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Analytical approximation of the two-dimensional percolation threshold for fields
of overlapping ellipses

Y.-B. Yi and A. M. Sastry
Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2125

~Received 14 May 2002; published 20 December 2002!

Percolation of particle arrays is of high interest in microstructural design of materials. While there have been
numerous contributions to theoretical modeling of percolation in particulate systems, no analytical approxima-
tion for the generalized problem of variable aspect-ratio ellipses has been reported. In the present work, we~1!
derive, and verify through simulation, an analytical percolation approach capable of identifying the percolation
point in two-phase materials containing generalized ellipses of uniform shape and size; and~2! explore the
dependence of percolation on the particle aspect ratio. We validate our technique with simulations tracking
both cluster sizes and percolation status, in networks of elliptical and circular particles. We also outline the
steps needed to extend our approach to three-dimensional particles~ellipsoids!. For biological materials, we
ultimately aim to provide direct insight into the contribution of each single phase in multiphase tissues to
mechanical or conductive properties. For engineered materials, we aim to provide insight into the minimum
amount of a particular phase needed to strongly influence properties.

DOI: 10.1103/PhysRevE.66.066130 PACS number~s!: 64.60.Ak
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I. INTRODUCTION

The determination of minimum amounts of phases
quired for percolation is a key first step, for example,
designing materials for mechanical@1–3#, filtration @4–6#,
and conductive@7–9# properties. Percolation concepts ha
also been used, at a systems level, to model disease t
mission@10–13# and to design sensor arrays@14–16#. Math-
ematically, general percolation processes and phenom
have been studied since the early part of the last century
development of exact solutions for the percolation of p
ticles in a finite or infinite field, and through Monte Car
simulations of percolation of particles.

Two primary means of estimating percolation points ha
been used extensively. One general methodology invo
the use of Monte Carlo simulations to assign particle pla
ments in a given field, for a number of ‘‘realizations.’’ Th
resulting fraction of percolated cases is then used as
probability of percolation. The other general methodolo
involves performing a series expansion of an expression
mean cluster size or other statistical parameter in orde
study the convergence properties of a series@17,18#. This
‘‘series expansion method’’ has been widely used as a p
erful tool to study both lattice percolation and continuu
percolation problems. It has been widely presumed, in f
that such solutions to percolation problems are deriva
only for a few special cases of ordered arrays of bonds
sites, or arrays of circular particles@19,20#. Percolation phe-
nomena in other particle networks, e.g., arrays of fibers, h
been investigated primarily using numerical models for s
cific cases~e.g., fiber aspect ratios,L/D).

Our present interests center on the design of hetero
neous materials containing various shapes of particles,
cluding fibers, which we can view generally as high aspe
ratio elliptical or ellipsoidal particles. The fact that high
aspect ratio phases percolate at lower volume or area
tions than lower aspect ratio phases has been well d
1063-651X/2002/66~6!/066130~8!/$20.00 66 0661
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mented. In early work, Kirkpatrick’s simulations@21#
showed that the percolation thresholdrc , i.e., the density or
volume fraction of the fiber phases at percolation onset,
hibited a power law dependence upon bond fractionn, ex-
pressible as

rc~n!}~n2nc!
t. ~1!

This power law relation was also found to hold for condu
tivity in fiber arrays, near the percolation point. Pike a
Seager@22# also examined conduction and percolation ph
nomena in stick networks~among others!, using two-
dimensional~2D! and three-dimensional~3D! Monte Carlo
simulations; the effects of hard core interactions, probabi
tic and deterministic bonding parameters, and various fo
for the bonding function were specifically investigated.

Here we derive, and verify through simulation, an analy
cal percolation technique allowing the approximation of t
percolation point in arrays of generalized ellipses, of unifo
shape and size. For biological materials, we ultimately aim
provide direct insight into the contribution of each sing
phase in multiphase tissues to mechanical or conduc
properties; this insight may ultimately be useful for valida
ing selection hypotheses involving particular types or m
phologies of tissue@23#. For engineered materials, we aim
provide insight into the minimum amount of a particul
phase needed to strongly influence overall properties;
will probably be useful in the design of materials, e.g., t
determination of the amount of additives needed for sign
cant improvement of conductivity in composite media. W
validate our solution using Monte Carlo simulations, a
also using prior analytical techniques for circular partic
~the simplest case in the present theoretical developmen!.

II. BACKGROUND

A. Conduction, conductive additives, and percolation

The technological importance of design near the perco
tion point cannot be overstated; selection of minimu
©2002 The American Physical Society30-1
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amounts of additive phases reduces, cost, mass, and allo
greater choice of manufacturing approach. Sastry and
workers @1,2,7,8, present work# have extensively investi
gated transport in stochastic fibrous networks through si
lation and closed-form semiempirical approaches.

1. Aspect ratio, conduction, and percolation

A number of specific results were obtained for materi
relevant to battery technologies, wherein fibers of aspect
tio of 50:1 and 100:1 were examined for their conduct
properties@7#. For example, at lower volume fractions~2–
10%! a significant advantage was found for use of hi
aspect-ratio fibers as conductive elements. For example,
no additional conductive mass, a fourfold increase in
aspect ratio~the ratio of fiber lengthL to diameterD! re-
sulted in a 50-fold improvement in conductivity, at 5% vo
ume fraction. Comparisons between two fiber types, hav
two different lengths relative to the simulation domain ed
length Lu (L/Lu51,L/D5100 andL/Lu51.5,L/D5100),
showed that the effective conductivity and variance in c
ductivity are both relatively insensitive to the alteration
staple length@7# in that regime of ‘‘window’’ sizes, or the
relative length of the simulation domain edge to the parti
size.

2. Property variance near the percolation point

As discussed, semiempirical models of percolation
complex particle arrays can be used to deterministically p
dict a single-valued conductivity at a given particle dens
though the variance in conductivity of real or simulated
rays near the percolation point can be quite high@8#. The
effect of the staple aspect ratio on variances in simula
effective conductivities was previously investigated using
rect simulations of conduction in fiber arrays, with fibers
aspect ratioL/D510 and 100, respectively (L/Lu51.5 in
both cases! @8#. Variances were approximately 20 time
greater in the former case, demonstrating that the varian
were strongly influenced by fiber shape. Therefore, not o
can significant improvements in conductivity be achiev
with modest changes in fiber geometry, but variances ca
much better controlled.

3. Comparison: Recent simulations with semiempirical
approaches

Semiempirical approaches generally underestimate
conductivity of fiber arrays@21,24#, as calculated from an
exact resistor network approach. The percolation thresh
for fibers of aspect ratios;100 is around 4.2%@25,26# ~and
also confirmed by experimental observations, e.g.,@27#!. Per-
colation models are not valid below that point, though so
low-density networks will percolate, with high variance
properties below the percolation point.

Clearly, simulations allow direct determination perco
tive properties of specific types of fiber arrays. Insight in
the advantage of intermediate aspect ratio particles, for
full range between circles and high aspect ratio fibers, wo
be of high technological significance. Thus, we begin ag
with the problem of percolation in arrays of circles, and e
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tend the analytical result to ellipses; the aim is to span
understandings gained from analytical approaches in circ
arrays, and direct simulation in fiber arrays, so that varia
in percolation, and dependence upon aspect ratio, can be
ter explored analytically.

B. Estimation of the percolation point: Circular particles

The earliest investigation of this problem is attributable
Hann and Zwanzig@28#, who used a power series in numb
density to systematically study the distribution of cluster s
for overlapping circles and squares in two dimensions,
well as spheres and cubes in three dimensions. Coni
et al. @17,18# developed a general formalism to obtain
closed form series expansion of the average number of c
ters of particles. That work followed Hill’s initial efforts@29#
studying physical clusters with a diagrammatic expansion
determine correlation functions. Similar expressions ha
also been reported using graph theory@28# and the con-
tinuum Potts model~CPM! @30#. In this section we briefly
reiterate the approach of the earlier workers@31–33# for de-
termination of the percolation threshold for arrays of sp
tially uncorrelated, 2D circles.

Assuming circles are positioned at$r 1 ,r 2 ,...,r k% respec-
tively, we define the functiong(r i ,r j ) as the probability that
two circles positioned atr i , r j are connected, by closing th
edge$r i ,r j%. We define graphG as a cluster formed by con
necting each points (r i ,r j ) in $r 1 ,r 2 ,...,r k% to the group; an
illustration of the connected graph concept is given as Fig
We find by the arrival method@31,43# that the number of
possible ways to connectk particles is

(
15k0,k1¯,ki5k

$Cki2k0

k12k0
¯Cki2ki 21

ki 212ki 22%2@Ck12k0

2
1¯1Cki2ki 21

2
#

3$~2k12k021!k22k1
¯~2ki 212ki 2221!ki2ki 21% , ~2!

with

Ci
j5

i ~ i 21!¯~ i 2 j 11!

j !
, ~3!

or equivalently,

FIG. 1. Schematic of Penrose’s graph concept@33#, showing~a!
four possibleconnectedgraphs in a three-site problem, and~b! a
connectedgraphA ~formed by solid lines! and adisconnectedgraph
B ~formed by dashed lines! in a random graphG consisting of six
sites,G5A1B.
0-2
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(
15k0,k1¯,ki5k

~k21!!

~k12k0!!¯~ki2ki 21!!

32@k02ki1~k12k0!21¯1~ki2ki 21!2#/2

3~2k12k021!k22k1
¯~2ki 212ki 2221!ki2ki 21.

~4!

There are four possible ways to connect three particles,
38 ways to connect four particles~Hill @29#!. This result can
be used to verify Eq.~4!.

We define functiong1 as the probability that a circle cen
tered atr is connected to the graphG, which is formed by
closing edges (r i ,r j ) in $r 1 ,r 2 ,...,r k%. That is,

g1~r ;r ^k&!5g1~r ;r 1 ,r 2 ,...,r k!512)
j 51

k

@12g~r ,r j !#.

~5!

We defineg2 as the probability that the graphG is con-
nected, per

g2~r ^k&!5g2~$r 1 ,r 2 ,...,r k%!

5( S)
A

g~r i ,r j !)
B

@12g~r i ,r j !# D , ~6!

where the summation is taken over allconnectedgraphsA on
$r 1 ,r 2 ,...,r k%. The first product is over all edges inA; the
second product is over all edges located inB5G2A.

We use the customary definition of a cluster, i.e., a clus
is an isolated group of particles in which there exists at le
one unblocked path between any two member particles.
ing this definition, and the definitions of functionsg1 andg2 ,
Penrose@33# independently derived an integral expressi
for the probability that an arbitrary Poisson particle lies in
cluster consisting ofk particles~or equivalently, a formula
for the density of such clusters!, using the conventiona
theory of statistics.

A brief description of Penrose’s technique follows. A
suming that the first particler 1 is fixed at the origin of the
coordinate system, the probability thatk particles are found
in small regions around points$r 2 ,...,r k% is given by

rds2rds3 ...rdsk5rk21ds2ds3¯dsk , ~7!

wherer is particle density ands is area. The probability tha
thesek particles form a cluster is

g2~r ^k&!. ~8!

From the theory of statistics, the probability that no Poiss
point is bonded to any of$r 1 ,r 2 ,...,r k% ~i.e., the probability
that the cluster is isolated! can be expressed as
06613
nd

r
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e2r*g1~r ;r ^k&!ds. ~9!

A combination of these expressions yields the probabi
that an arbitrary Poisson particle lies in a cluster consist
of k particles as

Pk5
rk21

~k21!! E ds2E ds3¯E dske
2r*g1~r ;r ^k&!dsg2~r ^k&!,

~10!

where the factorial term reflects the interchangeability of
particle positions within the cluster. The above equation
equivalent to the expression proposed by Penrose@33#.

The percolation threshold can be evaluated after expa
ing the expression for mean cluster size, in a series.
convergence properties of the series can then be determ
as functions of bonding criteria. Quintanilla and Torqua
@31,32# used Penrose’s integral expression@33# to evaluate
cluster properties for arrays of circles, and obtained pow
series expansions for cluster properties to estimate perc
tion threshold. We define ‘‘mean cluster density’’nk as the
particle-averaged number of clusters containingk particles,
andnk can be written

nk5Pk /k

51/kH rk21

~k21!! E ds2E ds3¯E dsk

3e2r*g1~r ;r ^k&!dsg2~r ^k&!J , ~11!

or alternatively expressed in Taylor series expansion follo
ing the approach of Quintanilla and Torquato@31,32# as

nk5Pk /k

5(
i 50

`

~21! i
rk211 i

k2~k21!! i ! E ds2E ds3¯E dsk

3F E g1~r ;r ^k&!dsG i

g2~r ^k&!. ~12!

The evaluation of each coefficient in the series in Eq.~12!
requires the same amount of computational effort as the
rect computation ofnk via Eq. ~11!. The coefficients can be
used to obtain the low density expansions of the cluster
tistics, including mean cluster sizeS and average cluste
numberQ, via

S5 (
k51

`

kPk5 (
k51

`

k2nk5(
i 50

`

cir
i ~13!

and

Q51Y (
k51

`

nk51Y (
i 50

`

air i5(
i 50

`

bir
i , ~14!

where coefficientsbi andai are related as
0-3



t
st
ox

o

e
b
it

, w

,
it

n

cle
lit
rib

s
sson

be

n-
usly
ed

ons
d is
ti-
uta-
as
tion
ing

a
on
les

he

Y.-B. YI AND A. M. SASTRY PHYSICAL REVIEW E 66, 066130 ~2002!
b05
1

a0
,

b152
a1

a0
2 ,

b252
a2

a0
2 1

a1
2

a0
3 , ~15!

b352
a3

a0
2 1

2a1a2

a0
3 2

a1
3

a0
4 ,

¯ .

The percolation thresholds can be estimated by checking
convergence criteria of the power series of the above clu
statistics. This can be done efficiently using the Pad appr
mants@34#, in which the power series is approximated as
ratio of two series, with the denominator being a series
order one. For example, we can obtain

S5(
i 50

`

cir
i5

( i 50
m Air

i

B01B1r
1O~rm12!. ~16!

The percolation threshold is reached when the seriesS di-
verges. Therefore,

rc'2
B0

B1
. ~17!

III. METHODS

A. Approximation of the analytical solution

1. Integral expression for the problem of oriented particles

Penrose’s formula for the density of clusters was deriv
in the context of Poisson points. In fact, the formula can
extended to the more general problem in which particles w
a fixed shape are oriented at random angles. To do so
introduce an additional degree of freedomu to the expression
for cluster density. For the ellipse problem, in particularu
can be defined as the inclination angle of the major axis w
respect to the horizon, as shown in Fig. 2. The integratio
thus performed overr (x,y,u) instead ofr (x,y).

The previous integral equations assumed that parti
were identical. However, we can also introduce probabi
distribution functions for any geometric parameter desc
ing the particles~e.g., radii!, in the integrand, as

nk5
r* k21

k! E ¯E f ~ l 1
~1! ,l 2

~ l ! ,...!

3 f ~ l 1
~2! ,...!¯e2r* *¯* f ~ l 1

~r ! ,l 2
~r ! ...!g1~r ;r k!dl1dl2¯ds

3g2~r k!dl1
~1!dl2

~1!
¯dl1

~2!dl2
~2!
¯ds2ds3¯dsk ,

~18!
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where l n is a probability distribution function. Note in this
formula thatr is replaced byr* 5r/p, when the integration
domain isuP(0,p). For the problem of identical ellipse
whose geometric centers are positioned according to Poi
process, we have explicitly

nk5
r* k21

k! E dx2E dy2E du2¯E dxkE dyk

3E duke
2r* *g1~r ;r ^k&!dxdydug2~r ^k&!, ~19!

wherexi , yi , u i are thex position,y position, and orienta-
tion angle, respectively, for thei th ellipse,i 52,...,k.

2. Bonding criterion for ellipses

For two circles, the bonding, or overlap, criterion may
written as simplyd<R11R2 , whereR1 andR2 are the radii
of the two particles, andd is the distance between their ce
ters. For ellipses, the connection status can be analogo
determined by the numerical solution of their combin
equations, as

@~x2xi !cosu i1~y2yi !sinu i #
2

a2

1
@~x2xi !sinu i2~y2yi !cosu i #

2

b2 2150 ~20!

on a particle-by-particle basis. The existence of real soluti
implies that the two particles are connected. This metho
tractable only for relatively small-scale problems; for prac
cal materials systems, the approach is extremely comp
tionally intensive. In view of this, an alternative method w
developed. We assign one of the particles a zero orienta
angle, then eliminate one of the unknowns in the govern
equations of two ellipses, leading to an equation with
single unknown. The sign of the corresponding functi
value is then checked within the domain. The two partic

FIG. 2. Schematic of the geometric information required for t
equisized ellipse problem. The orientation angleu is zero for ellipse
A, and2p<u<p for other ellipses.
0-4
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are connected if the sign changes at least once throughou
domain or the function has a zero value somewhere. In
case of identical ellipses, an even more efficient algorit
involving a contact function@35,36# can be introduced to
determine whether the ellipses overlap or not: assuming
ellipse is centered at the origin and one is centered at (x0 ,y0)
with relative orientationu, the contact function is defined a

C54~H1
223H2!~H2

223H1!2~92H1H2!2 , ~21!

where

H1531~g21/g!2 sin2 u2~x0 /a!22~y0 /b!2 ~22!

and

H2531~g21/g!2 sin2 u2~x0 cosu1y0 sinu!2/a2

2~y0 cosu2x0 sinu!2/b2. ~23!

If C is negative, the two ellipses overlap. The two ellips
overlap if and only ifC, H1 and H2 are all positive. IfC
50, the two ellipses are tangent. A contact function for d
ferently sized ellipses can also be derived, and will be p
sented as part of future work. In computer realization, inp
include lengths of the major and minor axes, and orienta
angles of each ellipse pair; Eqs.~21! through~23! are used to
determine if the pair overlap.

3. The integration method

For the circle problem, evaluation of the integrals requi
knowledge of the union area ofk circles. Kratky@37# showed
that the area of intersection of four or more circles can
determined via linear combination of the areas of inters
tion of two or three circles. Using this result, the union vo
ume can also be determined exactly, andnk can be obtained
with an excellent accuracy. In the ellipse problem, howev
there is no such equivalent and an integrand expression is
available explicitly; the integrals must be evaluated by d
nition. But we note that the integration domain can be grea
reduced by restricting calculations to the relatively small p
tion of the space in which particles are connected.

B. Simulation algorithm

In our simulations i identical elliptical particles were
placed in a unit cell via random generations of centerpo
(xi ,yi) and major axis orientations (qi), restricting center-
points to those lying in the simulation window. We verifie
that the extraneous particle ends lying outside the simula
window introduced negligible error in calculated volum
fractions.

1. Determination of cluster properties

The computational algorithm for determiningnk follows
from the definition of a cluster. For each case, the total nu
ber of clusters of sizek (k51,2,...) is counted, andnk is then
simply the total cluster numbers of sizek divided by the total
number of particles in the system.
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2. Detection of percolation

A variety of techniques, including the so-called ‘‘burnin
algorithm,’’ or ‘‘forest-fire model,’’ for lattice percolations
@38–40# have been developed to determine percolation sta
of a network. Here, we introduce an analogous algorith
shown schematically in Fig. 3. The particles in contact w
an arbitrary side of the window are first identified. The
particles~black circles! are assigned to classA. The remain-
der of the particles in the network~white circles! are as-
signed to classB. Connections between classesA andB are
then examined. Members ofB intersecting members ofA are
reassigned to classA; the original members ofA ~gray
circles! are reassigned to classC. The process is repeate
until no additional connections are found among member
A andB. A system is percolated if and only if particle classC
spans opposite sides of a simulation window. The percola
probability for the network,p, is then simplym/n, wheren is
the total number of simulations, andm is the number of
simulations in which percolation occurred.

C. Validation of analytical approach

Analytical approximations of cluster densities were co
pared to those obtained by simulations. A standard unit sim
lation window containing circles of diameter 0.04 were us
in the simulations. Good agreements were obtained, wit
maximum difference of less than 6% for cluster densitiesn1 ,
n2 , andn3 . These results were also compared to those
tained by other researchers, including Quintanilla@31,32#
and Hann@28#; good agreement was observed in both ca
as well. Comparisons of percolation thresholds obtained a
lytically and numerically are presented in Fig. 4. The agr
ment is also acceptable, with an error less than 10% of
threshold value.

The error arises from several sources. First, the analyt
approach assumes an infinite window size. Second, the s
lation results were obtained using a finite number of co
puter simulations, and thus are themselves statistical qua
ties. Third, percolation thresholds were analytica
estimated by truncating the power series expression, ta
the first few terms as an approximation; thus, the numer

FIG. 3. Schematic depiction of the simulation algorithm f
identifying percolation in a stochastic network system.
0-5
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integration required in the analytical approach lead to an
avoidable inaccuracy. Reduction of this error can be obtai
by using smaller integration intervals, which, naturally, r
duces computational efficiency.

IV. DISCUSSION

Development of improved techniques for the prediction
percolative properties of multiphase materials is critic
Multiphase materials not only are utilized widely in explo
ing multiple functionalities in engineered materials, but a
also abundant in most functional biomaterials. In biomate
als, multiple phases are physiologically necessary, for
ample, to simultaneously maintain metabolic function, wi
stand mechanical loads, and accomplish self-repair. In b
natural and engineered materials, the first important tas
the analysis of mechanics or transport properties is to de
mine which phases are ‘‘percolated,’’ i.e., form continuou
domain-spanning paths from one boundary of interest to
other. In biomaterials, this analysis can help determine wh
phases may be selected, in an evolutionary context, for t
contribution to mechanical properties of a heterogeneous
dium @41,42#.

A. Effect of particle aspect ratio

It is well known that particle shape strongly affects clus
statistics and percolation probability in network system
Figure 5 shows typical simulation results for cluster dens
in the overlapping circle problem. The error bars are stand
deviations for simulations performed at a given volume fr
tion. At low density, most particles are isolated, and theref
smaller clusters dominate; at high density, however, parti
are likely to be interconnected and thus larger clusters do
nate. There exists a certain volume fractionf k at which the
cluster density is maximized; this volume fraction varies
clusters with different size, for instance,f 150 and f 2
50.18. Figure 6 shows how the aspect ratio affects the c
ter density. As the particle aspect ratio increases, there
more possible ways for particles to connect, thus the num
of clusters of sizek (k.1) increases at low volume fraction

FIG. 4. Validation of the analytical solution with simulations fo
percolation thresholds arising in circular and elliptical arrays~vari-
ous aspect ratios!.
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and smaller clusters disappear at high volume fractio
Thus, the curves are shifted to smaller volume fractions w
increasing aspect ratio.

In one of our parametric studies of percolation probabili
the particle shape was altered such that the area of the
ticle was held constant for various aspect ratio particles. T
study is relevant for applications in which, for example, t
conductive mass is limited, but high conductivity is desire
and so acceptable particle shapes must be selected. Ou
sults show thatp increases monotonically with volume frac
tion f, and that thep-f curve appears to shift horizontally wit
an unchanged slope, as shown in Fig. 7. This implies that
slope is a function of particle area only, while the position
the p-f curve is related tog. That is, we postulate

p5F~ f 1G~g!,l!, ~24!

where we define the ratio of the major and minor ellipse a
~i.e., the aspect ratio! as g5a/b and l51/R; R is the
equivalent particle radius, orR5Aab.

FIG. 5. Simulation results for cluster density for arrays
circles. The simulation window is a unit square; circular partic
are of radius 0.05. Averaged results for 2000 simulations are sh
at each point, with error bars for61s ~standard deviation!. nk is the
number of clusters of sizek divided by the total number of circles

FIG. 6. Comparison of simulation results for circular and elli
tical arrays, wherein both ellipses and circles are of area 0.00
Circle radii are 0.05; ellipses have minor axesa50.158 and major
axesb50.0158.
0-6
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In another parametric study, we studied the effect of p
ticle shape on percolation probability by changing the len
of the major axis while the minor axis was held consta
thus, the particle area changed for different aspect ratios.
found that the slope of thep-f curve changed as the aspe
ratio changed, as shown in Fig. 8, consistent with our pre
ous finding that the slope of thep-f curve was a function of
the particle area alone.

We must point out that the expressions of functionF and
G require knowledge about the two-point connectedn
function @43–45#. In fact,

p5E E C~x1 ,x2!dx1dx2 ~25!

wherex1 andx2 denote the two boundaries at the directi
of percolation. Once the two-point connectedness func
C(x1 ,x2) is known, it is fairly simple to evaluatep. How-
ever, the derivation ofC is beyond the scope of this resear
and will be likely discussed in a future paper.

FIG. 7. Effect of the particle aspect ratio on percolation pro
ability for elliptical arrays. Equivalent particle radiusR5Aab
50.05. Averaged results for 1000 simulations are shown at e
point.

FIG. 8. Effect of the particle aspect ratio on percolation pro
ability for elliptical arrays. The minor axisb is 0.05 for all cases.
Averaged results for 1000 simulations are shown at each point
06613
r-
h
;
e

i-

s

n

In the case of an infinite domain, the percolation thre
old, in terms of volume fraction, is irrelevant to the partic
size, and can be expressed as a function of the aspect
from the analytical solution. Figure 9 shows how the perc
lation threshold changes with the aspect ratio, using the
ries expansion technique. Also shown in Fig. 9 are the sim
lation results obtained by Xia@36# for comparison. The two
curves show good agreement. ‘‘Mild’’ ellipses, with the a
pect ratio 1,g,1.4, exhibit percolation thresholds almo
exactly those of circles, although the analytical approa
suggests that there is some change in the percolation thr
old due tog even in these cases.

B. Effect of window size

For an infinite domain, percolation status is binary a
deterministic: the network has only one status—percolate
not percolated. For percolated cases, a cluster of infinite

-

ch

-

FIG. 9. Comparison of percolation thresholds determined via
analytical solution and simulation for the elliptical arrays. Analy
cal solutions were obtained using the series expansion met
Simulation results are from Xia@37#.

FIG. 10. Effect of particle size on percolation probability
elliptical arrays.l51/R, andR represents equivalent particle radiu
R5Aab.
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exists somewhere in the network, and the probability of p
colation is one. For unpercolated cases, only finite clus
arise, and the probability of percolation is zero.

For a finite domain, however, the percolation status
probabilistic. Figure 10 shows the dependence of the pe
lation probability on the window size for the uniform circ
problem. We studied this problem by varying the circle
ameter while maintaining constant window size. The per
lation probabilityP is a function of bothl and g. We find
that the slope of the probability curve becomes vertical as
window size increases. When the window size becomes
finitely large, the curve has a sudden jump atf c50.67 and
the percolation probability curve is reduced to a step funct
at the percolation thresholdf c , indicating the system is un
conditionally percolated whenf > f c and not percolated
tic

J

J

g.

st

f,

a

. A
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n

when f < f c . The effect of particle size~or equivalently, the
relative window size! on mean cluster density was also e
amined here, with only a slight effect observed. Thus,
conclude that the boundary conditions generally do not h
significant effects on statistical cluster properties in terms
mean values, but do alter standard deviations.
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