x—x;)sin @ — (y—y;)cos6;]?

02 ~1=0

(20

on a particle-by-particle basis. The existence of real solutions
implies that the two particles are connected. This method is
tractable only for relatively small-scale problems; for practi-
cal materials systems, the approach is extremely computa-
tionally intensive. In view of this, an alternative method was
developed. We assign one of the particles a zero orientation
angle, then eliminate one of the unknowns in the governing
equations of two ellipses, leading to an equation with a
single unknown. The sign of the corresponding function
value is then checked within the domain. The two particles
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are connected if the sign changes at least once throughout the
domain or the function has a zero value somewhere. In the
case of identical ellipses, an even more efficient algorithm
involving a contact functior{35,36 can be introduced to
determine whether the ellipses overlap or not: assuming one
ellipse is centered at the origin and one is centered@l/()

with relative orientatiorg, the contact function is defined as

W =4(Hi—3H,)(H3—3H)—(9—HiH,)?, (21
where

Hy=3+ (y— Ly)2sir? 6— (xo/a)*~ (yo/b)? (22

and
FIG. 3. Schematic depiction of the simulation algorithm for

Hy=3+(y— 1/7)2 sir? 6— (Xo COSO+Yg sin 9)2/a2 identifying percolation in a stochastic network system.
— (Yo COSO—Xgsin )%/ b2, (23 2. Detection of percolation

If W is negative, the two ellipses overlap. The two ellipses A variety of techniques, including the so-called "burning

overlap if and only if¥, H, andH, are all positive. If¥ algorithm,” or “forest-fire model,” for lattice percolations
=0, the two ellipses ar’e téngent ,20\ contact functioﬁ for dif- [38-40 have been develqped to determine percolation status
' : of a network. Here, we introduce an analogous algorithm,

ferently sized ellipses can also be derived, and will be pre- hown schematicallv in Fia. 3. The particles in contact with
sented as part of future work. In computer realization, inputsS y 9. °. P

include lengths of the major and minor axes, and orientatiof " arbitrary side of the window are first identified. These

. i particles(black circles are assigned to clags The remain-
thge!(rariiﬂ;ei?ig eeliljlgisreosglrrlégqﬁl) through(23) are used to der of the particles in the networtwhite circleg are as-

signed to clas®. Connections between classksandB are
then examined. Members 8fintersecting members & are
reassigned to clas#; the original members ofA (gray
For the circle problem, evaluation of the integrals requirescircles are reassigned to clag The process is repeated

knowledge of the union area kfcircles. Kratky[37] showed  until no additional connections are found among members of
that the area of intersection of four or more circles can bea andB. A system is percolated if and only if particle cla@s
determined via linear combination of the areas of interseCspans opposite sides of a simulation window. The percolation
tion of two or three circles. Using this result, the union vol- probability for the networkp, is then simplym/n, wheren is

ume can also be determined exactly, apctan be obtained the total number of simulations, amd is the number of
with an excellent accuracy. In the ellipse problem, howeversimulations in which percolation occurred.

there is no such equivalent and an integrand expression is not
available explicitly; the integrals must be evaluated by defi-
nition. But we note that the integration domain can be greatly
reduced by restricting calculations to the relatively small por-  Analytical approximations of cluster densities were com-

3. The integration method

C. Validation of analytical approach

tion of the space in which particles are connected. pared to those obtained by simulations. A standard unit simu-
lation window containing circles of diameter 0.04 were used
B. Simulation algorithm in the simulations. Good agreements were obtained, with a

maximum difference of less than 6% for cluster densities
andn;. These results were also compared to those ob-
ed by other researchers, including Quintanjitd,32

In our simulationsi identical elliptical particles were )
placed in a unit cell via random generations of centerpoint%ﬂ;1

(xi,yi) and major axis orientationsy(), restricting center- anq Han28]; good agreement was observed in both cases
points to those lying in the simulation window. We verified ;¢ \vell. Comparisons of percolation thresholds obtained ana-
that the extraneous particle ends lying outside the S'm”|at'°ﬂ/tically and numerically are presented in Fig. 4. The agree-
Wind_ow introduced negligible error in calculated volume ant is also acceptable, with an error less than 10% of the
fractions. threshold value.

The error arises from several sources. First, the analytical
approach assumes an infinite window size. Second, the simu-

The computational algorithm for determinimg follows  lation results were obtained using a finite number of com-
from the definition of a cluster. For each case, the total numputer simulations, and thus are themselves statistical quanti-
ber of clusters of sizk (k=1,2,...) is counted, anal, is then  ties. Third, percolation thresholds were analytically
simply the total cluster numbers of sikelivided by the total ~ estimated by truncating the power series expression, taking
number of particles in the system. the first few terms as an approximation; thus, the numerical

1. Determination of cluster properties
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0.8 0.18
i 0.16 - —8— n2, simulation
. 0.7 —=— n3, simulation
:— 0.61 0.14 —o— n4, simulation
s
g 0.5 012 1
© ntheory 0.1 -
simulation
3 < 008 |
> 0.37
8 0.06
Z 0.2
° 0.04
0.11
0.02
0- T T -
1 2 4 10 0 W ‘
0 0.2 04 0.6 0.8 1

aspect ratio, y
volume fraction, f

FIG. 4. Validation of the analytical solution with simulations for
percolation thresholds arising in circular and elliptical arreyai-
ous aspect ratigs

FIG. 5. Simulation results for cluster density for arrays of
circles. The simulation window is a unit square; circular particles
are of radius 0.05. Averaged results for 2000 simulations are shown
at each point, with error bars farlo (standard deviationn, is the
integration required in the analytical approach lead to an unnumber of clusters of sizie divided by the total number of circles.
avoidable inaccuracy. Reduction of this error can be obtained

by using smaller integration intervals, which, naturally, ré-and smaller clusters disappear at high volume fractions.

duces computational efficiency. Thus, the curves are shifted to smaller volume fractions with
increasing aspect ratio.
IV. DISCUSSION In one of our parametric studies of percolation probability,

. . - the particle shape was altered such that the area of the par-
Development of improved techniques for the prediction Ofyioo'\yas held constant for various aspect ratio particles. This

percolative properties of multiphase materials is crltlcal.study is relevant for applications in which, for example, the

Multiphase materials not only are utilized widely in exploit- condyctive mass is limited, but high conductivity is desired,

ing multiple functionalities in engineered materials, but areanq 5o acceptable particle shapes must be selected. Our re-

also abundant in most functional biomaterials. In biomaterisyts show thap increases monotonically with volume frac-

als, multiple phases are physiologically necessary, for extion f, and that the-f curve appears to shift horizontally with

ample, to simultaneously maintain metabolic function, with-an unchanged slope, as shown in Fig. 7. This implies that the

stand mechanical loads, and accomplish self-repair. In botblope is a function of particle area only, while the position of

natural and engineered materials, the first important task ithe p-f curve is related toy. That is, we postulate

the analysis of mechanics or transport properties is to deter-

mine which phases are “percolated,” i.e., form continuous, p=0(f+I'(y).\), (24)

domain-spanning paths from one boundary of interest to an-

other. In biomaterials, this analysis can help determine whickyhere we define the ratio of the major and minor ellipse axes

phases may be selected, in an evolutionary context, for thejf e the aspect ratioas y=a/b and A=1/R; R is the

contribution to mechanical properties of a heterogeneous mgsquivalent particle radius, d®= \/ab.

dium [41,42.

0.14

. ) —8—n2, circle
A. Effect of particle aspect ratio 0.12 —*— n4, circle
i . —o— n2, ellipse, y=10
It is well known that particle shape strongly affects cluster 0.1 —— n4, ellipse, =10

statistics and percolation probability in network systems.
Figure 5 shows typical simulation results for cluster density
in the overlapping circle problem. The error bars are standards g4
deviations for simulations performed at a given volume frac-

tion. At low density, most particles are isolated, and therefore 004
smaller clusters dominate; at high density, however, particles
are likely to be interconnected and thus larger clusters domi-
nate. There exists a certain volume fractignat which the 0
cluster density is maximized; this volume fraction varies for
clusters with different size, for instancé;=0 and f,

=0.18. Figure 6 shows how the aspect ratio affects the clus- F|G. 6. Comparison of simulation results for circular and ellip-
ter density. As the particle aspect ratio increases, there akfal arrays, wherein both ellipses and circles are of area 0.0025.
more possible ways for particles to connect, thus the numbegircle radii are 0.05; ellipses have minor axes 0.158 and major

of clusters of siz& (k>1) increases at low volume fraction, axesb=0.0158.

0.08

0 0.2 0.4 0.6 0.8 1

volume fraction, f
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1.2 0.8
o7 & —&— theory
1 e ‘ - & - simulation
. § 06
= 08 g
% —
2 ()
a i €
g 0.6 particle areas: =
= 7ab=0.0025 g
§ 04 ——y=1.0 g
8 —=y=15 £
8 , ——y=2.0 ©
0.2 —>—y=4.0
——y=10
0 - - :
0 02 0.4 0.6 0.8 ! 0 20 40 60 80 100 120
volume fraction, f aspect ratio, y

_'_:IG' /. Ef_fe‘?t of the particle gspect ratlo_ on pergolauon prob- FIG. 9. Comparison of percolation thresholds determined via an
ability for elliptical arrays. Equivalent particle radiug= yab analytical solution and simulation for the elliptical arrays. Analyti-
=0.05. Averaged results for 1000 simulations are shown at €acy| sojutions were obtained using the series expansion method.
point. Simulation results are from Xig37].

_ In another parametric study, we studied the effect of par- |, \he case of an infinite domain, the percolation thresh-
ticle shape on percolation probability by changing the lengthy g in terms of volume fraction, is irrelevant to the particle
of the major axis while the minor axis was held constantgize and can be expressed as a function of the aspect ratio
thus, the particle area changed for different aspect ratios. Weqm, the analytical solution. Figure 9 shows how the perco-
found that the slope of thp-f curve changed as the aspect |4iion threshold changes with the aspect ratio, using the se-
ratio changed, as shown in Fig. 8, consistent with our previtjes expansion technique. Also shown in Fig. 9 are the simu-
ous finding that the slope of thef curve was a function of |4tion results obtained by XiE36] for comparison. The two
the particle area alone. . curves show good agreement. “Mild” ellipses, with the as-
We must point out that the expressions of functbrand ot ratio % y< 1.4, exhibit percolation thresholds almost
I' require knowledge about the two-point connectednesgyactly those of circles, although the analytical approach
function[43-43. In fact, suggests that there is some change in the percolation thresh-
old due toy even in these cases.

p:ffc(xlyxz)dxldXZ (25
B. Effect of window size
For an infinite domain, percolation status is binary and

wherex, andx, denote the two boundaries at the direction deterministic: the network has only one status—percolated or

of percolation. Once the two-point connectedness function L,
. e . not percolated. For percolated cases, a cluster of infinite size
C(X1,Xy) is known, it is fairly simple to evaluatp. How-

ever, the derivation of is beyond the scope of this research
and will be likely discussed in a future paper.

1.2

1.2 |
e T
R R B =0 o B £ 08 -
= 5 |
= E ——A=5 [
| 08 o -
3 & 06 1 |—=Ar=10 I
S 56 minor axes: é +— A =25 y
é b=0.05 ?g; 04 1|7 A =50
% 0.4 —a—y=1 g,_ ===\ =00, by least square estimate
5] —e— y=3
%02 —8—y=5 02
— y=10
o] ; (O T
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
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FIG. 8. Effect of the particle aspect ratio on percolation prob- FIG. 10. Effect of particle size on percolation probability in
ability for elliptical arrays. The minor axib is 0.05 for all cases. elliptical arraysA =1/R, andR represents equivalent particle radius
Averaged results for 1000 simulations are shown at each point. R=\/ab.
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exists somewhere in the network, and the probability of perwhenf=<f_.. The effect of particle sizéor equivalently, the

colation is one. For unpercolated cases, only finite clustergelative window sizg on mean cluster density was also ex-

arise, and the probability of percolation is zero. amined here, with only a slight effect observed. Thus, we
For a finite domain, however, the percolation status isconclude that the boundary conditions generally do not have

probabilistic. Figure 10 shows the dependence of the percasignificant effects on statistical cluster properties in terms of

lation probability on the window size for the uniform circle mean values, but do alter standard deviations.

problem. We studied this problem by varying the circle di-

ameter while maintaining constant window size. The perco-

lation probability P is a function of bothA and y. We find ACKNOWLEDGMENTS

that the slope of the probability curve becomes vertical as the

window size increases. When the window size becomes in- Support for this work, provided by DARPA and ONR

finitely large, the curve has a sudden jumpfgt0.67 and through the Synthetic Multifunctional MaterialsSMFM)

the percolation probability curve is reduced to a step functiorProgram(Dr. Leo Christodoulou and Dr. Steve Fishmas

at the percolation threshold., indicating the system is un- gratefully acknowledged. Support from an NSF PECASE
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