PHYSICAL REVIEW E 66, 066126 (2002
Statistical mechanics of lossy data compression using a nonmonotonic perceptron
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The performance of a lossy data compression scheme for uniformly biased Boolean messages is investigated
via methods of statistical mechanics. Inspired by a formal similarity to the storage capacity problem in neural
network research, we utilize a perceptron of which the transfer function is appropriately designed in order to
compress and decode the messages. Employing the replica method, we analytically show that our scheme can
achieve the optimal performance known in the framework of lossy compression in most cases when the code
length becomes infinite. The validity of the obtained results is numerically confirmed.
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[. INTRODUCTION Therefore, we focus on designing an efficient lossy com-
pression code for a simple information source of uniformly
Recent active research on error-correcting codgSC)  biased Boolean sequences. Constructing a scheme of data,
has revealed a great similarity between information theongompression requires implementation of a map from com-
(IT) and statistical mechani¢SM) [1—7]. As some of these Pressed data, of which the redundancy should be minimized
studies have shown that methods from SM can be useful ¥ the original message that is somewhat biased, and there-
IT, it is natural to expect that a similar approach may alsofore seems redundant. However, since the summation over
bring about novel developments in fields other than ECC. the Boolean field generally reduces the statistical bias of the
The purpose of the present paper is to offer such an e)data, Constructing such a map for the aforementioned pur-
ample. More specifically, we herein employ methods fromP0se by only linear operations is difficult, although the best
SM to analyze and develop a scheme of data compressioR€rformance can be achieved by such linear maps in the case
Data compression is generally classified into two categorie®f ECC[1,2,4,5,7 and lossless compressi¢t5]. In con-
lossless and lossy compressi@]. The purpose of lossless trast, producing a biased output from an unbiased input is
compression is to reduce the size of messages in informatidi¢latively easy when a nonlinear map is used. Therefore, we
representation under the constraint of perfect retrieval. Th#ill employ a perceptron, of which the transfer function is
message length in the framework of lossy compression cafPtimally designed in order to devise a lossy compression
be further reduced by allowing a certain amount of distortionScheme.
when the origina| expression is retrieved. The present paper is Organized as follows. In the follow-
The possibility of lossless compression was first pointednd section, we briefly introduce the framework of lossy data
out by Shannon in 1948 in theource coding theorerfp], ~ compression, providing the optimal compression perfor-
whereas the counterpart of lossy compression, termed as tfieance that is often expressed as tate-distortion function
rate-distortion theoremwas presented in another paper byin the case of the uniformly biased Boolean sequences. In
Shannon more than 10 years laf¢f]. Both of these theo- Sec. lll, we explain how to employ a nonmonotonic percep-
rems provide the best possible compression performance ffion to compress and decode a given message. The ability
each framework. However, their proofs are not constructivednd limitations of the proposed scheme are examined using
and suggest few clues for how to design practical codeghe replica method in Sec. IV. Due to a speciffirror)
After much effort had been made for achieving the optimalSymmetry that we impose on the transfer function of the
performance in practical time scales, a practical losslesBerceptron, one camnalytically show that the proposed
Compression code that asymptotica”y saturates the Sourcg]ethOd can saturate the rate-distortion function for most
Coding limit was discovere(ﬂ_l]_ Neverthe|essy thus far, re- choices of parameters when the code |ength becomes infinite.
garding lossy compression, no algorithm that can be perIhe obtained results are numerically validated by means of
formed in a practical time scale saturating the optimalthe extrapolation on data from systems of finite size in Sec.
performance predicted by the rate-distortion theory has beet The final section is devoted to summary and discussion.
found, even for simple information sources. Therefore, the
quest for better Iossy compression codes remains one of the Il LOSSY DATA COMPRESSION
important problems in 178,12-14.
Let us first provide the framework of lossy data compres-
sion. In a general scenario, a redundant original message of
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"Electronic address: kaba@dis.titech.ac.jp here as a Boolean sequencées= {0,1}, is compressed into a
*Electronic address: nishi@stat.phys.titech.ac.jp shorter (Boolean expression s=(S;,S;, ... ,S\)(S;

1063-651X/2002/6@)/0661268)/$20.00 66 066126-1 ©2002 The American Physical Society



HOSAKA, KABASHIMA, AND NISHIMORI PHYSICAL REVIEW E 66, 066126 (2002

S R(D)=Hz(p) —Hz(D), 4

y—— Encoder Decoder ——9’

) whereH,(x) = — x log,x—(1—X)log,(1—X).

FIG. 1. Encoder and decoder in the framework of lossy com-" ., ever. it should be addressed here that a practical code
pression. The retrieved sequeryoeeed not be identical to the origi- tnat saturates this limit has not yet been reported, even for
nal sequencg. this simplest model. Therefore, in the following, we focus on

this information source and look for a code that saturates Eq.
€{0,,N<M). In the decoding phase, the compressed ex4) examining properties required for good compression per-
pression s is mapped to a representative message formance.
=(yLy? ... y"M(y*<{0,1}) in order to retrieve the origi-
nal expressiorFig. 1). Ill. COMPRESSION BY PERCEPTRON

In the source-coding theorem, it is shown that perfect re-
trieval y=y is possible if the compression ra=N/M is
greater than the entropy per bit of the messggehen the
message length1 and N become infinite. On the other e ) . .
hand, in the framework of lossy data compression, the (1) In order to minimize loss of information in the original

achievable compression rate can be further reduced, allowirfg<Pressions, the entropy per bitsmust be maximized. This

a certain amount of distortion between the original and rep!MPlies that the components sfare preferably unbiased and

. ~ uncorrelated.
resentative messaggsandy.

A measure to evaluate the distortion is termed asdie (1 In~ order to reduce the distortion, the .representatwe
tortion function which is denoted asi(y)=0. Here, we messagg(s) should be placed close to the typical sequences
h wh ; yy)=u. ' of the original messages that are biased.
employ the Hamming distance

Unfortunately, it is difficult to construct a code that satis-
M fies both of the above two requirements utilizing only linear
d(yS/)z 2 d(yus,ﬂ), (1) tr_ansformaupns over the Boolgan field while such maps pro-
n=1 vide the optimal performance in the case of E[1(2,4,5,1
and lossless compressiptb]. This is because a linear trans-

In a good compression code for the uniformly biased
source, it is conjectured that compressed express#mns
should have the following properties:

where formation generally reduces statistical bias in messages,
~ which implies that requirementl) cannot be realized for
dy ) 0 if yr=y# @ unbiased and uncorrelated compressed expressithad are
yuyr) = ~ [ i :
10 yeays, preferred in requirement)

One possible method to design a code that has the above
properties is to introduce a nonlinear transformation. A per-

as Is frequently used for Boolean messages. ceptron provides one of the simplest schemes for carrying

Since the original messageis assumed to be generated :
randomly, it is natural to evaluate the average of @g. This out this task. N .
’ ' In order to simplify notations, let us replace all the Bool-

can be performed by al/eragirtgy,fl) with respect to the ogp expression,1} with binary ones{1,—1}. By this, we
joint probability ofy andy as can construct a nonlinear map from the compressed message
s to the retrieved sequengeutilizing a perceptron as

d<y&>=§ > P(y,y)d(y,y). 3)
’ (p=1.2,... M), (5)

By allowing the average distortion per bit(y,y)/M, up
to a given permissible error levelOD<1, the achievable _ i ) )
compression rate can be reduced below the entropy per bitthere x“~*%-- are fixed N-dimensional vectors to
This limit R(D) is termed theate-distortion functionwhich ~ Specify the map and(-) is a transfer function from a real
provides the optimal compression performance in the frameaumber to a binary variablg* e {1,— 1} that should be op-
work of lossy compression. timally designed.

The rate-distortion function is formally obtained as a so- Since each component of the original messgge pro-
lution of a minimization problem with respect to the mutual duced independently, it is preferred to minimize the correla-

information betweery andy [8]. Unfortunately, solving the tions among components of a representative vegtovhich
problem is generally difficult and analytical expressions ofintuitively indicates that random selectionxf may provide
R(D) are not known in most cases. a good performance. Therefore, we hereafter assume
The uniformly biased Boolean message in which eactthat vectors x*=%2:M  are independently drawn
component is generated independently from an identical disfom the N-dimensional normal distribution P(x)
tribution P(y#=1)=1—P(y*=0)=p is one of the excep- =(27) V2exg—|x|%/2].
tional models for whichR(D) can be analytically obtained. Based on the nonlinear mafd), a lossy compression
For this simple source, the rate-distortion function becomesscheme can be defined as follows:
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(1) Compression. For a given messagdind a vectors fra(u)
that minimizes the distortiom(y,y(s)), wherey(s) is the 1
representative vector that is generated froby Eq. (5). The
obtaineds is the compressed message. i K

(2) Decoding. Given the compressed messggee rep- 15 u
resentative vectoy(s) produced by Eq(5) provides the ap-
proximate message for the original message. -1

Here, we should notice that the formulation of the current

problem has become somewhat similar to that for the storage
capacity evaluation of the Ising perceptidr6,17] regarding
s, x*, andy* as “Ising couplings,” “random input pattern,”
and “random output,” respectively. Actually, the rate-
distortion limit in the current framework fob=0 and p
=1/2 can be calculated as the inverse of the storage capacim

. Z #0.5.
of the Ising perceptrony, L fp . .
This observation implies that the simplest choice of the Hence, another candidate for which the EA parameter

transfer functionf (u)=sgn(), where sgnf)=1 for u=0 vanishes and the bias of the output can be easily controlled

and —1 otherwise, does not saturate the rate-distortion funcmUSt be found. A function that provides these properties was

tion (4). This is because the well-known storage capacity of2Nce mtroijuced for reducing noISe In S|gr_1al processing, such
. . B as fa(u)=sgnk—|u|) [21,22 (Fig. 2. Since this locally

the simple Ising perceptroma,.= M/N~0.83, means that the activated (LA) function has mirror symmetryf,a(—u)

“compression limit” achievable by this monotonic transfer = o Y LA

function becomeR,=N/M=a_'~1.20 and far from the =fa(u), both's and —s provide identical output for any

i . : input, which means that the EA parameter is likely to be
value provided by Eq(4) for this parameter choic®(D : :
—0)=H,(p=1/2)—H,(D=0)=1. We also examined the zero. Moreover, one can easily control the bias of output

. , ~sequences by adjusting the value of the threshold parameter
performances obtained by the monotonic transfer functio 9 y adl g b

n . . . L.

: . ; . k. Therefore, this transfer function looks highly promising as
for biased messages<(p<<1/2 by introducing an adaptive ful buildina block f tructi d ;
threshold in our previous studyL8] and found that the dis- a useiul building block for consiructing a good compression

crepancy from the rate-distortion function becomes large in

particular for relatively highR, while fairly good perfor- the above speculation, analytically and numerically evaluat-

mance is observed for low “”?te regions. . ing the performance obtained by the locally activated trans-
Therefore, we have to design a nontrivial functifn) in -~ ¢ function f,_x(u)

order to achieve the rate-distortion limit, which may seem
hopeless as there are infinitely many degrees of freedom to

FIG. 2. Input-output relation of A(u).

is because this function cannot produce a biased sequence
due to the symmetryfgp(—Uu)=—frn(u), which means
at requirementll) provided above would not be satisfied

In the following two sections, we examine the validity of

be tuned. However, a useful clue exists in the literature of IV. ANALYTICAL EVALUATION
perceptrons, which have been investigated extensively dur- _ .
ing the last decade. We here analytically evaluate the typical performance of

In the study of neural network, it is widely known that the proposed compression scheme using the replica method.
employing a nonmonotonic transfer function can highly in-Our goal is to calculate the minimum permissible average
crease the storage capacity of perceptfd®. In particular, distortion D when the compression raiR=N/M is fixed.

Bex et al. reported that the capacity of the Ising perceptronThe analysis is similar to that of the storage capacity for
that has a transfer function of the reversed-wedge-typ@erceptrons.

f(u)="frn(u)=sgnu—k)sgn@)sgnu+k) can be maxi- I_Employing the Ising spin expression, the Hamming dis-
mized toa,=1 by settingk= 2 In 2 (Ref.[20]), which im-  tortion can be represented as

plies that the rate-distortion limiR=1 is achieved for the

case ofp=1/2 andD=0 in the current context. Although M
not explicitly pointed out in their paper, the most significant d(yS/(s))= 2 {1-0(u*y")}, (6)
feature observed for this parameter choice is that the w=1

Edwards-AndersoEA) order parameter (IW)|(s)|? van-
ishes to zero, wheré - - ) denotes the average over the pos-
terior distribution givery andx#=12---M_This implies that
the dynamical variabls in the posterior distribution given
and x*=12---M is ynbiased, and therefore, the entropy is
maximized, which meets requiremefl) addressed above. O (u;1)=1-0(u;—1)=
Thus, designing a transfer functidifu) so as to make the
EA order parameter vanish seems promising as the first dis-
cipline for constructing a good compression code.

However, the reversed-wedge type transfer function Ul =——s. X~ (8)
frw(U) is not fully satisfactory for the present purpose. This N

where

1, for |ul<k

)

0, otherwise,
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Thefrl,2 forM a given original messagy and vectors =Try,  qll2_;8(MD—d(y,y(s%)), where the subscript
x#(=12--M the number of dynamical variables, which 3 denotes a replica index. Inserting an identity

provide a fixed Hamming distortiod(y,y(s))=MD (0<D
=<1), can be expressed as

1=]] f Ay &~ Nojy)

MD)=Tr S(MD—d(y,X(9)). 9 e
s ( 1 )n(nl)lz +,x1_[ Hool_[ R
=l d f d
Sincey and x* are randomly generated predetermined 2i f_w a>b Gab —j a>b Gab
variables, the quenched average of the entropy per bit over
these parameters, Xex;{ azb aab(§'5b—NQab) (11)
INA(D
S(D)= <(N—)>y’x’ (10

into this expression and utilizing the Fourier expression of

to which the raw entropy per bit, (M}InAV(D), becomes the & function,

identical for most realizations gfandx*, is naturally intro- ting
duced for investigating the typical properties. This can be 5(MD—d(y,§(sa)))=f B’f‘
performed by the replica method (NXINAV(D))y « —iee 277
=lim,_o(1/NN)InN(N"(D)),.«, analytically continuing the -
expressions of (D)), obtained for natural numbersto xexd Ba(MD—d(y,y(s")))], (12
non-negative real number[23,24].

Whenn is a natural number\/"(D) can be expanded to a we can calculate the mome(w™"(D)), , for natural num-
summation over n-replicated systems asAN"(D) bersn=1,23... as

R1In< j do duex;{ - 1thv-i—iv . u)
2

le {eﬁa+<1—eﬁa>®k<ua;y>}> +In[ Trexg >, aabsasb”—Zb qabamR*lDZl Ba], (13)
a= y a> a=

(s a>b

(N™(D))yx~ f 1;[ dBa f a[[bcqu,lb f agb dGapexpN

whereQ is annXn matrix, of which elements are given by IN(A(D))y
the parametergq,p} and (---)y,==,_.(ps(y—1)+(1 S(D)= IimT'zextr[ Rl[pf Dt
—p)o(y+1))(---). o £.9.4

In the thermodynamic limitN,M —, keeping the com- XInfe A+ (1—e A)[H(w;)—H(Wy) ]} +(1—p)

pression rateR finite, this integral can be evaluated via a
saddle point problem with respect to macroscopic variables

Qab» E]abv andIBa-
In order to proceed further, a certain ansatz about the

X f Dtin{e A+ (1—e #)[—H(wy)

symmetry of the replica indices must be assumed. We here +H(w2)+1]}}— at-q)
assume the simplest one, that is, the replica symmeR®: 2
ansatz
+f DufIn(2 coshy/qu)}+R 18D |, (15)

Ba=B, Uab=d, dap=0d (Va>b), (14 wherew;=(—k—qt)/y1—q, w,=(k—qt)/\1—q, Dx
=(dx/V2m)exp(-x%2), and H(x)=[;Dt; extf---} de-
notes the extremization. Under this RS ansatz, the macro-

for which the saddle point expression of Efj3) is likely to  scopic variableq indicates the EA order parameter gs
hold for any real numben. Taking the limitn—0 of this  =(1/N)|(s)|2. The validity of this solution will be examined
expression, we obtain later.
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slope = "B value of mir;{d(y,f/(s))} vanishes to zero. Therefore, fgr
[ = E— >pB., D(B) is fixed to D(B.), and the distortionD
<D(B.) is not achievablé¢Fig. 3(c)].

The above argument indicates that the limit of the achiev-
able distortionD(B.) for a given rateR and a threshold

0 N —D parameterk in the current scheme can be evaluated from
achievable distortion conditions
(a) Achievable case
IBF(B))
_HBFBD, .
I(R""P)
S(D(B))=0, 17)
é D being parametrized by the inverse temperajire
0 N erttcal Due to the mirror symmetryf, o(—u)=f A(u), q=q
(b) Critical case =0 becomes the saddle point solution for the extremization

problem(15) as we speculated in the preceding section, and
no other solution is discovered. Insertiqg:fq=0 into the
right-hand side of Eq(15 and employing the Legendre
transformation, the free energy is obtained as

BF(B)=—In2—R YpInfe P+ (1—e P)A}
D

o X nonachievable distortion +(1-p)In{e” Pr(1-eP)(1- Avtl, (18
(c) Nonachievable case

whereA,=1—-2H(k), which means that Eq$16) and(17)
FIG. 3. Schematic profile of the entrogger biy S(D). (a) For  Yield

a modestB, the achieved distortio(B) is such a point where

4S(D)/dD=R~1B holds. This is realized by the random sampling e P—e PA, e P—e B(1-Ay

from the canonical distributiof(s]y,x*)~exd —Bd(y,y(s))]. (b) D= pe*ﬁ+(l—e*5)Ak +(1-p e bi(l-e F(1-Ay’

At a critical inverse temperatug= 3., the entropy foD(3.), the

minimum distortion, vanishes to zer@) It is impossible to achieve (19
any distortion that is smaller thab(B.), as S(D)=0 for D and
<D(By)-
R=—[plog{e #+(1-e /)Aj+(1-p)

Since the dynamical variableis discrete in the current Xlog{e A+ (1—e A (1-AY}]
system, entropy(15 must be non-negative. This indicates
that the achievable limit for a fixed compression ratand a B e P—e PA,
transfer functionf ,(u) that is specified by the threshold 5| P -
parametek can be characterized by a transition depicted in n2[ " e P+ (1-e"P)A
Flg 3. B A—Br1_

Utilizing the Legendre transformation BF(RB) +(1-p) € e "(1-A , (20)
=minp{R 1BD—SD)}, the free energy ERB) for a fixedin- e P+(1-e A (1-AY

verse temperaturg3, which is an external parameter and .
should be generally distinguished from the variational vari-respectively.
able 8 in Eq. (15), can be derived fron(D). This implies The rate-distortion functiofR(D) represents the optimal
that the distortiorD (3) that minimizesR 18D —S(D), and  Performance that can be achieved by appropriately tuning the
of which the value is computed fronfF(B8) as D(3) scheme of compression. This means fR@D) can be evalu-
=3(BF(B))d(R1B) can be achieved by randomly draw- ated as the convex hull of a region in tBeR plane defined

ing s from the canonical distributionP(sly,x*)~exp by Egs.(19) and(20) by varying the inverse temperatuge
[—,Bd(yS/(s))] that is provided by the giveB. For a modest and the threshold parameter(or A,) . Minimizing R for a

B, the achieved distortiob (3) is determined as a point for fixed D, one can show that the relations

which the slope ofS(D) becomes identical t&R ™13 and D

S(D)>0 [Fig. 3(@)]. As 8 becomes higheD(8) moves to e P (22)

the left, which indicates that the distortion can be reduced by
introducing a lower temperature. However, at a critical value
B, characterized by the conditi® D (8.)]=0 [Fig. 3b)],

the number of states that achieDéB.) which is the typical

(22)
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are satisfied at the convex hull, which offers the optimal
choice of parameter8 andk as functions of a given permis-
sible distortionD and a biag. Plugging these into Edq20),

we obtain

o
~

average distortion
o o
N w

R=RgrgD)=—plog,p—(1—-p)log,(1—p)+D log,D

[=]
-

+(1-D)logy(1-D)=H,(p)—H2(D), (23 .
S ] ] ) ] ] 0 005 010 015 020 025
which is identical to the rate-distortion function for uni- 1/N
formly biased binary sourced). (@) p=0.5
The results obtained thus far indicate that the proposed
scheme achieves the rate-distortion limit when the threshold 0.20

parametek is optimally adjusted. However, since the calcu-
lation is based on the RS ansatz, we must confirm the valid-
ity of assuming this specific solution. We therefore examined
two possible scenarios for the breakdown of the RS solution.
The first scenario is that the local stability against the
fluctuations for disturbing the replica symmetry is broken,
which is often termed the Almeida-Thoule@T) instability

\\

average distortion
o
=
=)

e
o
&

[25], and can be examined by evaluating the excitation of the 0
free energy around the RS solution. As the current RS solu- 0 0.05 0.101/N0.15 020 025
tion can be simply expressed gs-q=0, the condition for

ply exp asq (b) p=0.2

this solution to be stable can be analytically obtained as

FIG. 4. The averages of the achieved distortions are plotted as
_ 2 functions of 1N for (a) p=0.5 (unbiased and (b) p=0.2 (biased
1 2k(1-2D) 2 X ¢ -
= e (K72 (24)  messages changing the compression Rat€he plots are obtained
pP(1-p) V2 from 5000~ 10 000 experiments fdi=4~ 20, minimizing the dis-
tortion d(y,y(s)) by means of exhaustive search. Each set of plots

In most cases, the RS solution satisfies the above conditig#Prresponds t&®=0.05 (p=0.5 only, 0.1, 0.2....., 1.0, from the
and, therefore, does not exhibit the AT instability. However,©P-
we found numerically that for relatively high values of dis- V. NUMERICAL VALIDATION
tortion 0.336sD<0.50, RggD) can become slightly
smaller thanR(D) for a very narrow parameter region,  Although the analysis in the preceding section theoreti-
0.499<p=0.5, which indicates the necessity of introducing cally indicates that the proposed scheme is likely to exhibit a
the replica symmetry breakin@RSB) solutions. This is also good compression performance, it is still important to con-
supported analytically by the fact that the inequality firm it by experiments. Therefore, we have performed nu-
Rar(D)~2.94x (p—D)2=RggD) ~2.89% (p—D)? holds merical simulations implementing the proposed scheme in
for p=0.5 in the vicinity of D=<p. Nevertheless, this insta- Systems of finite size.
bility may not be serious in practice, because the area of the In these experiments, an exhaustive search was performed
region Rgg(D)<R<R4 (D), where the RS solution be- in order to minimize the distortiod(y,y(s)) so as to com-
comes unstable, is extremely small, as indicated by Fa. 5 press a given messageinto s, which implies that imple-
The other scenario is the coexistence of an RSB solutiomenting the current scheme in a large system is difficult.
that is thermodynamically dominant while the RS solution isTherefore, validation was performed by extrapolating the nu-
locally stable. In order to examine this possibility, we solvedmerically obtained data, changing the system size fiém
the saddle point problem assuming the one-step RSB =4 to N=20.
ansatz in several cases for which the RS solution is locally Figure 4 shows the average distortions obtained from
stable. However, no 1RSB solution was discoveredRor 5000~ 10 000 experiments fdia) unbiased p=0.5) and(b)
=RggD). Therefore, we concluded that this scenario neeciased p=0.2) messages, varying the system $izand the
not be taken into account in the current system. compression rat®(=0.05~-1.0). For eactR, the threshold
These insubstantial roles of RSB may seem somewhgiarametek is tuned to the value determined using E@)
surprising since significant RSB effects above the storagend(22), and the rate-distortion functioR=R(D) in order
capacity have been reported in the research of perceptroms optimize the performance.
with continuous coupling$19,21]. However, this may be These data indicate that the finite size effect is relatively
explained by the fact that, in most cases, RSB solutions folarge in the present system, which is similar to the case of the
Ising couplings can be expressed by the RS solutions adjus$torage capacity problefi26], and do not necessarily seem
ing temperature appropriately, even if nonmonotonic transfeconsistent with the theoretical prediction obtained in the pre-
functions are usefil7,27. ceding section. However, the extrapolated values obtained

R>Rar(D)
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1.09 . . . . of which the transfer function is nonmonotonic. Designing
ratedistorﬁonft;\nglifm - the transfer function based on the properties required for
0.8 extrapolated resuts. O | good compression codes, we have constructed a scheme that
0.6 o 31 | saturates the rate-distortion function that represents the opti-
' =) mal performance in the framework of lossy compression in
R N 23.0
04l 5 _ most cases.
29 It is known that a nonmonotonic single-layer perceptron
0.2} 2 can be regarded as equivalent to certain types of multilayered
networks, as in the case of parity and committee machines.
0 ' ' : Although tuning the inputoutput relation in multilayered net-
0 0.1 0.2 0.3 0.4 0.5 . . .
D works would be more complicated, employing such devices
_ might be useful in practice because several heuristic algo-
(@) p=0.5 ' € S
rithms that could be used for encoding in the present context
1.00 , , , , have been proposed and investigdt2d,28|.
d rate distortion function —— In real world problems, the redundancy of information
0.8 ext,apo,atedf;ﬂ'l‘f;' o sources is not necessarily represented as a uniform bias; but

rather is often given as nontrivial correlations among com-
] ponents of a message. Although it is just unfortunate that the
direct employment of the current method may not show a
good performance in such cases, the locally activated trans-
fer function f 5(u) that we have introduced herein could
serve as a useful building block to be used in conjunction
with a set of connection vectosg =12 - M that are appro-
priately correlated for approximately expressing the given
information source, because by using this function, we can
easily control the input-output relation suppressing the bias
FIG. 5. The limits of the achievable distortion expected for ~ Of the compressed message to zero, no matter how the re-
— o are plotted vs the code raefor (a) p=0.5 (unbiasedland(b) dundancy is represented.
p=0.2 (biased messages. The plots are obtained by extrapolating Finally, although we have confirmed that our method ex-
the numerically obtained data for systemsM#4—20 shown in  hibits a good performance when executed optimally in a
Fig. 4. The full and dashed curves represent the rate-distortion fundarge system, the computational cost for compressing a mes-
tions and the AT lines, respectively. Although the AT stability is Sage may render the proposed method impractical. One
broken forD=0.336 forp=0.5 [inset of (8)], the numerical data promising approach for resolving this difficulty is to employ
are highly consistent with the RS solution that corresponds to thefficient approximation algorithms such as various methods
rate-distortion function. of the Monte Carlo sampling29] and of the mean field
approximatior{30]. Another possibility is to reduce the finite
from the quadratic fitting with respect toNL/are highly con-  size effect by further tuning the profile of the transfer func-
sistent with curves of the rate-distortion functigfigs. 5a)  tion. Investigation of these subjects is currently under way.
and 3b)], including one point in the region where the AT

(b) p=0.2
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