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Approximation for directed percolation in dÄ1¿1
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We introduce an approximation specific to a continuous variable formulation of directed percolation, which
is strictly equivalent to (111)-dimensional directed bond percolation. We find that the critical exponent
associated with the order parameter~percolation probability! is b5(121/A5)/250.276 393 202 . . . , in re-
markable agreement with the best current numerical estimateb50.276 486(8).
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Directed percolation~DP! @1–4# is a useful paradigm for
dynamical phase transitions between an active or sprea
phase and an extinct or absorbing phase. Models in the
class of universality are involved in the description of ca
lytic reactions@5#, surface dynamics@6#, porous systems@4#,
granular media@7#, epidemics, calcium dynamics in cells@4#,
developed turbulence, and coupled maps@8#, and have im-
plications for other statistical physics models~polymers,
Potts model, friendly walkers! @9#. Recently, Hinrichsen
summarized the large scope of possible physical applicat
of DP @4#, which led Grassberger to conjecture that the
universality class should describe any continuous phase
sition from a fluctuating active phase into asingleabsorbing
phase, in the absence of quenched disorder and special
metries@10#. In a sense, DP plays a similar role in the stu
of dynamical phase transitions as the Ising model for c
tinuous equilibrium phase transitions@4#.

Despite its ubiquity, DP is maybe the only major statis
cal physics model that has not yet been successfully so
in one spatial dimension (1 time!, probably due to its lack
of conformal invariance.

Let us recall the original model of directed bond perco
tion in d5111, describing the propagation of a fluid in
two-dimensional~2D! porous medium. On a square lattic
tilted at 45°, a fraction of bondsp is chosen at random to b
active, whereas the remaining bonds stay inactive or bro
The ‘‘fluid’’ starts from the top row, and propagates dow
ward, only passing through the active bonds. One then
fines the order parametern(p,t), which measures the ave
age density of occupied sites at rowt. n(p,t) happens to
coincide with the probability that at least one site at rowt is
still active ~percolation probability!.

In the stationary limitt→1`, the order parameter tend
to a constant valuen(p), which is zero below pc
50.644 700 185(5) @11,12#, and behaves asn(p);(p
2pc)

b, nearpc . This defines the universal critical expone
b50.276 486(8)@11,12#. Note that the best analytical est
mate forb so far isb51/2 @13#, obtained within the inde-
pendent interval approximation, which, however, predict
first order transition. This result has been improved using
enhanced coherent anomaly numerical method, leadin
b'0.28, and a value ofpc 5% off ~using another model in
the DP class! @14#.
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The dynamics of bond DP can be defined more precis
Introducingni(t)51 @ni(t)50#, when thei th site at rowt is
active or occupied~inactive or empty!, ni(t) satisfies the
following recursion relation:

ni~ t11!5aini~ t !1bini 11~ t !2aibini~ t !ni 11~ t !, ~1!

whereai(t) andbi(t) are independent random variables ta
ing the value 1 with probabilityp ~if the corresponding on-
going bond is active!, and 0 otherwise.

In relation to self-organized criticality, it has been reco
nized that directed bond percolation is strictly equivalent t
continuous dynamical model, but involving no external p
rameter~like p in DP! @15–18#. On a 1D lattice, we define
the continuous variablesxi(t) as satisfying the recursion re
lation

xi~ t11!5min$max@xi~ t !,zi #,max@xi 11~ t !,zi8#%, ~2!

wherezi(t) andzi8(t) are independent random variables un
formly distributed between 0 and 1. It can be easily sho
that theni ’s for directed bond percolation and thexi ’s are
very simply related@15–18#:

ni~ t !5u„p2xi~ t !…, ~3!

where u(•) is the usual Heaviside step function. For i
stance, if sitei is active @ni(t)51 or xi(t)<p] and site i
11 is inactive@ni 11(t)50 or xi 11(t).p], then at timet
11 Eq.~2! implies that sitei is active with the probabilityp
thatzi<p, which coincides with the probability that the lin
between sitei at timet and sitei at timet11 is active in the
usual discrete formulation of DP. Similarly, if both sites a
active@ni(t)5ni 11(t)51, xi(t)<p, xi 11(t)<p], then sitei
is active at timet11, providedzi<p or zi8<p, which hap-
pens with probability 2p2p2, equal to the probability that a
least one link is active in the usual formulation. Finally,
both sites are inactive@ni(t)5ni 11(t)50, xi(t).p,
xi 11(t).p], then xi(t11).p whateverzi andzi8 , and the
resulting site is inactive, as expected.

In the large time limit, thexi ’s are distributed according to
a stationary probability distributionr(x), and

n~p!5E
0

p

r~x!dx. ~4!
©2002 The American Physical Society28-1
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Now, averaging Eq.~1! @or equivalently Eq.~2!#, we find in
the stationary limit,

2p21

p2
n~p!5

2p21

p2
^n1&5^n1n2& ~5!

5E
0

pE
0

p

r2~x1 ,x2!dx1dx2 , ~6!

wherer2(x1 ,x2) is the nearest neighbor correlation functio
of the xi ’s. In mean field~MF! theory, one makes the ap
proximation^n1n2&'^n1&

2, leading to

nMF~p!5
2p21

p2
, rMF~p!5

2~12p!

p3
~7!

for p>pcMF51/2. From now, we study the stationary sta
of DP in terms of the continuous model defined by Eq.~2!.
We first notice that

x1~ t11!5min@x1~ t !,x2~ t !# with probability ~8!

pmin5min@x1~ t !,x2~ t !#,

x1~ t11!5max@x1~ t !,x2~ t !# with probability ~9!

pmax5max@x1~ t !,x2~ t !#$12max@x1~ t !,x2~ t !#%,

so that there is a nonzero probability thatx1(t11)5x2(t
11) exactly. Hence, the two-point correlation function
thexi ’s, r2(x1 ,x2), should include ad(x12x2) contribution
@d(•) is the Dirac peak distribution#. Thus, in all generality,
we write r2(x1 ,x2) in the following form:

r2~x1 ,x2!5 r̃2~x1 ,x2!1r~x1!g~x1!d~x12x2!, ~10!

which definesg(p) as the probability thatx25p, conditional
on the fact that its neighborx15p. We then definef (x1 ,x2)
through the relation

r̃2~x1 ,x2!5r„min~x1 ,x2!…f ~x1 ,x2!, ~11!

noting that as r(p) diverges nearpc ~since b,1),
r„min(x1,x2)….r„max(x1,x2)…, at least nearpc @numerically
r(p) appears to be a strictly decreasing function, as in m
field theory#. We expect thatf (x1 ,x2) is a smooth function
of order unity. In fact, contrary to the MF approach„where
one assumes that̂n1n2&;@n(p)#2

…, the correlation func-
tions all behave asn(p) nearpc . Indeed, aspc.1/2, Eq.~5!

implies that ^n1n2&;n(p);(p2pc)
b, such thatr̃2(p,p)

;r(p);(p2pc)
2(12b) @instead of r(p)2;(p

2pc)
22(12b), predicted by MF theory#. A natural guess for

f (x1 ,x2) is provided by the general statement that, althou
MF theory is inept at describing correlation functions ne
pc , it still leads to reasonably accurate amplitude ratios
tween them, for all values ofp ~at least for short range cor
relation functions likê n1n2&). Hence, this prompts the in
troduction of the key approximation
06612
n
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f ~x1 ,x2!' f MF~x1 ,x2! ~12!

5
rMF~x1!rMF~x2!

rMF„min~x1 ,x2!…
~13!

5rMF„max~x1 ,x2!…. ~14!

In the following, we make the more general ansatz

r̃2~x1 ,x2!5r„min~x1 ,x2!…f „max~x1 ,x2!…, ~15!

where f (p) is not necessarily equal torMF(p). r(p), f (p),
and g(p) are not independent functions as they are rela
together by Eq.~5!, and by the probability conservation con
straint

r~p!5E
0

1

r2~x,p!dx. ~16!

From Eq.~5! and Eq.~16!, and after straightforward calcu
lations, we obtain the two relations

n~p!5expF2E
p

12 f ~x!2rMF~x!

nMF~x!2g~x!
dxG , ~17!

g~p!1E
p

1

f ~x!dx1 f ~p!
n~p!

r~p!
51. ~18!

From Eq. ~17! and Eq. ~18!, one can obtain a first orde
differential equation forF(p)5 f (p)2rMF(p), involving
only p andg(p). This equation can be shown to have on
F[0 as a global solution satisfying the boundary conditio
and the physical constraints. Hence, and in complete ac
dance with the physical argument given in Eq.~14!, we find

f ~p!5rMF~p!. ~19!

Quite remarkably, for this precise form forf (p), Eq. ~18! is
now satisfied for any choice ofg(p), so that we are left with
Eq. ~17! as the only nontrivial relation betweenn(p) and
g(p).

Now, as n(p) vanishes atpc , we expect the function
involved in the integral of Eq.~17! to develop a single pole
at pc , of residueb, so thatn(p);(p2pc)

b, nearpc . This
leads to

g~pc!5nMF~pc!5
2pc21

pc
2

, ~20!

b5S 12
g8~pc!

rMF~pc!
D 21

. ~21!

Note that Eq.~20! is in fact anexact identity, which does not
rely on the present approximation onr̃2(x,y), which is not
involved in Eq.~20!.

In order to achieve our goal of computingn(p), we need
a further relation forg(p). This can be obtained by writing
the exact stationary equation forg(p). We first define
^ddd& as the probability of having three consecutive si
8-2
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with xi5p, divided byr(p) ~that is, conditional on having
one site withxi5p). In the same manner, we define^dd p̄&
(^ddp&) as the probability of having two consecutive sit
with x15x25p, and x3.p (x3,p), divided by r(p). Fi-
nally, in the stationary limit, we obtain the exact relation

g~p!5~2p2p2!2^ddd&12~2p2p2!@p^dd p̄&

1p~12p!^ddp&#1p2^ p̄d p̄&12p2~12p!^pd p̄&

1p2~12p!2^pdp&1p2^d p̄d&

5^dd&. ~22!

For instance, the first term (2p2p2)2^ddd& represents the
fact that a configurationdd @x1(t11)5x2(t11)5p# at
time t11 can arise from a configurationddd @x1(t)
5x2(t)5x3(t)5p# at time t, provided thatx1 and x2 are
preserved by the transformation of Eq.~2!. This happens
with probability

~pmin1pmax!
25@p1p~12p!#25~2p2p2!2; ~23!

hence the coefficient in Eq.~22! @pmin andpmax were defined
in Eq. ~8! and Eq.~9!#.

Equation~22! relatesg(p) to three-point correlation func
tions, and cannot be exploited unless an additional appr
mation is introduced. We will factor these three-point cor
lation functions into products of two-point correlatio
functions, according to the usual mean field scheme. In
ducing p1 as the probability thatx2.p, conditional on the
fact thatx15p, we obtain

@12g~p!#p15

E
p

1

r̃2~x,p!dx

r~p!
~24!

5E
p

1

rMF~x!dx5
~12p!2

p2
, ~25!

where Eq.~24! is an exact identity. We give below a few
examples of three-point correlation functions computed
cording to this MF factorization scheme:

^ddd&5g~p!2, ~26!

^dd p̄&5g~p!@12g~p!#p15g~p!
~12p!2

p2
, ~27!

^pd p̄&5@12g~p!#2p1~12p1! ~28!

5F2p21

p2
2g~p!G ~12p!2

p2
. ~29!

Inserting the MF form for the three-point correlation fun
tions into Eq.~22!, we finally obtain a closed equation fo
g(p),
06612
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g~p!5@12p1pg~p!#21~12p!2g~p!@12g~p!#,
~30!

which can be readily solved, leading to

g~p!5
~12p!2

2p21
. ~31!

pc andb can now be calculated by expressing the con
tions of Eq.~20! and Eq.~21!. We obtain

pc5g~pc!5t5
A521

2
50.618 033 989 . . . , ~32!

b5
1

2 S 12
1

A5
D 50.276 393 202 . . . , ~33!

wheret is the golden mean.pc is only in fair agreement with
the best numerical estimatepc50.644 700 185(5)@11,12#,
although this represents a definite improvement when c
pared to the mean field valuepc51/2. Note that the exac
identity Eq.~20! implies that gettingpc.1/2 necessitates th
introduction of a nontrivial functiong(p), which is zero in
the MF. Theb exponent is in remarkable agreement~relative
accuracy of 0.034%! with the best available numerical valu
b50.276 486(8)@11,12#. However, it is not claimed that this
result is by any means exact.

The fact that the relation̂ddd&5g(p)2 seems to be
exactly satisfied numerically atpc could explain this agree
ment, which also implies that the MF factorization of E
~22! is quantitatively correct nearpc @the three-point corre-
lation functions appearing in Eq.~22! are not independen
and are related tôddd& by various sum rules#. This is
illustrated in Fig. 1, where the exact numericalg(p)
5^dd&, ^ddd&, and ^dd p̄& are plotted with their theo-
retical counterparts. In principle, it is possible to impro

FIG. 1. We plot^ddd& ~two top lines! and ^dd p̄& as ob-
tained from numerical simulations~full lines!, and as given by Eq.
~26! and Eq.~27! ~dashed lines!, where the numerical value ofg(p)
has been inserted in these expressions. Note that^ddd&
'g(p)2, especially nearpc . These functions all vanish as (
2p)4 near p51, as predicted by Eq.~26! and Eq. ~27!. Inset:
comparison between the numericalg(p) and the present theory. In
all figures in this paper, we have simulated a system ofN
5300 000 sites, averaged over 100 samples. Physical quantitie
the stationary state have been estimated by averaging them bet
t5300 000 andt5310 000.
8-3
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this calculation by using exact relations@similar to Eq.~22!#
involving higher order correlation function
(^ddd&,^dddd&, . . . ). In practice, the calculation be
comes increasingly complicated and probably intractable

Now, f (p) andg(p) being known, the percolation prob
ability can easily be computed by using Eq.~17!:

n~p!5p22F ~p2t!~21t2p!

t Gb

3F ~p211t!~p111t!

11t G12b

. ~34!

In Fig. 2, we compare this result with the numerically e
trapolated stationary percolation probability, and with t
MF result of Eq.~7!.

Finally, in Fig. 3, in order to test the validity of our bas
approximation Eq.~14!, we plot f (x1 ,x2) @defined in Eq.
~11!# as a function of max(x1,x2). We find that this scatte
plot is reasonably aligned around an effective curve, and
f MF(x1 ,x2)5rMF„max(x1,x2)… appears to be a lower boun
for the actualf (x1 ,x2).

In conclusion, we have introduced an approximation fo

FIG. 2. We plotn(p) as given by mean field theory~dashed
line!, the present theory@Eq. ~34!; dotted line#, and numerical simu-
lations~full line!. Note that the three curves coincide nearp51, as
mean field theory becomes exact in this limit. A fit of the numeri
data to the functional form of Eq.~34!, wheret becomes a fitting
parameter, cannot be distinguished from the actual data.
s
e,

E.
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continuous model strictly equivalent to directed bond per
lation. In this language, this approximation amounts to pr
erly modeling the correlation functionr2(p1 ,p2) relating the
properties of directed bond percolation for two different p
colation parametersp1 and p2. By assuming that amplitude
ratios are correctly described by mean field theory, we e
up with a precise description of the percolation probabili
In particular, we find an exponentb in remarkable agreemen
with the best available numerical simulations.

It would be interesting to exploit the present approach
order to describe the dynamical properties of DP. This stu
is currently in progress.

This approach could also prove useful in tackling the n
tably difficult problem of parity conserving branching ann
hilating walks@3#. This universality class is exemplified b
the reaction-diffusion model of diffusing particlesA, involv-
ing annihilation (A1A→B) and branching (A→A1A
1A) processes. This problem has so far eluded all manne
theoretical approaches ind5111.

I am very grateful to P. J. Basson for useful comme
concerning this manuscript.

l

FIG. 3. We plot f (x1 ,x2) defined in Eq.~11! as a function of
max(x1,x2) „scatter plot using a 2003200 mesh for (x1 ,x2)
P@pc,1#2

…. This is compared with the approximation central to th
paper:f (x1 ,x2)5rMF„max(x1,x2)… ~thick line!. We observe that the
theoretical expression seems to be a lower bound for the ac
f (x1 ,x2), and that the dispersion@due to the explicit dependence o
min(x1,x2)] is weak enough so that the scatter plot tends to al
around an effective curve.
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