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General formalism for inhomogeneous random graphs
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We present and investigate an extension of the classical random graph to a general class of inhomogeneous
random graph models, where vertices come in different types, and the probability of realizing an edge depends
on the types of its terminal vertices. This approach provides a general framework for the analysis of a large
class of models. The generic phase structure is derived using generating function techniques, and relations to
other classes of models are pointed out.
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[. INTRODUCTION is capable of producing a wide class of asymptotic degree
distributions, among these distributions with power law be-
The concept of random grapkRG) has recently become havior.
the target of an increasing interest, as a tool for modeling This general class of models is shown to contain a number
various kinds of networks, arising e.g. in physics, biology,of existing models as special cases, and can be used as a
and biophysics, as well as in social and information-general framework for the analysis of various RG models.
technological structures. The structure of this paper is as follows. In Sec. Il, some
The classical RG mod¢ll—3] describes a homogeneous, of the more salient features of the classical model are briefly
sparse random graph of ordBk where each edge is ran- reviewed, while our generalization is presented and analyzed
domly and independently realized with a fixed probabilityin Sec. lll. In Sec. 1V, a number of special cases are dis-
p=c/N. For large orders, there is a critical valuewf1, cussed, while Sec. V contains our conclusions.
above which almost every graph contains a single giant con-
nected component being of ord®(N), with the remaining II. THE CLASSICAL MODEL
components being small comparedNo This model yields o ) )
an asymptotic degree distribution that is Poissonian with the Here we will briefly review some of the more prominent
average degree given loy properties of the classical random graph in the' Iamgqrmt,
Many real-life networks, such as the internet, have beeff® Pave the ground for the subsequent analysis of its gener-
shown to possess other types of degree distribution, som&lization. _ _ -
times displaying a power law behavior over many orders of Definition 1. Let G(N,c), with ¢ being a real positive
magnitude, ruling out the classical RG as the relevant modeumber, denote the ensemble of graphs of ohierc, where
A number of alternative RG models have been suggested ifach edge is independently realized with probability
an attempt to yield random graphs with more general types=C¢/N. This ensemble has a critical value o1, above
of degree distribution, such as the desired power behavio¥hich aimost all graphs for largd have a single large con-
Some of these models describe dynamical random graphgected component — the giant component — with a finite
where the graphs arise as the result of a stochastic growfkaction of the vertices, while the remaining components are
process, such as randomly grown netwof4s], or scale- small.
free networks based on preferential attachniéht Others
focus on describing ensembles of random graphs with certain A. Exposing connected components

given properties, without bothering about how they came The standard method to reveal the size distribution of the

abou_t; a partlcularly Interesting a_ppr(_)ach of this tyPe, POSH qers of components is to expose these components as fol-
sessing a high degree of generality, is based on consideri

N8ws. Start with a singldrandom vertex, reveal its neigh-
random graphs of fixed order with a given arbitrary degre ' : Lo
distribution [7—10). %ors by following edges, then their neighbors, etc. hyebe

the number of vertices exposed for the first time in dtey

. ) Shis process. The distribution of , given the previous num-
inhomogeneouRG models, by means of a straightforward bersng=1n;, ... Ny, becomes

generalization of the classical model to a situation where

vertices may come in differetypes such that the probabil- k-1 .

ity for an edge depends on the types of its pair of terminal N— > n S
vertices. While this class of models inherits certain features P(N)= =0 (1—qM1)Mk(gMe-)NT s M,
from the homogeneous model—such as the existence of a Nk

critical hypersurface in parameter space, beyond which as- (1)

ymptotically almost every graph has a giant component—it
whereq=1-c/N.
In the large N limit with a fixed ¢, P(n,) tends to
*Electronic address: Bo.Soderberg@thep.lu.se e "-1°(n,_,c)™/n,!, and the process reduces to a Poisso-
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nian branching tree modd&(c), with each vertex indepen- ~Nr;, and possibly also the number of edges between verti-
dently branching to a number of new vertices, where thisces of types,j to fixed valuesE;;j~(1— 6;;/2)c;;N;N; /N.
number is a Poissonian random variable with aveiagee

distribution p,, over the ordemn of the resulting tree is con- A. Revelation of a connected component

veniently analyzed in terms of the generating functie(z)

— > p,2", which must satisfy In analogy to the classicafi(N,c) model, the model

G(N,K,r,c) can be analyzed by recursively revealing a con-
nected component by exploring neighbors, starting from a
single vertex. Let; , be the number of new vertices of type

i revealed in thekth stage of the revelatiofso n; o= Siiy
qwith ig the type of the starting vertexGiven the number of
revealed vertices of different types in the previous stages,
n; x obeys the conditional distribution

F(z)=zexdc(F(z)—1)]. 2

This can be solved iteratively for eagzhandF(z) must be a
stable fixed point of the corresponding iterated map; it i
easy to see that this implié6(z)| <1/ c|. For|z|<1, there
is a unique solution folF(z), reachable from the starting

point 0, given byF(z)=C(z)/c, whereC(z) is the unique k-1

solution toxe *=zce ¢ in the unit disk. Expanding the cor- Ni— > ni | n Mi k
responding inverse ofke™* vyields the exact resulip, P(ni )= 1=0 (1_1_.[ qij"kl>
=n""1c" e "Ynl, n; « :

Particularly interesting is the result fa=1, definingf
=F(1), which represents the total probability and might be
expected to be 1, which is an obvious solution to &).for
z=1. Indeed, forc<1, this solution is stable, but foc
>1, it becomes unstable, and another fixed point becomes _
the attractor, given bj=¢/c, where is the unique solution WNere dij=1—pj;=1=c;/N~exp(-c;/N). This expres-

A e : sion can be simplified in different domains.
to ce”“=ce °in the interval[ 0,1].

Thus, forc<1 the branching model is subcritical, and
always terminates after a finite number of steps, while fo
c>1 it is supercritical — the deficit in total probability is As long as the order of the revealed part is small as com-
due to a finite probability +f that the orden of the gen-  pared toN, we can approximate E@3) by the Poisson dis-
erated tree becomes infinite, i.e., that the branching proces$sbution
never terminates. o

For a large but finite, this corresponds to all compo- 2 - &
nents being small, i.e0(N), for c<1, while forc>1 there ~ Tk
exists a single giant component of ordeN(1— f) with the
remaining components being small, having an order distribu-
tion similar to that obtained for the complementaryalue  This corresponds to approximate the revelation process by a
C. Poissonian random branching process.

For the distributionP(n) of the total numben of gener-
ated vertices stating from a random vertex, we can define a
generating function Fz) =X ,P(n)Zz". Since the distribution
will depend on the type of the initial vertek, must be writ-

The classical RG model can be generalized in a straightten as the weighted average of the corresponding generating
forward way to inhomogeneous graphs by assuming that vefunctionsF;(z) for the distributions?;(n) conditional on the
tices can come in differenypes ie {1,... K}. This enables initial typei, i.e.,
us to consider a very general class of inhomogeneous RG

k

Ni_E ni|
X Hqinjj'“) e, )

IB. Small components and the branching process approximation

P(niyk)%eizj FiCijNj k-1 (4)

ni’k!

I1l. GENERALIZATION TO INHOMOGENEOUS
RANDOM GRAPHS

models, to be referred to as IRG: _ ; _ n
' F(z)= riF,(z), with F,(z)= Pi(n)z". (5
Definition 2.Given a positive integer K, K-dimensional 2 Z Fi2) (2) ; () ©®
vectorr={rq, ... rg} of positive probabilities summing to

1, and a symmetri& x K matrix ¢ with non-negative ele- The vectorF having the differenf; as components satisfy
mentsc;; , let G(N,K,r,c) denote the ensemble of graps ~ the coupled set of equations
of orderN, defined as follows.

(i) Each vertex is independently assigned a tyipe Fi(z)zzex% > ciri(Fi(2-1)|, (6)
e{1,... K} with probabilityr; . i

(ii) Independently for each unordered pair of vertices, the

corresponding undirected edge is realized with probabilityVhich is the inhomogeneous version of &) .
pij=ci; /N, where(i,j) is the corresponding pair of vertex _ Remark 2A more elaborate set of generating functions

types. Fi(zg, ... ,zK):znPi(n)sz;‘J could be defined, using a
Remark 1An asymptotically equivalent alternative is to distinct variablez; for each typd, with n; the total number
fix the number of vertices of each type to certain valblgs of revealed vertices of type These would obey equations

066121-2



GENERAL FORMALISM FOR INHOMOGENEO . . . PHYSICAL REVIEW E 66, 066121 (2002

obtained by replacing thez" after the equal sign in Eq6)  pearing in the exponent. As a result, the fluctuations become

by “z.” Here we do not care about the detailed type con-negligible, yielding a deterministic iterative equation for the
consecutive revealed numbers. In terms of the fraction

#ﬁ:rg’ and the simpler versiof;(2)=Fi(z, ... 2), will suf-  _ 1-3 on;  /(Nr;) of all vertices of type not yet revealed
Interpreting Eq.(6) as aK-dimensional iterated magre-  &ter Stepk, this yields

place “="by “ :="), the proper solution is the stable fixed

point _reac_:hed from the starting poiRt=0. Particularly |n gi,k:gi'klexr{ 2 cijr,-(gj,kl—gj,kz)), 9)

teresting is the result far=1, so letf;=F;(1), expressing J

the probability that the branching process will terminate,

conditional on the type of the starting vertex, and let the

unconditional counterpart be denoted by =;r;f;=F(1).

The f, satisfy the coupled set of equations MiEgi,keXF<2, Cijrj(l_gj,k—l))- (10)
i

revealing the conserved quantities

fi:exf{z Ciirj(fi_l))’ (7) " The values ofu; must be~1, since their values can only
. change in an earlier stage when the number of revealed ver-
with a naive solutionf=1, the stability of which can be tices is still small, but they~1; thus, in the largeN limit
analyzed by means of linearization of BJ) aroundf=1, ~ We can safely assume;=1. The two-step recursiof9) re-
yielding {c;;r;} as the relevant matrix. This is all we need in duces to a one-step recursion, taking the fomp
order to pin down the appearance of the giant, as well as its €% 1% k-1, which can be seen as iterating the map
asymptotic size, and we state the result without probf
follows by analogy to the corresponding result for the clas- _ e
sical mode): g,—>ex;{ 2,: cfi l)) A
Theorem 1(A) The modelG(N,K,r,c) is subcritical if the
eigenvalues of the matrixc;;r;} are all less than one in until a stable fixed point is reached. If the model is subcriti-
absolute value; the graphs then a.a.s. possess no giant coa®l, this is given by the trivial fixed poirg;=1, whereas for
ponent.(B) When some eigenvalue is larger than one, thea supercritical model a nontrivial fixed point with<<1 re-
model is supercritical, and the graphs a.a.s. possess a giaults, signalling the existence of a giant component contain-
component; its numbar; of vertices of typa asymptotically  ing a fraction 1-g; of the vertices of type.
satisfiesn;/IN~r;(1—f,), where thef; corresponds to a Eqg. (11) is identical to Eq.(7), which was derived in the

stable solution of Eq(7). limit of small numbers of revealed vertices; thus, we have
Here, a.a.s. stands fasymptotically almost surely.e.,  established the same set of equations in two different limits.
with probability —1 asN— o, Remark 4A third, heuristic way of estimating the size of

Remark 3.t appears natural to require in addition tlat the giant component is as follows. Suppose the giant con-
cannot be block diagonalized; otherwise ergodicity would beains a fractionn; of the vertices of typa. Then we can
broken, and the graph would trivially decompose into dis-estimate its neighborhood, i.e., the set of vertices connected
tinct subgraphs, which could be treated separately. to at least one vertex in the giatwhich of course must be

In the supercritical case, the generating functién&z) the giant itself, as follows, based on the rather bold assump-
can berenormalizedwith f;, to yield generating functions tion that the edge probabilities do not depend on whether any
for the finite (nongiant component part. LetF;(z)  ©Of both of its terminal vertices are in the giant: The total
—F,(2)/f,. ThenE is a stable solution of number _of vertices qf typéis Nr;. For each of these_, the_

probability of not being connected to any of the vertices in

N . the giant is exp—Xc;n;/N). Thus we can expect a number
Fi(z)=zexp(2 ciirifi(Fi—1)/, (8  Nri(1—exp(-3;c;n;/N)] of vertices of typei in the neigh-
) borhood, i.e., in the giant. Writingn; as Nr;(1—g;), we

with F(1)=1. This describes a subcritical branching processrecover Eq(1), in spite of the bold assumptions involved.

with renormalized parameters=r;f;/r-f and c;;=c;r-f.
For a finiteN, we must haveN~Nr -f, and we see that this

conserveg;; = c;; /N=pj; ; thus, the renormalized model is
simply the naive restriction of the original one to the subse
of vertices outside the giant component.

D. Extended type spaces

While we have assumed a finite number of typesde-
Ifining the type space7=7y, the above results should be
more or less directly extendable to models where the type
space” is a denumerable infinite set, or even a continuous
manifold, under some general conditions yet to be precisely
determined.

When the giant component is revealed, another approxi- Definition 3.For a given type spacg with a normalized
mation can be made to E(B). Once the number of revealed measure on 7, and a given non-negative symmetric func-
vertices become 0®(N), the distribution ofn; , becomes tion o(x,y) on 72, defineG(N,7,r,c) as the ensemble of RGs
sharply peaked around its average, due to a factdd ap-  of order N, where each vertex is independently assigned a

C. Large components and the deterministic approximation
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type x e T according tor(x), and for each vertex pair the Wherep(c)=0 describes ama priori arbitrary, distribution
corresponding edge is independently chosen with probabilitpf type-specific Poissonian degree average<;, assum-
c(x,y)/N, with (x,y) the corresponding pair of types. ing the possibility of a continuum of types. This is a kind of

For thedenumerablecase,7=7, , it appears natural to Smoothness constraint. In particular, it implies
require the asymptotic degree averaggs or at least the
total averagesti:Ef:lcijrj , to be uniformly bounded. For , m+1
cases where the elementsmére unbounded, an alternative Pm=< — ;" Pm+1Pm-1, (15
is to regularize pj; for finite N by using p;;=1—exp
(—¢;j/N) instead of the unbounded; /N.

Also, reasonable care may have to be taken ¢hatsuf-
ficiently ergodic. Lett;; be 0 if ¢;;=0, 1 otherwise. The
matrix t then describes a graph in type space, wijfk=1
corresponding to the existence of the edgg)( Then, suf- T . =
ficient ergodicity could e.g. mean that this graph should hav«§Imllar power tall,p(_c)occ for Ia_rgec. . .

a finite diameter, i.e. a uniformly bounded distance between Note that a particular model in IRG isot determined
vertex pairs. solely by the degree sequence, which depends;pnly

For the case of @ontinuoustype spaceZ, similar care through the averag€;=Zc;r;. This is. in contrast to a
must be taken. In addition, some kind of continuity con-Class of recently considered modgls-10); such models de-

straint seems appropriate, both e@andr . fine a particular subclass of IRG, however, as will be shown

Note that a continuou§ allows for a continuousep- below.
arametrization invarianceThus, for the case of=R, as-
sumef to be a strictly increasing, continuously differentiable IV. SPECIAL CASES OF INTEREST

mapping offi to |tself.A Then the model dgflned my(x,y) ForK=1, of course the known properties of the classical
=c(f(x).f(y)) and r(x)=r(f(x)f'(x) is completely RG model is recovered. Below we will consider a few less
equivalent to that witke(x,y) andr(x). Thus,r(x) could be  trivial examples.
transformed to any desirable normalized distributionkan
In particular, it could be transformed to the uniform distribu-
tion on the unit interval, yielding a kind of standard repre-
sentation of the model. For higher-dimensional manifolds, Assuming two distinct vertex types, i.&.=2, a simple
things are more complicated, and it appears difficult to deensemble of random bipartite graphs results from the choice
vise a universal standardization procedure.

A precise determination of feasibility conditions for ex- . (0 a)

for eachm>0. While this excludes, e.g., random regular

graphs where the degree is fixed, it does allow for a wide
class of degree distributions, such as distributions with a
power tail, p,ocm™¢ for large m, by letting p(c) having a

A. Random bipartite graph

tended type spaces will be the subject of future work. a 0 (16)

E. Degree distributions With an arbitrary choice of type distributian= (r4,r,), this

Many properties(but not all) of a graph ensemble are yields for the asymptotic generating functiofr(z)
reflected in its asymptotic degree distribution. In IRG, the=(F,F,) the equations
asymptotic degree distribution,, is determined by andc,
and given simply as the weighted average of the type- F,(2)=zexplar,[Fa(z)—1]}, (179
specific degree distributions,,;, being Poissonian with an
averageC; defined byC;=ZXc;;r;. The result is

Fo(z)=zexplaryF.(z)—1]}. (A7b
s c
Pm= 2 fie&xp—Ci)pr 12 rorz=1, this yields
with the associated generating function fo=exgary(f,—1)], f,=exgary(f;—1)], (18

H(z) =2 pmz™=2, riexg Ci(z—1)]. (13)  vyielding the critical value of asay=1/\r1r,. In the sym-
m : metric case of ;=r,=1/2, we havea,=2, andf;=f,=f
. o ) ... satisfyingf =exga/2(f—1)].
This puts a limitation on the possible degree distributions |, 5 similar way, ensembles of randoapartite graphs
that can be obtained within IRG: It must be possible to write.5, pe defined Wh,iCh can be seen as generated by the com-
the distribution as a positive linear combination of Poisso—p|ete grapthK’. Similarly, ensembles of random graphs
nians, 1.e., based on an arbitrary generating graph can be definedcwith
1 (= proportional to the incidence matrix for the generating graph.
pm:ﬁj cMe~Cp(c)dc, (14) f\nice twist results from using a random graph as a genera-
! or.
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B. Rank-1 ¢ matrix The asymptotic generating functiéi(z) = = P, z" for the

A particularly interesting special case results whehas resulting order distributior®, then satisfies the equation

the factorized fornt;; = C;C; /C, whereC;>0 can be inter-
preted as a connection tendency for vertices of tfypehile
CZEiI’iCi .

Writing the asymptotic generating function d5(z)
=2riFi(2), we get forF;(z) in this case

F(z)=z§ PnG(2)™, (24)

expressing the choice of the initial degnee Here,G(z) is
the edge generating functignwvhich satisfies

Ci> riCi(Fi(2-1) i
Fi(z)=zexp| — = : (19 > mpyG(2)
C G(z)=2— ,

> mpy

m

(25

which can be reduced to a single equation for the function
G(z2)=2r;CiFi(2)/C, reading

expressing the choice of the daughter’'s degmeand its
branching tom—1 edges.

These are nothing but Eq$22) and (21) in disguise,
showing the complete asymptotic equivalence of the two
models, despite the superficial differences; indeed, the crite-
ria (m(m—2))<0 for subcriticality derived above are in
complete accordance with the results of H&i.

G(z)=2>, r,C;exd Ci(G(z)—1)]/C. (20)

In terms of the generating functidd(z) for the asymptotic
degree distribution, Eq13), this can be written as

H'(G(2))
G()=z———, (21 . o
H'(1) C. Dynamical random graph with finite memory
. The last example is given by a recently proposed class of
and in terms 0fG(z) we have dynamical random graph§] with memory, where a graph is
F(2)=zH(G(2)). 22) produced starting from a single node according to the com-

bination of three random processes in continuous time, all
Poissonian:

(1) For each existing vertex, new, initially isolated, verti-
ces are added at a raje

(2) For each existing vertex, new random edges are added
at a rate\, connecting it to random existing vertices.

(3) Each existing edge is deleted at a rate
and linearization around the trivial solutign=1 yields sta- Itis easy to see that the expected order of the graph grows
bility for H"(1)/H'(1)<1, corresponding to the model be- with time t ase, and after an initial transient, vertices are
ing subcritical for (C?)<(C), which is equivalent tdm”)  only distinguished by their age, and we are led to consider a

<<2m> in terms of moments of the degree distribution. With inhomogeneous model with a continuum of vertex typﬁsl
c restricted to have rank 1, the resulting models are asymp=[0.[, given by vertex age.

totically equivalent to models from a superficially very dif-
ferent class of random graphs that has recently attracted
some attentionf7-10]. There, a random graph ensemble - . . . .
based on an arbitrary asymptotic degree distribupgnis byThe probability density for agesis asymptotically given
defined for a finite ordeN by randomly selecting a member
from the set of graphs with a given degree sequence, such
that the number of vertices with degreeis approximately

NP, - . . . L
Also for such a model, the recursive exposition of a con-_For each pair of vertices, the probability of a connection is

nected component asymptotically yields a well-definedndependent of the existence of other connections, and de-

branching process, apparently very different from the Poispends on the age of the youngest ver}(yai(ﬂgqvolveq,ﬂand
sonian ones obtained for IRG. Here, the inital vertex is as@mounts to, at time, P(X)=(2Ny=p)(e —le "
signed a random degrem according top,,, and subse- We obtain
guently branches to daughter vertices. Each new vertex is
independently assigned a degree 0, distributed according

to np,/Z,mp, (consistent with the assumption that the

asymptotic probability of connecting to a particular vertex is

Forz=1 in particular, we get fog=G(1) the equation

H'(9)

g_H,(l)! (23)

1. Asymptotic properties

r(x)=ye (26)

2h (e(ru)min(xyy) -1),

Y (@)

c(x,y)=

proportional to its degrgeand then branches to— 1 daugh-
ters(since one of its edges is already used

which seems feasible enougbis ergodic, continuous and
although c(x,y) is not uniformly bounded, the average
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Cx)=fc(x,y)r(y)dy=(2N u)(1—e #) is (at least for V. CONCLUSION
©>0). Thus, we are lead to consider the spectrum of the
integral kernel We have investigated a generalization of the classical ho-

mogeneous model of sparse random graphs, obtained by im-
G(x,y)= 2\ (1—e~ (w=Mminxy)yg= 7y, (28) posing a type structure on the vertices. This yields a very
-y general class of inhomogeneous random graph models, and

which is recoanized as beind proportional to the Green,Sthe asymptotic degree distributions are not restricted to Pois-
S 9 9 prop sonians, but allow for various types of behavior, within cer-
function (i.e., a kernel representation of the formal operator,

invers for a particular differential operatat on R, , given talr_1 limitations. Thus, e.g., power behavior is possible, while
a fixed degredregular graphis ruled out.

by The models in this class ar®t determined by the degree
1 EN distribution alone, but contains an infinity of models for each
=—me’“‘5 5+M—7>, (29 possible distribution, in contrast to a recently considered

class of models based on a given degree distribution. Inter-
with boundary condition$(0)=0, andf(x)e(*~ "2 grow-  €stingly enough, a relation does exist, since such models are
ing at most as a power afasx— . Criticality results when ~Shown to result in a special case of the present approach.
the ground state of has eigenvalue 1. In other special cases it describes the asymptotic static
With a finite memory x>0, the eigenvalue equation for Properties of certain models of evolving random graphs, such
£ is a disguised version of Bessel's equation of orger @S randomly grown networks, and dynamical graphs with

—1 in the variabley= 8\ ye #¥?/ u, and criticality results Me€MOy. _
when the first poezitive ze);(x / 1M0f J is g)i/ven by Only certain aspects of the approach have been covered in
Y=

Ay o, i _ o 2y2 this paper, and a more detailed analysis, e.g. of the feasibility
8:;]7{&’ Is'p?é’cl;glr )c\:as,g c)j(f#ilrfﬁtle/gn)w/émoryﬂzo the model conditions for extended type spaces, will be the subject of

. forthcoming work, as will be the investigations on further
reduces to aandomly grown network4], and yields . .
extensions of the approach e.g. to directed graphs.

ylu—1

1 o990
ﬁ——m&(&—’y y (30)
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