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Approximation for directed percolation in d=1+1
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We introduce an approximation specific to a continuous variable formulation of directed percolation, which
is strictly equivalent to (* 1)-dimensional directed bond percolation. We find that the critical exponent
associated with the order parametpercolation probabilityis = (1—1/y/5)/2=0.27639320 . . ., in re-
markable agreement with the best current numerical estifat@.276 4868).
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Directed percolatiofDP) [1-4] is a useful paradigm for The dynamics of bond DP can be defined more precisely.
dynamical phase transitions between an active or spreadifgtroducingn;(t)=1 [n;(t)=0], when the th site at rowt is
phase and an extinct or absorbing phase. Models in the D&ctive or occupiedinactive or empty, n;(t) satisfies the
class of universality are involved in the description of cata-following recursion relation:
lytic reactiong 5], surface dynamicls], porous systemfst],
granular mediq7], epidemics, calcium dynamics in cel4], ni(t+1)=a;n;(t)+b;n; 1 (t) —a;b;n;(t)n; (1), (1)
developed turbulence, and coupled m&pk and have im-
plications for other statistical physics modelgolymers,  wherea;(t) andb;(t) are independent random variables tak-
Potts model, friendly walkeys[9]. Recently, Hinrichsen ing the value 1 with probability (if the corresponding on-
summarized the large scope of possible physical applicationgoing bond is active and 0 otherwise.
of DP [4], which led Grassberger to conjecture that the DP In relation to self-organized criticality, it has been recog-
universality class should describe any continuous phase tramized that directed bond percolation is strictly equivalent to a
sition from a fluctuating active phase intsimgleabsorbing  continuous dynamical model, but involving no external pa-
phase, in the absence of quenched disorder and special sypameter(like p in DP) [15-18. On a 1D lattice, we define
metries[10]. In a sense, DP plays a similar role in the studythe continuous variables(t) as satisfying the recursion re-
of dynamical phase transitions as the Ising model for contation
tinuous equilibrium phase transitiof4].

Despite its ubiquity, DP is maybe the only major statisti- Xi(t+1)=min{max x;(t),z],maxx . 1(t),z' 1}, (2
cal physics model that has not yet been successfully solved
in one spatial dimension+ time), probably due to its lack  \herez(t) andz(t) are independent random variables uni-
of conformal invariance. _ formly distributed between 0 and 1. It can be easily shown

Let us recall the original model of directed bond percola-ipat then,’s for directed bond percolation and the's are
tion in d=1+1, describing the propagation of a fluid in a very simply related 15—18:
two-dimensional(2D) porous medium. On a square lattice
tilted at 45°, a fraction of bonds is chosen at random to be ni(t) = 8(p—x;(1)), 3
active, whereas the remaining bonds stay inactive or broken.

The “fluid” starts from the top row, and propagates down-;nare (.} is the usual Heaviside step function. For in-
v_vard, only passing through the ac_tive bonds. One then des'tance, if sitei is active[n;(t)=1 or x,(t)=<p] and sitei
o o o e ik e e 1 i nacvel (=0 o ()=l hen ai it

S - - ' ; : +1 Eq.(2) implies that sitd is active with the probability
coincide with the probability that at least one site at & o4, — o "\vhich coincides with the probability that the link
still active (pgrcolathn _probab|l|ty. between site at timet and sitei at timet+1 is active in the

In the stationary limitt— + e, t_he o_rder parameter tends usual discrete formulation of DP. Similarly, if both sites are
ISO %4:(;8??2'[5 %/all.llelnip), WQ'CE r']S zero below pe active[ n;(t)=n; (1) =1, x;(t)=<p, X; . 1(t)=<p], then sitei
CNB ( ).[ ’ .Z’ an ehaves .a.sn(p)~(p is active at timet+1, providedz;<p or z/ <p, which hap-

Pc)”, nearp . This defines the universal critical exponent pens with probability p— p?, equal to the probability that at
p=0.276 486(8)[1.1’1%' Note that thg best.ar?alytlcall esti- least one link is active in the usual formulation. Finally, if
mate for B so far is3=1/2 [13], obtained within the inde- b . ; . - =

dent interval approximation, which, however, predicts 20" Sit€s  are inactive[n;(t) =n;,1()=0, x(t)>p,
pen pp , , » P '
first order transition. This result has been improved using th&i+1(D)>pl, thenx;(t+1)>p whateverz; andz;, and the
enhanced coherent anomaly numerical method, leading tréesultlng site is inactive, as expected.

8~0.28, and a value gb. 5% off (using another model in In the large time limit, the;'s are distributed according to
the DP class[14] ¢ a stationary probability distributiop(x), and

n(p)= fopmx)dx. @
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Now, averaging Eq(1) [or equivalently Eq(2)], we find in
the stationary limit,

2p—1 2p—1
>—N(p)=———(ny)=(n1ny) (5
p p
PP
:f j p2(X1,Xz)dxdX;, (6)
0Jo

wherep,(X4,X,) is the nearest neighbor correlation function
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f(X1,%X2) ~Fme(X1,X2) (12
_ pmE(X1) pme(X2)
 pmr(Min(Xq,Xp)) 13
= pmr(Mmax(Xy,Xz)). (14)

In the following, we make the more general ansatz

Pa(X1,%2) = p(MiN(X1,X2)) F(Max(X1,X2)), (15

of the x;’s. In mean field(MF) theory, one makes the ap- wheref(p) is not necessarily equal @, :(p). p(p), f(p),

proximation{n,n,)~(n;)?, leading to

2p—1 2(1-p)
nMF<p>='TO—2, pur(p) = psp ™

for p=pcme=1/2. From now, we study the stationary state

of DP in terms of the continuous model defined by ER).
We first notice that

Xy (t+1)=min[x,(t),X,(t)] with probability ®
Pmin=MiN[X1(t),Xa(t)],

x1(t+1)=ma{x,(t),x,(t)]  with probability 9)

Pmax=MaX X1(t),Xo(t) {1 —maxx,(t),xa(t) ]},

so that there is a nonzero probability that(t+1)=x,(t

and g(p) are not independent functions as they are related
together by Eq(5), and by the probability conservation con-
straint

1
p(p)= fo p2(Xx,p)dx. (16)

From Eq.(5) and Eq.(16), and after straightforward calcu-
lations, we obtain the two relations

B _ 12f(X) = pme(X)
n(p)—exp{ fp NmE(X) —g(X) dx}, 17
1 np)
g(p)+ Jp f(X)dX‘Ff(p)m—l (18)

From Eq.(17) and Eq.(18), one can obtain a first order
differential equation forF(p)="f(p)—pme(p), involving

+1) exactly. Hence, the two-point correlation function of only p andg(p). This equation can be shown to have only

thex;’s, p»(X1,X,), should include a¥(x; —x,) contribution
[&(-) is the Dirac peak distributignThus, in all generality,
we write p,(X1,X5) in the following form:
Pa(X1,%2) = Pa(X1, %) + p(X1)G(Xe) B(Xy = Xp),  (10)
which definegy(p) as the probability that,=p, conditional
on the fact that its neighbot;=p. We then defind (x,X>)
through the relation
p2(X1,X2) = p(Min(xy X)) (X1, %2), (12)
noting that asp(p) diverges nearp. (since B<1),
p(Min(X,X2))> p(maxf; X)), at least neap, [numerically

p(p) appears to be a strictly decreasing function, as in mean

F=0 as a global solution satisfying the boundary conditions
and the physical constraints. Hence, and in complete accor-
dance with the physical argument given in Etgd), we find

f(p)=pmr(P). (19

Quite remarkably, for this precise form fo(p), Eq. (18) is
now satisfied for any choice @f(p), so that we are left with
Eq. (17) as the only nontrivial relation betweam(p) and
a(p).

Now, asn(p) vanishes atp,, we expect the function
involved in the integral of Eq(17) to develop a single pole
atp., of residueg, so thatn(p)~(p— p.)”?, nearp.. This
leads to

2p.—1

field theorﬁ_. We expect thaf(x;,x,) is a smooth function g(pe) =Nwe(pe) = o (20)
of order unity. In fact, contrary to the MF approatkhere pc

one assumes than,n,)~[n(p)]?), the correlation func-

tions all behave as(p) nearp. . Indeed, ap.>1/2, Eq.(5) ,8—(1— 9'(po) )1 o
implies that<n1n22~n(p)~(p—pc)ﬁ, such thatp,(p,p) pme(Pe) )

~ ~(p—po) & A [instead of 2
—gg)zz(l(f)ﬁ),pgedicted by MF theory A naturg(gaess(?or Note that Eq(20) is in fact anexact identity which does not

f(x1,X5) is provided by the general statement that, althougtrely on the present approximation @a(x,y), which is not
MF theory is inept at describing correlation functions nearinvolved in Eq.(20).

p., it still leads to reasonably accurate amplitude ratios be- In order to achieve our goal of computimgp), we need
tween them, for all values gf (at least for short range cor- a further relation forg(p). This can be obtained by writing
relation functions like(n,n,)). Hence, this prompts the in- the exact stationary equation fag(p). We first define
troduction of the key approximation (@@®®) as the probability of having three consecutive sites
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with x;=p, divided byp(p) (that is, conditional on having 0.5
one site withx;=p). In the same manner, we defi(ﬂ‘ﬁ)

((@@p)) as the probability of having two consecutive sites
with X;=X,=p, andxz>p (X3<p), divided by p(p). Fi- 0.3
nally, in the stationary limit, we obtain the exact relation

------ 9(p)=(1-p)A2p-1)

0.4
—g(p) from NS

0.2\ !

a(p)=(2p—p2) (@@ @)+ 2(2p—p?)[ p(@®D) o] N
+p(1—p)(..E>]+p2(ECE>+2p2(1—p)(E.H) 0.0 07 0.8 0.9 1.0
+p*(1-p)*(p@p)+pX(®p®) p

=(0®). 22) FIG. 1. We plot(®@®@®) (two top lines and(“ﬁ) as ob-

tained from numerical simulatior§ull lines), and as given by Eq.

. . ) (26) and Eq.(27) (dashed lings where the numerical value of p)
For instance, the first term (2-p) (@@ ®) represents the has been inserted in these expressions. Note {(@®®)

fact that a configuratior®@® [x,(t+1)=x,(t+1)=p] at ~g(p)?, especially neap,. These functions all vanish as (1
time t+1 can arise from a copﬁguraﬂo... [x4(t) —p)* nearp=1, as predicted by Eq26) and Eq.(27). Inset:
=X(t)=x5(t)=p] at timet, provided thatx, andx, are  c4mparison between the numeriggip) and the present theory. In
preserved by the transformation of E(). This happens g figures in this paper, we have simulated a systemNof
with probability =300 000 sites, averaged over 100 samples. Physical quantities in

5 5 22 the stationary state have been estimated by averaging them between
(Pmint Pmax) “=[P+p(1-p)]°=(2p—p)=  (23)  {=300000 and=2310000.

hence the coefficient in EG22) [ pmin @andpmax Were defined _rq_ 2 2 _

in Eq. (8) and Eq.(9)]. g(p)=[1-p+pg(p)]°+(1-p)°g(P)1-9g(p)], =0
Equation(22) relatesg(p) to three-point correlation func-

tions, and cannot be exploited unless an additional approxiwhich can be readily solved, leading to

mation is introduced. We will factor these three-point corre-

lation functions into products of two-point correlation (1—p)?
functions, according to the usual mean field scheme. Intro- 9(p)= 2p—1° (31)
ducingp.. as the probapility thax,>p, conditional on the p. and B can now be calculated by expressing the condi-
fact thatx, =p, we obtain tions of Eq.(20) and Eq.(21). We obtain

1

- 5-1

o _fp pax.p)dx » pe=0(Po)=7= 061803398 ..., (32)
gPlIp+ p(p)
1 (1-p)? B l(l 1) 0.276 39320 (33
-p =-|1-—=]|=0. cey
:f Pur(X)dx= ==, (25 2" 5
p

) . ) ) wherer is the golden mearp, is only in fair agreement with
where Eq.(24) is an exact |dent!ty. We give below a few the pest numerical estimate.=0.644 700 185(5) 11,12,
examples of three-point correlation functions computed acz|though this represents a definite improvement when com-
cording to this MF factorization scheme: pared to the mean field valye.=1/2. Note that the exact
_ ) identity Eq.(20) implies that gettingp.> 1/2 necessitates the
(00®)=g(p)", (26) introduction of a nontrivial functiorg(p), which is zero in
(1-p)? the MF. TheB exponent is in remarkable agreemémlative
- —p accuracy of 0.034%with the best available numerical value
o0p)= 1- = , 2 o . :
{ P)=9(PI1=9(p)Ip-=9(p) 2 @ B=0.276 486(8)11,17. However, it is not claimed that this
result is by any means exact.
The fact that the relatioi® ® ®)=g(p)> seems to be

_ 2
(P®P)=[1=g(P)IP+(1=p-) 28 exactly satisfied numerically g, could explain this agree-
ment, which also implies that the MF factorization of Eq.
|2p—1 _ (1-p)? 29) (22) is quantitatively correct neags, [the three-point corre-
- p2 9(p) p?2 lation functions appearing in Eq22) are not independent

and are related t¢@ @ ®) by various sum rulds This is

Inserting the MF form for the three-point correlation func- illustrated in Fig. 1, where the exact numericg(p)
tions into Eq.(22), we finally obtain a closed equation for =(@®), (0 @®®), and(@®®p) are plotted with their theo-
a(p), retical counterparts. In principle, it is possible to improve
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FIG. 2. We plotn(p) as given by mean field theordashed
line), the present theoEq. (34); dotted lind, and numerical simu- FIG. 3. We plotf(x,,x;) defined in Eq.(11) as a function of
lations (full line). Note that the three curves coincide nparl, as  Maxf X)) (scatter plot using a 200200 mesh for X;,x;)
mean field theory becomes exact in this limit. A fit of the numerical € [Pc,1]). This is compared with the approximation central to this

data to the functional form of Eq34), wherer becomes a fitting  Paper:f(x,xz) = pmr(max, xp)) (thick line). We observe that the
parameter, cannot be distinguished from the actual data. theoretical expression seems to be a lower bound for the actual

f(x1,X), and that the dispersidudue to the explicit dependence on

this calculation by using exact relatiofsimilar to Eq.(22)] ~ Min(a,X;)] is weak enough so that the scatter plot tends to align
involving  higher  order  correlation  functions 2&round an effective curve.

(000)(0000), ...). Inpractice, the calculation be- ¢ontinuous model strictly equivalent to directed bond perco-
comes increasingly complicated and probably intractable. |ation. In this language, this approximation amounts to prop-
Now, f(p) andg(p) being known, the percolation prob- erly modeling the correlation functigm,(p; ,p,) relating the
ability can easily be computed by using Eg7): properties of directed bond percolation for two different per-

colation parameterp; andp,. By assuming that amplitude
ratios are correctly described by mean field theory, we end
up with a precise description of the percolation probability.

J(p—n(2+7—p)|f

n(p)=p-

.
In particular, we find an exponeptin remarkable agreement
(p—1+7)(p+1+7)|+ 7 with the best available numerical simulations.
1+7 : (34) It would be interesting to exploit the present approach in

order to describe the dynamical properties of DP. This study

In Fig. 2, we compare this result with the numerically ex- IS currently in progress.

trapolated stationary percolation probability, and with the, THiS approach could also prove useful in tackling the no-
MF result of Eq.(7). tably difficult problem of parity conserving branching anni-

hilating walks[3]. This universality class is exemplified by
the reaction-diffusion model of diffusing particlés involv-

ing annihilation A+A—) and branching A—A+A

A) processes. This problem has so far eluded all manner of
eoretical approaches ah=1+1.

Finally, in Fig. 3, in order to test the validity of our basic
approximation Eq.(14), we plot f(x;,x,) [defined in Eq.
(11)] as a function of maxg,x,). We find that this scatter
plot is reasonably aligned around an effective curve, and tha%
fme(X1,X2) = pme(maxf, ,x,)) appears to be a lower bound
for the actualf (x;,X,). | am very grateful to P. J. Basson for useful comments

In conclusion, we have introduced an approximation for aconcerning this manuscript.
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