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Diffusion of the magnetization profile in the XX model
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We investigate the magnetization profile in the intermediate time of diffusion by using@*halgebraic
method. We observe a transition from monotone profile to nonmonotone profile. This transition is purely
thermal.
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[. INTRODUCTION further consider the finite-temperature case. In the finite-
temperature case, we obtain a remarkable dependence of the
The anomalous properties of the state with current in onemagnetization profile on the strength of the external field and
dimensional integrable system has attracted considerable ithe temperature. When the external field is large, or the dif-
terest. Especially, heat conduction in one-dimensional sygerence of the temperature is small, the profile varies mono-
tems is a long-standing problem. It has been expected th&enically. On the other hand, when the external field is small
the existence of conserved quantities implies anomalous coand the difference of the temperature is large, the profile is
ductivity of the heat currerjtl]. A large number of numerical not monotone and has two extremum points. This feature is
investigations have been dofi&] absent at zero temperature. That is, this phenomenon is due
It is natural to consider the state with current as the nonto a purely thermal effect. This can be explained by the ve-
equilibrium steady statéNESS, i.e., the state which is as- locity distribution. In Sec. Il, we represent the model and the
ymptotically realized from the inhomogeneous initial stateinitial condition. In Sec. Ill, the scaling property of correla-
[3,4]. In other words, the NESS is the state at the convergeriion function is derived. In Sec. IV, we investigate the inter-
point. Many works have been reported on the NESS itselfesting property that the profile reveals.
However, the relaxation process to the NESS has not been

investigated much. After a large but finite time, what kind of Il. THE MODEL
profile does the observable quantity show? In a previous pa- o _
per [5], stating from the inhomogeneous initial stgte The Hamiltonian we shall consider has the form

temperatures of the left and the right are diffejemtob-
tained the homogeneous NESS for the transvpéenodel. Y
Investigating the profiles in the intermediate time, we would H=~ 2 (oponiitohoh)+ > 2 o, (D)
obtain the diffusion of the temperature profile. Furthermore, o S

in the integrable system, the existence of the conserved

w . : .
guantities may have a significant influence on the reIaxatioHVhere‘TfJ(a_X'Y’Z) IS t.hea.component of the Pauli matrix
process. at the siten. This Hamiltonian is called the transver¥&

In this paper, we investigate the profile at the large inter-m‘?del' The Hamiltopian is written by' the fermion operators
mediate time using the transver¥X model. The chain is using the Jordan-Wigner transformatifs]
initially divided to the left and the right, and kept at different L - "
temperatures. The problem of intermediate profile with inho- _, + + Y +
mogeneous initial condition in th¥X model was first stud- H=- _n;x [an+18ntanan. 1]+ _n;x (2aman—1),
ied by Antalet al. in Ref.[6]. They considered the magneti- 2)
zation profile at zero temperature with the reversed external
field, a situation that makes the calculation simple. It wasyherea, anda! are the fermionic annihilation and creation
shown that the magnetization profile shows the scaling propgperators on thath site[9].
erty, m(x,t)~®(x/t). They calculated the explicit form of * owing to the bilinear form of the Hamiltonian, the dy-
the scaling function®, which has the flat part around the pamics of the many body system can be written by the dy-
origin. We investigate this problem with the aid of the namics of the singie particle. So, we only have to consider

C*-algebraic argument. Modifying the argument of Ho andipe dynamics of the linear combination af,
Araki [7], we develop a method which is applicable to the

present situation. Th€* -algebraic argument makes the cal- %
culation much simpler, and enables us to consider the more al(f)y=> fhal, > [f(h|?<. 3)
general situation, including the finite-temperature case. ==
We obtain the scaling limitn(x,t)~®(x/t). For the situ-
ation of Antalet al. [6], we reproduce the same result. We Here,| denotes théth site. The summable sequendé!)}
can be interpreted as the wave function of the single particle
that is present on the lattice. They construct the one particle
*Electronic address: ogata@monet.phys.s.u-tokyo.ac.jp Hilbert space, with the inner product
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o0

|=—0o
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© magnetic fieldy, with inverse temperaturg, . We denote
(flg)= > f(hgh). the state byw. . The expectation values af'(g)a(f) in
1= w_, w, are expressed as

As usual, we define the norm bfas

1 (= i
oo 102 wf(af(g)a(f))=;f_ dkp_(K)G-(K)T_(k),
||f||=(|_2w |f(|)|2>
In the one particle Hilbert space, the Fourier transforma- w+@'(g)a(f))= ;f_ Wd kp (K)G. (K)f.(k), (6

tion is defined as
o 1 (= wherep . is determined by the variablgs. , andy.. as
fk= > f(n)e "k f(n)=EJ f(k)eink,

n=-—o

pr(K) = T ATt
By the Hamiltonian(2), a'(f ) evolves as

al(f)—af(ethf), 4) We used the Fourier-sine transform,
. 0
wheree'™" is the dynamics of the single particle, represented = . .
in the Fourier representation as f-(k)= _In;w fnsi(n=1)k],  ke[0,7],
elthf (k)= e~ t(eosk= M (i), 2i (=
f(n)z—f dkf_(k)siMf(n—1)k], n=<0,
Hence, in the coordinate representation, we have m™Jo

. 1 (= . A *
th - = —it(cosk— y) mink ~ . .
(e"f)(n)=5— f_ﬂdke it(cosk=y)ginkf (), (5) f+(k)z—|n21 f(n)sin(nk), ke[0,r],
From now on, we use the following notations. Usually, o (=
the Heisenberg representation of the observabie f(n)= _f dkf, (k)sin(nk), n=1.
eitHAe_itH. ™o

) ) Because of the quadratic form of the equilibrium states
Instead of this, we use the notatian(A), andw. , the expectation values are evaluated by use of the
i i Wick product with the two-point function. The initial state
itH itH
e Ae Mo a(A). has then the following product form:

In this notation, the dynamics of the single particle 4 is writ-

ten as wo(A_®A ) =w (A )w(A}), (7)

@7 (f))=a'(e'"f). whereA_ andA . are arbitrary operators of the left part (
=<0) and the right partr{(=1) of the chain, respectively.
We also use the unusual notation about the states. Usually,
the state is given by a density matgx and the expectation IIl. THE SCALING PROPERTY
value of A is given by
Now, we investigate the asymptotic profile of physical
TrpA. quantities. Let us considés,, some physical value localized
in the neighborhood of site. The expectation value of,, at

Instead of this, we use, the timet is X(n,t)=wo(a;(X,)), with the notation of the

Tr pAc w(A) preceding section. The scaling property means
These notations are introduced because the usual notations X(n,t)~® n
are mathematically ill defined in an infinite system. How- ' *\t)

ever, there is no inconvenience in interpreting them in the

usual sensg10,11]. i.e., for larget, the expectation value of at the sitevt is
The initial statewy we consider is inhomogeneous. To almost®y(v). Figure 1 shows the situation. Each figure is

define it, we divide the chain to the left and the right. The leftthe snapshot of the profile of sonteat the timet, 3ty, and

(n=<0) side is in equilibrium under magnetic field with 10ty. Note that the leaned area has the witih 3t,, and

inverse temperatur@_ . We denote the state hy_. Onthe  10ty, respectively. It shows that theave of diffusion ex-

other hand, the rightn(=1) side is in equilibrium under pands with a constant velocity 1. They can be written as
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»- >
1 1
/ to /
-1 ~ -1 -
A v i
= 1
/ 3to v
-1 ~ U FIG. 2. The scaling functiomby(v) corresponds to Fig. 1. In
|Tto| this figure, thex axis is not the site, but the scaling factor
-
- 1 10¢to calculated the following decomposition of E€p); for |n|
-1 - <t(1-6), with 6>0, we have
A i
10to (e"™f)(n)=(Tf)(n)+(Af)(n,t).

FIG. 1. The picture of diffusion. The axis is the site. Each T, is the operator which is defined as
picture shows the snapshot of the profile of the local physical quan-

tity X at the timety, 3t,, and 1@,. The wave of the diffusion 1/ ez
spread with the velocity 1. (Tef)(n)= > Et\/l—(n/t) [f(=sin"Y(n/t))
o N e 2
n s @~insin (n/t)—itN1—(n/t)“+iwm/4
X(n,t)=d>x(?), ©

+f(xm+sin"i(n/t))
Here,®y(v) is the scaling function represented in Fig. 2.

To show this scaling property, we have to prove the fol-
lowing convergence to the scaling functidny :

% ein[t7r+sin’l(n/t)]+it\/l—(n/t)z—i77/4]

(+for n<0, —for n>0). (8)
Dy(v)=Ilim X(vt,t)=1lim wg(ay(X,)).
t—oo tooe This term corresponds to the contribution from the momen-

. ) i _ tum (n,t) where the phase velocity
As wq is determined by the Wick product of the two-point

function, we only have to derive the limit for th& nk
=a'(g)a(f) case, $(k)= —cosk+ y+ —
w,@"(g)a(f))=Pat(ga(r)(v) is stationary, i.e.,

=lim wO(at[aT(Svtg)a(svtf D,
t—oo

n
¢’(k)=sink+Y=O

where we used thetsift operatorS,, on the one particle
Hilbert space, =k(n,t)=—sin"Y(n/t), = 7+sin (n/t)

(Spf)(n)=f(n—m). (+for n<0, —for n>0). (9

For example, to derive the asymptotic profile of the magne{Af)(n,t) decay as

tizationm(v), we calculate
S5

C
M(v) = lim wola(30%))= lim wo(ay(@la,) - I(AD (D= 10
t—ow t—ow
_y t 1 with C® some constant which is independentofThey also
tlm @o(ei[8(S1770)a(Su7m0) )~ 2 showed that the contribution ®'"f from |n|>t(1— ),

= T _1 .
with 7y a wave function defined as t—ee [n[>1(1-)

1 n=0 goes to zero a®¥— 0. Equations(10) and (11) ensure the
' ’ following:

(M=o, nxo.
e'thf~T,f, (12)

Using theC* -algebraic method, we can make the argument

generic. As an advantage, we can treat the finite-temperatufer larget. We can see from E(8), this means that at the

case. The argument uses the result of Ho and ArdkiThey  site n, there is only the particle with momentuk(n,t).
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Now, let us return to the current problem. First, we define
projection operators on the one particle Hilbert space. The

coordinate projection®,,, P, are

B - , n>m,
[me](n):[f(n), n=m,
N f(n), n>m,
[me](n)E[ 0 n<sm.

There is the following relation betweesy, and P;" :

SuPi =P 1Sm- (13

The velocity projectionssv_, Islf are defined in the Fourier

representation as

ft O, kE'U,
[Pvf](k>=[f(k), celt,
B f1(k)= fky, kela,
[P, fl(k)= 0, kel

where
I, ={ke(—m,m);v<sink},

and!? is the complement df, . From the definition off, (8),
we have

TP, =P7

—ut

T . (14
Next we calculate the asymptotic value of
at(aT(Svtf )):af(eithsvtf )

We claim that

lim||Py S, f—P;S,e"f||=0.

t—o0

We have to calculate

) 1 (= : . "
(elthsvtf )(n) _ EJ dke—lt(cosk— y)el(n—ut)kf(k),

-

which we obtain by replacing of Eq. (5) with n—vt. Note
thatS,, commutate with the dynamie'". Let us defind g];
as

In—vt|<t(1-9),
In—vt|>t(1-9).

(St Tr@)(n),

[g]t(n)E [ (Svteithg)(n),

Using the relations(13), (14), we have for|n—uvt|<t(1
— 5),

PHYSICAL REVIEW E66, 066123 (2002

[P gli(n)=(S, TP, g)(n) (15)
= (S, P, T:9)(N) = (PyS,T@)(n)
=(Pg[g])(n). (16)

Let us fix somes>0. Then, in the asymptotic limit— o,
we have from Eqs(16),

IPo[gT—[P, gli?

= s |Po S 0N ~ Sy P g

+ > )|P5[g]t<n>—[f>:g]t<n>|2

[n—vt|<t(1-4

<2 > |éfgm)|?+ X |eMPg(n)|?
[n|>t(1-9) [n|>t(1-6)
—2[Bs(9)+B4sP,9)]. (17)

We also have in thé— o limit,

||Suteithg_ [g]dl?

= > (Su€Mg)(n)— (S, Tg)(n)|2

In—vt|<t(1-96)

= > |(eMg)(n—vt)—(T,@)(n—vt)|?

In—vt|<t(1-9)

= >

In|<t(1-5)

= >

_\n|st(17¢$)

|(e"™g)(n)—(T@)(n)|?

[(Ag)(t,n)|?

(C%?

Tin<ti-s t

—0. (18)

Hence, we have

lim||P, S,ie'"g— P, S,e'"g|< lim Py S,"g— Pq [gil

t—oo t—oo

+lim [Py [gl—[P; gldl+ lim|[[P; g],— P, S,e""g||

t—o t—o
<2[B4g)+Bs(P,g)].

We used Eqgs(17), (18) and the commutativity of?’u+ » Suts
and €. Note that the first term lip..||P, S,€""g

—P;s,e'"g| is independent. So, taking—0, we have

lim|[Py S,e""g— P, S,€""gl|=0. (19)

t—o
Similarly, we have

lim|[P§ S,e""g— P, S,€"gl|=0. (20)

t—o
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Next, we substitute the above result to the initial state to
derive the two-point functionw,(a’(g)a(f)). For the pur-

1 =
w,@"(g)a(f)=5_ f dkp_(f(kg(k)
. o . L T Ju<sink
pose, we rewrite the initial state with the projection operators

P. . Note that

T,(k)=—in§0 f,sin(n—1)k

el (N—1k_ g=i(n-1)k
=—i E 1En

n=<0 2i

1 — —ik_ 573 ik
=—§[Pof(_k)e — Py f(k)e™].

Hence, we have

o_(@'(g)a(f)) (21)
1 (= e — =
=Efwdk[Pof<—k>Pog(—k>+P0f<k>Pog<k>
— By H(—k)Pg g(k)—e 24Py F(k)Pg a(— k) Tp_(K).

(22

We are now interested inw_(a'(gya(fy)), with g,
=S,e'"g, f,=S,e"™"f. We can see from Eq(22), that
w_(a'(gya(fy)) is written with P, S,e'"g andP, S,€'™"f.
Hence, we can apply the asymptotic fof@®).

Applying the formula, we have

limew_(a'(gy)a(f,))

t—oo

1
=lim—

" k2P (K F(0g(k)
t—oo -
— e 2KPF (k)P (—k)e2*F (k) g( —k)
—e?KpH (k)P (—K)e 2 (—K)g(K) Tp_(K).

Here we used the fact that the Fourier representatics),0é

S (k) =e MK (k).

kdkp+<k>?_<k)@<k>.

4+
27 Jy=sin

Note thatw,(a’(g)a(f)) is translation invariant.

The velocity of the particle with momentukniis sink. We
see that only the particles at temperaturg_1ivith velocity
(v=-sink=1) contribute to the state,. This represents the
situation that on the inertial system that moves with velocity
v, quasiparticles with velocity less thanin the left part of
the chain go to left infinity and do not appear in the correla-
tion function w, . This feature is also the case for the par-
ticles with temperature B/,

IV. THE ASYMPTOTIC PROFILE
With the two-point function, we can calculate the

asymptotic profile of physical quantities. The magnetization
profile m(v) is

1 1 1
m(v): Z fv>sinkdkp+(k)+ vassinkdkpi(k)_ E

The magnetic current profile is defined by

M) =lim w(ay(3M),

t—oo

whereJM'=9/S¢, | —S'S , | is the magnetic current at the
site n. Similarly, JM(v) is calculated as

JM(v)=if dkp ., (k)sink
27 Jy>sink

dkp_(k)sink.

I
27 Jy=sink

Let us consider the zero-temperature case: each side is in

By the Riemann-Lebesgue theorem, the second and the thiff€ ground state &, =B_=) with magnetic fieldy. ,

terms vanish and we finally obtain

| 1 .
imo.@(gpalf)=5- | _ dkp (WT(R0B(K).

t—oo

Similarly, we obtain

| 1 _
nmm(aT(gt)a(ft)):Zf  dke, (98K,

t—o

Hence, the explicit form of the two-point function of

w,(@’(g)a(f)) is

v_, respectively. We further assume=y,=—y_. This s
the situation that was considered in R], and we confirm
their results,

0, O<v<cosmmg
arccosv)
—mg+ ———, cosmmy=v<1
m(v)=—m(—v)= T
1 1<
——m ) =0,
2 0

where y=sinim,.
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0 0.05
-0.2 0.16
=
-0.5 = E
0.3 0.12 )
-1 -1 0 1 -1 0 1
-1 0 1 -1 0 1 (@) v (b) v
a d
0.4 0.08
0 . =
o E0.3 &)
0.2 0.02
-0.3 -1 0 1 -1 0 1
-0.5 () v d v
-1 0 1 -1 0 1
b e
e o.15 0.02
N =
B k0.01
-0.3 0.12
0 0
-1 0 1 -1 0 1
e f
0.5 o5 (e) v ® v
-1 0 1 -1 0 1 FIG. 4. The profile of the magnetization and the magnetic cur-
c £

rent at a finite temperature for various external fields. The left graph

FIG. 3. The magnetization profile at zero temperature for vari-SNOWs the magnetization profile, and the right one shows the mag-
ous external fields. The axis is the scaling factar. They axis is ~ Netic current profile. In the left graph, tieaxis is the scaling factor
the value of magnetization. All the cases are classified by (A)v @nd theyaxisis the value of the magnetizatior(v). In the right

X (B). (A) The absolute value of the external field) |y_|, | v+ | graph, thex gxis is theMscaIing factar and they axis is the value of
<1; (i) |y_|<1, |y4|>1 or |yi|<1, |y_|>1; Gii) [y_|, |y-| the magnetic currenl.(u). (@ y=—-05,8_-=10,8,=1; (b) y
>1, (B) The signs of the external fieldi) sign(y.)=sign(y_); =-1,B8.=10,8,=1,(c) y=-058=2,8,=1.
(it) sign(y,)=—sign(y-). (@ A-(i), B-(i); (b) A-(i), B-(ii); (c)
A-(ii), B-(i); (d) A-(iii), B-(i); (e) A-(ii), B-(ii); () A-(iii), B-(ii). magnetization profile is monotone at zero temperajfire
=B, ==, this is considered to be a purely thermal property.
1 1 When we increase the strength gfthe nonmonotonicity is

- Y= L SinTMo, O<v<cosmmy lost. Figure 4b) shows they=—1 case with the same tem-

perature;3_ =10, B8, =1. We can see the monotone profile.

M —M_.y=! 1
)=3"("v) —\1-v?, cosTmy=v<1 On the other hand, decrease of the difference of the tempera-
m ture also destroy the nonmonotonicity. Figui€)4show the
0, 1=v. v=—0.5 case with the different temperaturg. =2, B,

=1. The difference emerges also in the magnetic current.

In the zero-temperature case, regardless of the strength of ti&e right side of Fig. 4 shows the profile of the magnetic
external fieldsy, , y_, we can show that the magnetization current. In the caséa), the current takes the maximum value
profile m(v) is monotone. The situation is classified by the at two points. They corresponds to the two extremum points
following conditions.(A) The absolute value of the external of the magnetization profiles. On the other hand, in the
field: (i) |y_|, |y+|=1, (i) |y_|<1, |y+|>1 or|y.|<1, monotone case, the current takes the maximum at the origin
[y_|>1, (iii) |y_|, |y+|>1. (B) The signs of the external v=0.
field: (i) sign(y.)=sign(y_), (ii) sign(y.)=—sign(y_). The property of the profilémonotone/nonmonotonean
Hence, we have 82=6 cases. By the explicit calculation, be explained by the velocity distribution. First, recall that the
we can show that for all the situations, the magnetizatiorvelocity of the particle at momentutk is sink. To see the
profile m(v) is monotone. Figure 3 shows the magnetizationdependence of the velocity distribution, let us consider the
profile for each case. As seen in the following, the finitenessgjerivatives ofm(v) and JM(v) with v. For simplicity, we
of the temperature destroy this monotonicity when the exterrestrict ourselves to the case that bpth(k) andp, (k) are
nal field is small. _ _ continuous, i.e., both sides are initially at a finite tempera-
. To conqentrfite on the thermal inhomogeneity, let us cong e |n this case, we can differentiat€v) andJ™(v) with

sider the situationy= vy, = y_+#0. Due to the nonzerg, the v for —1<p<1. We have
spins have finite magnetization up to the value of the tem-
perature. The left side of Fig. 4 shows the profile of the
magnetization for various values of the external field and
temperature. Figure(d) corresponds to the case= —0.5, dm(v) _ ; _

. [p+(v)—p-(v)],
B_=10, B,.=1. It shows the nonmonotone profile. As the dv Vi-v?
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FIG. 5. The velocity distribution of the right and left sides. The
x axis is the velocity ; they axis is the distributiop(v). The solid
line showsp_(v), and the dashed lin@,(v). (8 y=—-0.5,8_
=10,8,=1; (b) y=-1,8-=10,8.=1; (¢) y=-0.5,8-=2,
B+=1.

dIM(v) B
dv

Jli—vz[p*(”)‘p*(””'

wherep_ (p.) is the velocity distribution,

1

pr(v)= E

1 1
+ .
14+e ABV1-" =y 14 g B(—V1-v"—y)

From these expressions, we can see that the difference

p.(v)—p_(v) determines the monotone/nonmonotone of
m(v) andj(v); if, for example, there exists a point where
p.(v)>p_(v) changes top,(v)<p_(v), the profile is

PHYSICAL REVIEW E66, 066123 (2002

nonmonotone. Figure 5 shows (v), p. (v) for the above
mentioned situation. We can see the crossing only for the
case of nonmonoton@) [9-11].

V. DISCUSSION

We have investigated the profiles of the magnetization
and the magnetic current, in the intermediate time towards
the nonequilibrium steady state, using the transveb$gd
model. We have found an interesting property: depending on
the strength of the external fields and the values of initial
temperature, the profile shows monotone/nonmonotone prop-
erty. This emerges as a result of the initial velocity distribu-
tion of the right and the left side. If there is a crossing be-
tween two distributions, the profile becomes nonmonotone.
This initial velocity dependence is due to the fact that the
transverseXX model preserves the one-particle mode. Each
particle runs to the infinity with its own velocity. In this
sense, the integrability affects the diffusion profile in an es-
sential way.

The derivation of the asymptotic profile is carried out by
showing the equationd9), (20). These equations are due to
Eq. (14); the fact that for each site there is only the particle
with specific momentum. The specific momentum is the mo-
mentum where the phase velocity is stationédy In other
words, if the dynamics of free Fermion is asymptotically
dominated by the stationary point, we would have the same
property as in this paper, even if the dispersion is not cosine.
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