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Quantum hydrodynamic equations and quantum-hierarchy decoupling scheme
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~Received 6 May 2002; revised manuscript received 28 August 2002; published 16 December 2002!

There is a need to extract the relevant device physics from exact quantum transport formulations, and hence
to reduce the complexity of quantum transport simulations for practical applications. We use a Hermite
polynomial expansion to drastically reduce the number of degrees of freedom associated with the momentum
variables. The result is a quantum hierarchy in real space. We also give a general procedure for the quantum-
hierarchy decoupling scheme to derive the quantum hydrodynamic~QHD! and quantum drift-diffusion trans-
port equations. We present some numerical results for the quantum hierarchy. A rigorous foundation of a
decoupling procedure is given whereby the lower-order equations are renormalized in terms of a self-consistent
effective potential, quantum diffusion coefficient, and moments, endowed with all the quantum corrections to
order \2. Our decoupling scheme is based on the general expression of TrH n to order \2, valid at all
temperatures without the need for expansion in terms of the small parameter and high temperature assumption.
This is very important conceptually since existing QHD formulations, using expansion to order\2, are based
on a Boltzmann distribution with the restrictive assumption of a small parameter, which is not valid in abrupt
heterojunction semiconductor devices. They also fail to account for important quantum nonlinearity in the form
of nonequilibrium quantum corrections. These nonequilibrium quantum corrections are expected to play a
major role in approximating the coherence manifested by the highly nonlinear current-voltage characteristics of
resonant tunneling structures.

DOI: 10.1103/PhysRevE.66.066119 PACS number~s!: 05.60.Gg, 85.35.2p, 85.30.De, 73.63.2b
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I. INTRODUCTION

As is well known in the classical domain, the solution
distribution function transport equations entails large co
puting resources, and efforts to reduce the problem comp
ity are vigorously sought@1#. This task is even more de
manding when solving quantum distribution functio
transport equations in terms of computational spe
memory, and numerical efficiency. Thus, there is a real n
to reduce the problem size in numerically simulating qu
tum transport problems, both for fundamental study as w
as for design optimization of optoelectronic and nanoel
tronic devices. This work is motivated by the lack of a
appropriately fast quantum transport solver for short chan
and 12 Å gate oxide nano-complementary metal-oxi
silicon ~CMOS! technology, nano-optoelectronic devic
~multiband quantum transport dynamics!, and heterostructure
SiC-GaN high-power device technology, where quant
tunneling and coherence may play a significant role.

To significantly reduce the number of degrees of freed
associated with the momentum variables, we use the Her
polynomial expansion of the quantum distribution functio
The result is a ‘‘quantum hierarchy’’ in real space. We cho
these basis functions since they possess desirable prope
namely, ~a! they form ‘‘bounded’’ eigenfunctions of har
monic oscillators, and they are also eigenfunctions of
Fourier transform@2#, ~b! they are related to the Weyl trans
form and representation theory of the Heisenberg group
quantum mechanics, and as we shall see,~c! they provide a
unified ‘‘spectral’’ resolution of the quantum and classic

*On sabbatical leave from the U.S. Naval Research Labora
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distribution functions, thus illuminating the quantum corre
tions in more detail than previously. Their coefficients in t
distribution function expansion provide the basis mome
spanning the space of all physical moments.

In contrast with previous fragmented attempts to incorp
rate quantum effects in the potential or moments of the c
sical hydrodynamic transport equations@3#, the method em-
ployed here is consistent and general without the need
expand in terms of a small parameter as was done by Wig
seven decades ago. The results are a straightforward co
quence of the fundamental quantum distribution funct
transport equations. This lead to self-consistent quantum
rections to both the potential and moments of the quan
hydrodynamic~QHD! and quantum drift-diffusion~QDD!
equations. In QDD, quantum diffusion, in the sense of s
chastic quantum mechanics, is coherently taken into acco
together with the quantum potential. The procedure incor
rates quantum coherence toO(\2) which is often lacking in
procedures based onad hocaddition of a quantum correction
to the potential in classical drift-diffusion equations.

The classical drift-diffusion and hydrodynamic transpo
equationsper sedo not have explicit quantum corrections.
is only when higher-order moment equations are conside
that the quantum hydrodynamic equations differ from t
classical hydrodynamic equations. This is also referred
here as the quantum hierarchy in real space. The prac
need to consider only the first low-order Hermite coefficie
or moments and low-order derivatives demands the ren
malization of the potential and Hermite coefficients~or mo-
ments!. It should be mentioned at the outset that a
quantum-hierarchy decoupling scheme will have some
stricted range of validity and predictive capability of th
quantum mechanical effects. We will discuss a general
coupling procedure, which consistently renormalizes the
y,
©2002 The American Physical Society19-1
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tential and moments. This is done by deriving the gene
form of the stationary Wigner distribution function solutio
for any Hamiltonian system, expanded in powers of\2.

The basic idea is that important quantum effects can
determined for the system under time-independent situati
transport simply adds asymmetry and additional nonequ
rium quantum corrections to the quantum distribution fun
tion. The whole of mesoscopic physics is in fact built on t
assumption that quantum effects at equilibrium determine
allowed discrete quantum channels for transporting cha
carriers @4#. This assumption is expected to be invalid f
highly nonlinear and ultrafast quantum dynamics. T
quantum-hierarchy decoupling technique proposed in
paper serves as a rigorous extension and generalization o
existing QHD formulations; see, for example, Ref.@5#.

II. HERMITE POLYNOMIAL EXPANSION AND THE
QUANTUM HIERARCHY IN REAL SPACE

The relevant Hermite polynomial is defined by the Ro
riguez formula@6#,

Hen~x![~21!nex2/2
dn

dxn
e2x2/2

5n! (
m50

[n/2]

~21!m
~x!n22m

m!2m~n22m!!
. ~1!

The orthogonality of the relevant Hermite polynomials
expressed by *2`

` e2x2/2Hen(x)Hem(x)dx5A2pn!dm,n .
In what follows, let us take the dimensionless variab
x⇒j5p/Am* kT, and define the momentum basis sta
H̃m(p) as Hen(x)⇒Hen(j)[H̃m(p). The orthogonality
is expressed by *2`

` e2p2/2m* kTH̃n(p)H̃m(p)dp
5A2pm* kTn!dm,n . To illustrate the scheme for elimina
ing the momentum variables in the quantum transport eq
tions, let us consider the single-band Wigner transport eq
tion for a conventional resonant tunneling diode. We ha
the transport equation for the Wigner distribution functi
given by @7#

]

]t
f w~p,q,t !52

p

m*
¹qf w~p,q,t !1

2p

h4 E dp8dvFVS q2
v
2D

2VS q1
v
2D GsinF ~p2p8!

\
vG f w~p8,q,t !

1S ]

]t
f w~p,q,t ! D

collision

. ~2!

Since we are interested in quantum effects, we ignore for
moment any scattering contained in the collision term a
consider only coupling to the Poisson equation for se
consistency of the potential. A differential form of Eq.~2! is
the basis for gradient expansion theories. All these and
classical Boltzmann equations are included in the none
librium Green’s function equation by performing on it th
‘‘lattice’’ Weyl transformation appropriate for solid-stat
06611
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problems @7,8#. A fully time-dependent one-dimensiona
~1D! numerical simulation of Eq.~2!, coupled to the Poisson
equation, was successfully initiated by Jensen and Buot@9#

For one-dimensional problem, we expand the 1D Wign
distribution function solution, based on dimensional groun
as follows:

f w
1D~p,q,t !5(

m

2pm* kT

~2p\!2
f m

w~q,t !e2p2/2m* kTH̃m~p!.

~3!

The factor in front of the summation symbol allows the c
efficients f n

w(q,t) to be dimensionless. The expansion is f
each pointq in real space so that the parameterT and mass
m* may be allowed to depend on (q,t). In what follows, we
will let T(q,t) vary but treatm* as a constant.T(q,t) may
be interpreted as the temperature of a shifted Maxwel
distribution; however, the expansion holds for a gene
Wigner distribution function.

The Hermite polynomial coefficientsf m
w(q,t) are directly

related to the average of the Hermite polynomials the
selves, namely, ^H̃n(p)&rw(q,t)5Ncn! f n

w(q,t), where

^H̃0(p)&51. Nc is given by Nc52(2pm* kT)3/2/(2p\)3.
The moments for the particle density, momentum, and
ergy can be expanded in terms of Hermite coefficients, g
ing these coefficients a more elementary character as the
sis moments, spanning the space of physical moments.
particle density distributionrw(q,t), particle-current density
distribution J(q,t), average kinetic energy density distribu
tion W(q,t), and energy density flux̂p2p/2m* 2&, are given
by rw(q,t)5Ncf 0

w(q,t), J(q,t)5NcAkT/m* f 1
w(q,t),

W(q,t)5(Nc/2)kT$ f 0
w(q,t)12 f 2

w(q,t)%, and ^p2p/2m* 2&
5(Nc/2)AkT/m* 3kT$ f 1

w(q,t)12 f 3
w(q,t)%, respectively.

Therefore, themth moment of the Wigner distribution func
tion with respect to the momentum variable is expanded
terms of the mth- and lower-order Hermite coefficient
f n

w(q,t). This is not surprising since the Wigner distributio
function can in principle be expanded in terms of either
moments or its correlation functions.

Substituting the expansion off w(p,q,t) in terms of the
Hermite polynomial in the Wigner distribution transpo
equation,

(
m

]
]t

2pm* kT

~2p\!2
f m

w~q,t !e2p2/2m* kTH̃m~p!

5(
m H 2

p

m*
¹q

2pm* kT

~2p\!2
f m

w~q,t !e2p2/2m* kTH̃m~p!

1
2p

h4 (
m

2pm* kT

~2p\!2
f m

w~q,t !E dp8dv

3F VS q2
v
2D

2VS q1
v
2D G sinF ~p2p8!

\ v Ge2p82/2m* kTH̃m~p8!J ,

~4!
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yields the exact hierarchy of coupled equations for the H
mite coefficients, the quantum hierarchy,

]

]t
Nc f j

w~q,t !52¹qH ~ j 11!AkT

m*
Ncf j 11

w ~q,t !

1AkT

m*
Ncf j 21

w ~q,t !J
1

1

A2pm* kT j!
(
m

j jm~q!Ncf m
w~q,t !,

~5!

where if j is evenm is odd and vice versa.j jm(q) is given by
the following exact expression:

j jm~q!58p2A2pm* kTm! ~ i !m (
l 50

[m/2] H Hej S 2 i
]

]yD
3FVS q1

\y

2Am* kT
D Ge2y2/2

3
Hem22l~y!

l !2 l~m22l !!
Uy⇒vAm* kT/\J

y50

, ~6!

where inHej (2 i ]/]y) the variable argument is replaced b
the differential operator. These are explicitly written here
to the fifth order equation, incorporating the\4 quantum
correction, as
06611
r-
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]

]t S Ncf 0
w~q,t !

Ncf 1
w~q,t !

Ncf 2
w~q,t !

Ncf 3
w~q,t !

Ncf 4
w~q,t !

Ncf 5
w~q,t !

D
5S 0 L01 0 0 0 0

L10 0 L12 0 0 0

0 L21 0 L23 0 0

\2L 30
Q 0 L32 0 L34 0

0 \2L 41
Q 0 L43 0 L45

\4L 50
Q 0 \2L 52

Q 0 L54 0

D
3S Ncf 0

w~q,t !

Ncf 1
w~q,t !

Ncf 2
w~q,t !

Ncf 3
w~q,t !

Ncf 4
w~q,t !

Ncf 5
w~q,t !

D , ~7!

where the matrix elements in powers of\ are quantum cor-
rections which go to zero has\⇒0. The matrix elements are
defined as follows:
]

]t
Ncf 0

w~q,t !52¹qAkT

m*
Ncf 1

w~q,t !, ~8!

]

]t
Ncf 1

w~q,t !52¹qH 2AkT

m*
Ncf 2

w~q,t !1AkT

m*
Ncf 0

w~q,t !J
1H F S 2

]

]j DV~j!G J U
j5q

1

Am* kT
Ncf 0

w~q,t !, ~9!

]

]t
Ncf 2

w~q,t !52¹qH 3AkT

m*
Ncf 3

w~q,t !1AkT

m*
Ncf 1

w~q,t !J
1F S 2

]

]j DV~j!GU
j5q

1

Am* kT
Ncf 1

w~q,t !, ~10!

]

]t
Ncf 3

w~q,t !52¹qH 4AkT

m*
Ncf 4

w~q,t !1AkT

m*
Ncf 2

w~q,t !J 2
\2

24F H S 2
]

]j D 3J V~j!G
j5q

1

~Am* kT!3
Ncf 0

w~q,t !

1F H S 2
]

]j D J V~j!G
y50

1

Am* kT
Ncf 2

w~q,t !, ~11!
9-3
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]

]t
Ncf 4

w~q,t !52¹qH 5AkT

m*
Ncf 5

w~q,t !1AkT

m*
Ncf 3

w~q,t !J 2
\2

24H S 2
]

]j D 3J @V~j!#U
j5q

1

~Am* kT!3
Ncf 1

w~q,t !

1H S 2
]

]j D J @V~j!#U
j5q

1

~Am* kT!
Ncf 3

w~q,t !, ~12!

]

]t
Ncf 5

w~q,t !52¹qH 6AkT

m*
Ncf 6

w~q,t !1AkT

m*
Ncf 4

w~q,t !J 1
\4

~16!~120! F S 2
]

]j D 5

V~j!G
j5q

1

~Am* kT!5
Ncf 0

w~q,t !

2
\2

48F S 2
]

]j D 3

V~j!G
j5q

1

~Am* kT!3
Ncf 0

w~q,t !2
\2

12F S 2
]

]j D 3

V~j!G
j5q

1

~Am* kT!3
Ncf 2

w~q,t !

1F S 2
]

]j DV~j!G
j5q

1

~Am* kT!
Ncf 4

w~q,t !, ~13!
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where V(j) is the self-consistent potential. The followin
equation corresponds to the equation for the second mom

]

]t
kT@Ncf 0

w~q,t !12Ncf 2
w~q,t !#

52¹qFNcAkT

m*
3kT f1

w~q,t !12NcAkT

m*
3kT f3

w~q,t !G
12F S 2

]

]j DV~j!G uj5qAkT

m*
Ncf 1

w~q,t !. ~14!

We have thus reduced the integro-differential Wigner tra
port equation to an exact differential equation involving on
spatial variables. This is the domain of computational flu
dynamics~CFD!, where several already well-established
ficient computational techniques can be employed@10,11#
~although the numerical handling of higher derivatives
mostly an uncharted domain even in turbulence CFD sim
lations!.

We should point out that, to any order in\2n, the
quantum-hierarchy equations can also be obtained using
differential form of Eq.~2! in phase space, namely,

]

]t
f w~p,q,t !52

p

m*
¹qf w~p,q,t !

1 (
n50

` S \

2D 2n ~21!n

~2n11!!

]2n11

]q2n11
V~q!

3
]2n11

]p2n11
f w~p,q,t !, ~15!

by using the identities pH̃m(p)5Am* kT@H̃m11(p)
1mH̃m21(p)], (]/]p)H̃m(p)5mH̃m21(p)/Am* kT,
coupled with integration by parts. However, Eqs.~5! and~6!
are exact, compact, and elegant.
06611
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The momentum variables were eliminated at the cos
introducing the indices for the Hermite polynomials, i.e
f j

w(q,t). The extension to 3D, although tedious, is straig
forward by using the product of Hermite polynomials as b
sis functions, namely,

f w~pW ,qW ,t !5 (
l ,m,n

f l ,m,n
w ~qW ,t !e2pW •pW /2m* kTGl ,m,n~pW !, ~16!

where the 3D basis function is Gl ,m,n(pW )
5H̃ l(px)H̃m(py)H̃n(pz). Note that anisotropy in the effec
tive massm* and temperature parameterT can be incorpo-
rated in the above 3D expansion if needed. The techniqu
similar to the method of moments for solving the classi
Boltzmann equation.

We have given a mathematical recipe for the quant
distribution transport version, which is exact. The first a
proximation occurs when we impose closure on the hie
chy of ‘‘moment equations,’’ which is also a hierarchy of\2

quantum corrections, by using only a finite number of in
ces. An ideal way to close the hierarchy is to invoke a m
rigorous procedure for decoupling the higher-order mome
so as to bestow their quantum corrections, including non
cality, on the lower-order moment equations under consid
ation. We will discuss this procedure in more detail later.

About 100 discrete points is a typical discretization of t
momentum variables. If we truncate to two or five indice
this gives a factor of 50 or 20 reduction in the degrees
freedom associated with the momentum variables. The
responding matrix or problem size is thus reduced by a fa
of 2500 or 400. Further reduction in spatial variables by
factor of 10 is possible by using a multiquadric method@12#,
which will cause a total reduction in problem size by at le
a factor of 40 000, i.e., four orders of magnitude. Thus for
quantum transport problems, there is a potential to reduce
size of the problems by several orders of magnitude, perh
by a factor of more than 1012. We hope to report our efforts
on the multiquadric method, applied to Eq.~2! directly, in
future communications.
9-4
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The form of the classical Boltzmann equation under H
mite polynomial expansion without collision terms~ballistic
case! and for the 1D case for comparison purposes can
readily obtained from the above results by simply taking
limit \⇒0. We see that the coupling of the coefficients
the Boltzmann equation is ‘‘nearest neighbor,’’ in the spa
of the Hermite coefficient discrete indices, compared to
quantum case, which gives a quantum correction to
lower-order coefficients via their coupling to the equatio
containing powers of\2 occurring at the third- and higher
order coefficients in the quantum hierarchy. Since these
efficients have direct relations to the moments, we see
quantum corrections emerge only in the equations for
third- and higher-order coefficients. This manner of incorp
rating quantum correction has the virtue of incorporat
quantum coherence under all nonequilibrium situations. This
means that the classical semiconductor hydrodynamic e
tions per sedo not have any explicit quantum correctio
This should be differentiated from quantum corrections
lower-order moments and potential, which naturally ar
from the quantum correction of the transport equations of
coupled higher-order moments leading to the exact Wig
distribution function. Thus, a quantum-hierarchy decoupl
scheme is needed to effectively deal only with low-ord
equations incorporating quantum coherence, at leas
O(\2).

It is worth mentioning that the difficulty of numericall
handling higher derivatives for strongly varying potentials
order to capture quantum coherence and nonlocality may
tually drive researchers to more serious research in find
alternative and efficient ways to numerically impleme
quantum distribution function transport equations. This is
deed foreseeable when addressing ultrafast and highly
linear quantum dynamics. We are also currently working
employing the multiquadric method to implement Eq.~2!
numerically with a reduced number of degrees of freed
@12#.

III. NUMERICAL RESULTS FOR THE QUANTUM
HIERARCHY

We present some numerical results obtained from our
merical implementation of the coupled ‘‘bare’’ QHD o
quantum-hierarchy equations, Eqs.~7!, together with the ap-
propriate boundary conditions. These equations are cou
to the Poisson equation for self-consistency in the poten
Our purpose here is simply to examine the complexity of
numerical simulation of the quantum correction to order\2

in Eqs.~8!–~13!. For simplicity, we also treatT as uniform in
the crystal lattice; thusNc drops out from these equation
We will only present the results obtained by truncating E
~7! to the third-order moment equation where the quant
correction first appear. We made calculations for transp
across onn1-i -n1 diode and single-barrier and doubl
barrier structures. We only calculate for the steady-state c
dition, whereby we can associate the third derivative of
strongly varying barrier potential with a derivative o
smoother density functions, namely, (2]/]q)3V(q)
.kT(]/]q)3 ln$ f 0

w(q,t)12 f 2
w(q,t)%, consistent with the
06611
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steady-state solution of Eq.~9!, provided that u f 2
w(q,t)u

! f 0
w(q,t), consistent with our numerical result. Typicall

for each bias the steady-state solution takes only few seco
to converge on a 1 GHz PC.

We have also avoided this association by using smo
barrier potentials and a smooth doping profile using
Gaussian approximation; we then take the potential der
tive directly and also make use of the Poisson equation.
smoothness of our barrier potential can be adjusted thro
the use of the following barrier function:

VB~q!5VB
0F12H ~2arctan@~q2b!/a#/p11!

2

1
~22arctan@~q1b!/a#/p11!

2 J G , ~17!

where b determines the half width of the barrier,a deter-
mines the smoothness and steepness of the barrier edge
VB

0 is the barrier height or band-edge discontinuity. At stea
state, f 1

w(q,t), which determines the current density, b
comes constant across the device.

Figure 1 shows the simulation results for then1-i -n1

diode, where we do not expect to find any quantum corr
tion or tunneling correction to the current. For the smoothn1

Gaussian doping we used a decay distance of 20 Å. Figu
shows the result for a single-barrier diode, constructed fr
the n1-i -n1 diode of Fig. 1 by placing a barrier in the in
trinsic i region~zero doping in the simulation!. Equation~17!
was used to construct the barrier potential with the followi
parameters: barrier halfwidthb515 Å, barrier decay length
a53 Å, and barrier heightVb

o50.36 V. In Fig. 3, the reso-
nant tunneling diode~RTD! structure simulated has the sam
device parameters as the RTD used by Buot and Jensen@7# in
their numerical simulation of the exact Wigner distributio
transport equation, Eq.~2!. Thus for the RTD simulated we
employ abrupt doping through a Gaussian decay length
1023 Å, and an abrupt barrier potential witha50.1 Å in
Eq. ~17!. We used a fully implicit time steepening schem
which simultaneously includes the Poisson equation toge
with the finite-volume discretization method. The eve
indexed Hermite coefficients, e.g.,f 0

w and f 2
w , are defined

within the volume center, whereas the odd-indexed coe
cients, e.g.,f 1

w and f 3
w , are defined at the volume faces fo

numerical stability. Note thatf 1
w and f 3

w are related to the
particle current and heat flux. Steady-state solutions w
obtained within a few seconds, since in the fully implic
method the time step can be made 100 ps to obtain the st
state.

For the double-barrier structure our calculations sho
that quantum coherence or resonant tunneling is not capt
to order\2 by the coupled ‘‘bare’’ QHD equations consid
ered. In almost all diode structures considered, the curr
are almost identical with those obtained by setting\⇒0. We
conclude that to obtain coherence the equations for
higher-order moments, which give the nonlocality and o
diagonal long-range correlations in real space needed for
9-5
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FIG. 1. ~a! Simulatedn1-i -n1 diode at zero bias, showing th
values of f 0

w , ND /Nc , and potentialV. ND is the doping density
andNc is defined in the text; henceND /Nc is the ‘‘doping value’’ of
f 0

w . ~b! n1-i -n1 diode atVbias50.04 V showing the relative value
of f 0

w , ND/Nc , f 1
w , f 2

w , and f 3
w . The potential is not shown. Th

current value calculated corresponding tof 1
w is 2.623105 A/cm2.

~c! Energy density distribution@proportional to (f 0
w12 f 2

w)] at
Vbias50.04 V.
06611
FIG. 2. ~a! Single-barrier diode atVbias50.0 V, showing
ND /Nc , f 0

w , and the potential.~b! Vbias50.3 V. ~c! Magnified
values off 0

w , f 1
w , f 2

w , and f 3
w for Vbias50.3 V. The actual value of

the current simulated from the constant value off 1
w is 2600 A/cm2.

The solid line is the potential.
9-6
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neling and coherence, are very important. Clearly, the tr
cation to the third-order coefficients was not able to capt
all the \2 corrections since the higher-order equations a
contain \2 corrections. We note that, for the ballistic ca
considered, tunneling and coherence cannot be separate
so-called sequential tunneling across double-barrier st
tures strictly occurs only if there is no inelastic scatteri
within the barriers but scattering occurs within the quant
well. In view of the difficulty in treating higher-order deriva
tives, it has become imperative that one accounts for
quantum corrections of the higher-order moments by ren
malizing the lower-order moment equations through so
sort of renormalization procedure. What we have also
complished here is a demonstration of the usefulness of
Hermite polynomial expansion technique with the sa
complexity inherent in numerically simulating hydrodynam
transport equations.

FIG. 3. ~a! RTD diode at Vbias50.0 V. ~b! RTD diode at
Vbias50.03 V, showing the relative values off 0

w , f 1
w , f 2

w , and f 3
w .

The actual value of the current simulated from the constant valu
f 1

w is 3.283104 A/cm2. The solid line is the double-barrier poten
tial across the device.
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IV. TRUNCATION-DECOUPLING SCHEME TO ORDER \2

Currently, ad hocprocedures for incorporating quantu
effects fall into two general classes, namely,~a! construction
of an effective potential@3#, and~b! construction of the quan
tum hydrodynamic equations using an expansion of
Wigner distribution function in powers of\2, based on the
small-parameter perturbation theory described by Wig
seven decades ago@5#. Since the potential is modified di
rectly in ~a!, clearly there will be differences in the calcu
lated currents with and without quantum corrections. Ho
ever, it is not clear that this type of renormalization captu
the essential nonlocality for tunneling, and especially the
herence in double-barrier structures. Our preliminary inv
tigation suggests that it does not capture coherence and
nant tunneling. In view of this, it seems uncertain wheth
the difference in the calculated current with and witho
quantum correction in~a! is due entirely to a quantum tun
neling process. On the other hand, since it is the Wig
distribution function that is approximated in~b!, it seems
more likely that the essential nonlocality and off-diagon
long-range correlation in real space is captured in the res
ing QHD equations. Although it is doubtful if the~b! ap-
proach can capture truly time-dependent or fast quan
transport processes, it should be useful enough to simu
semiconductor devices. In what follows, we will propose
self-consistent unification of the~a! and ~b! approaches.

The approach used by Wigner@5# has in fact been gener
alized by one of the present authors~F.A.B.! three decades
ago@13,14#. The derivation is not based on perturbation o
small parameter@5,15#, but on the lattice Weyl-Wigner for-
malism for solid-state physics@13#. We summarize here the
underlying philosophy of the lattice Weyl-Wigner derivatio
The fundamental starting point is the formula derived
Buot @13# for the expansion in powers of\2 of Tr Aop

n , ex-
pressed in lattice phase-space representation, for any q
tum operatorAop . In particular, for any solid-state Hamil
tonian operator, TrH n is given by

Tr H n5~N\3!21 Trband

3(
pW ,qW

cosF\

2 (
j ,k51
j ,k

n21 S ] ( j )

]pW
•

] (k)

]qW
2

] ( j )

]qW
•

] (k)

]pW
D G

3
1

2
@H (1)~pW ,qW !H (2)~pW ,qW !•••H (n)~pW ,qW !

1H (n)~pW ,qW !H (n21)~pW ,qW !•••H (1)~pW ,qW !#, ~18!

whereH(pW ,qW ) is the lattice Weyl transform ofH. H(pW ,qW ) is
simply the classical expression ofH in most cases of single
band dynamics. However, for multiband cases eachH(pW ,qW )
is a matrix in the band indices; they do not commute, a
Trband must also be taken in Eq.~18!. One may, however,
decouple the bands, if possible, before applying the form
as was done for a relativistic Dirac electron gas and
kW•pW model of bismuth-antimony alloys@13,14#. This formula
has been shown to have a wide range of applications in so

of
9-7
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state problems. This is connected with the fact that any fu
tion of H, such as the free energyF(K), whereK5H2«F
and «F is the Fermi potential, can be expressed as a po
series inK through the use of the Laplace transform ofF(K)
@16#:

F~K!52kT ln~11e2K/kT!

5E
c2 i`

c1 i`

f~s!esKds,

esK5(
n

sn

n!
K n. ~19!

Hence the problem of taking the trace ofF(K) is reduced to
the problem of taking TrK n. Let N be the total number o
particles in the system. Then we have

N52
]

]«F
Tr F~K!5~N\3!21 Trband (

pW ,qW
f w~pW ,qW !,

~20!

which defines the Wigner distribution functionf w(pW ,qW ).
Thus an expansion of TrK n in powers of\2 will be re-
flected, through Eq.~19!, in a similar expansion for the
Wigner distribution function.

In Appendix A, we expand the cosine function in Eq.~18!
to order\2, and obtain the expression of the Wigner dist
bution to order\2 for any Hamiltonian, through Eq.~19!.
The result is

f w~pW ,qW !5 f ~K~pW ,qW !!2
\2

8m*
¹2V~q! f 9~K~pW ,qW !!

2
\2

24m*
u¹V~qW !u2f-~K~pW ,qW !!

2
\2

24m* 2
pW •¹¹V~qW !•pW f-~K~pW ,qW !!

1
\2

8m*
u¹V~qW !u2S F~K !

K D 9

1
\2

8m* 2
pW •¹¹V~qW !•pW S F~K !

K D 9
, ~21!

where f „K(pW ,qW )… is the Fermi-Dirac distribution function
and the differentiation is with respect to the scalar funct
K(pW ,qW ).

The task for the device quantum transport equation is
modify the equilibrium Fermi-Dirac distribution function ap
pearing in Eq.~21! to a self-consistent nonequilibrium valu
As a first approximation, we can assume a shifted Fer
Dirac distribution function corresponding to a shift in th
band-edge minimum in the parabolic band model, with
shifted momentum origin given in 1D by
06611
c-

er

n

o

i-

e

^p&FD~q!5NcAm* kT f1
FD~q!5u, ~22!

where f 1
FD(q) is the first-order Hermite coefficient of th

shifted Fermi-Dirac distribution. Although the treatment
3D is straightforward, we will consider 1D here to simplif
the discussion. We also expand the ‘‘1D’’ Fermi-Dirac dist
bution as

f FD
1D ~p,q,t !5

2pm* kT

~2p\!2 (
m

f m
FD~q,t !e2p2/2m* kTH̃m~p!.

~23!

With the essential quantum effects to order\2 already taken
care of at equilibrium, we can solve for the nonequilibriu
Fermi-Dirac distribution function by simply using its firs
few moments or coefficients of the Hermite polynomial e
pansion, i.e., we may employ the first two or three equati
for the Hermite coefficients or of the moments. In capturi
quantum effects, we can assume that the last two term
Eq. ~21! are negligible since these do not contribute at ve
low temperatures, and writef w(pW ,qW ,t) in one dimension as

f w
1D~p,q,t !5 f 1D

„K~p,q,t !…

2
\2

8m*
¹2V~q!

]2

]«F
2

f 1D
„K~p,q,t !…

1
\2

24m*
u¹V~q!u2

]3

]«F
3

f 1D
„K~p,q,t !…

1
\2

24m* 2
¹2V~q!

]3

]«F
3 ~p2u!2f 1D

„K~p,q,t !…,

~24!

where (p2u)2 in the last term is consistent with the fact th
the shifted Fermi-Dirac distribution corresponds to a shift
the band-edge minimum inK(pW ,qW ,t) by virtue of a drifting
electron gas. We make use of the following relations
evaluate the Hermite polynomial expansion of the last te
of Eq. ~24!:

p2

m* 2
H̃m~p!5

kT

m*
@H̃m12~p!1~2m11!H̃m~p!

1m~m21!H̃m22~p!#,

2
2pu

m* 2
H̃m~p!52

2u

m*
AkT

m*
@H̃m11~p!1mH̃m21~p!#,

~25!

u2

m* 2
H̃m~p!5

u2

m* 2
H̃m~p!.

To simplify the equations that follows, let us deno
the \2 factors as A5(\2/m* )¹2V(q)]2/]«F

2 , B5(\2/

m* )u¹V(qW )u2]3/]«F
3 , and C5(\2/m* )¹2V(qW )]3/]«F

3 . A
9-8
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and B are dimensionless, whereasC has the dimension o
inverse energy. The Wigner distribution function Hermite c
efficients are related to the Fermi-Dirac distribution functi
Hermite coefficients, through Eq.~24!, by the following:

f m
w~q,t !5F12

A

8
1

B

24
1~2m11!

CkT

24
1

C

24m*
u2G

3 f m
FD~q,t !1

CkT

24
@ f m22

FD ~q,t !1~m12!~m11!

3 f m12
FD ~q,t !#2

C

12
AkT

m*
u@ f m21

FD ~q,t !

1~m11! f m11
FD ~q,t !#. ~26!

Note that the Wigner distribution Hermite coefficien
f m

w(q,t), are expanded as a linear combination of the Fer
Dirac distribution Hermite coefficients, namely,f m22

FD (q,t),
f m21

FD (q,t), f m
FD(q,t), f m11

FD (q,t), andf m12
FD (q,t). This is due

to the presence of the last term in Eq.~24!.

V. DERIVATION OF THE QUANTUM HYDRODYNAMIC
TRANSPORT EQUATIONS

As we have indicated before, as a first simplification
can assume a momentum-shifted Fermi-Dirac distribut
function. We will later consider nondegenerate semicond
tors to make contact with existing formulations of QHD
the literature. We use the Hermite polynomial expansion
the Fermi-Dirac distributionf 1D(pW ,qW ,t) of Eq. ~23!. We can
readily identify the first three Hermite coefficients of th
Fermi-Dirac distribution as follows:Ncf 0

FD(q,t)5r(q,t),
Ncf 1

FD(q,t)5(u/Am* kT)r(q,t), Ncf 2
FD(q,t)5(u2/

2m* kT)r(q,t), and Ncf 3
FD(q,t)5$2/3!Am* /kTQheat f lux/

kT11/3!r(q,t)u3(q,t)/ (Am* kT)3%. Expressing all coeffi-
cients in terms of the zero-order coefficientf 0

FD(q,t), we
have

f 1
FD~q,t !5

u

Am* kT
f 0

FD~q,t !,

f 2
FD~q,t !5

u2

2m* kT
f 0

FD~q,t !, ~27!

f 3
FD~q,t !5H 2

3!
Am*

kT

Qheat f lux

kTr~q,t !
f 0

FD~q,t !

1
1

3!

u3~q,t !

~Am* kT!3
f 0

FD~q,t !J .

Therefore the Wigner distribution function Hermite coef
cients can now be determined from Eq.~26!. We have for
f 0

w(qW ,t)
06611
-

i-

n
c-

f

f 0
w~qW ,t !5F12

A

8
1

B

24
1

CkT

24 G f 0
FD~qW ,t !, ~28!

and therefore in the nondegenerate limit we have

n~qW ,t !5F12
A

8
1

B

24
1

CkT

24 GAe2(V/kT), ~29!

where A52@(2pm* kT)3/2/(2p\)3#e«F /kT. Note that the
last term, notably absent in existing QHD formulations~see,
e.g., Ref.@5#! is due to the presence of the ‘‘random’’ var
able, i.e., the (p2u)2 term in Eq. ~24!, which gives the
‘‘fluctuation’’ or thermal energykT upon integration over the
momentum variable. We also have to order\2,

AkT

m*
f 1

w~qW ,t !5F12
A

8
1

B

24
1

CkT

24 G f 0
FD~q,t !

3F u

m*
1

C

12

Qheat f lux

r~q,t ! G . ~30!

Thus the quantum-corrected velocity is defined by

v5
uw

m*
5S u

m*
1

C

12

Qheat f lux

r~q,t ! D . ~31!

This means that the quantum-corrected velocity is higher
non-Maxwellian classical distribution, i.e., in the presence
heat flux. The Wigner distribution particle current is th
given by

J~q,t !5NcAkT

m*
f 1

w~qW ,t !

5n~q,t !
uw

m*
. ~32!

To order \2, we can writen(q,t)(C/12)Qheat f lux/r(q,t)
.(C/12)Qheat f lux. Thus, the continuity equation is

]

]t
n~q,t !52¹

n~q,t !u

m*

2
\2

12m*
¹S ¹2V~qW !

1

~kT!3
Qheat f luxD .

~33!

This differs from that given in existing QHD formulations b
the absence of the last term of Eq.~33! in Ref. @5#. Equation
~33! amounts to the replacement ofu in Ref. @5# by uw, the
quantum-corrected momentum, thereby giving the usual c
tinuity equation
9-9
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]

]t
n~q,t !52¹

n~q,t !uw

m*
52¹n~q,t !v. ~34!

For the second-order coefficient, we have

f 2
w~q,t !5F12

A

8
1

B

24
15

CkT

24
1

C

24m*
u2G

3
u2

2m* kT
f 0

FD~q,t !1FCkT

48
1

3C

24

Qheat f lux

r~q,t !~kT!
u

2
C

24m*
u2G f 0

FD~qW ,t !, ~35!

where we made use of the expression forf 4
FD(q,t) in terms

of the moments andf 0
FD(qW ,t) derived in Appendix C. Taking

the velocity moment of the Wigner distribution functio
equation gives the current equation

]

]t
AkT

m*
Ncf 1

w~q,t !

52¹qH 2
kT

m*
Ncf 2

w~q,t !1
kT

m*
Ncf 0

w~q,t !J
1

1

m*
H S 2

]

]qDV~q!J Ncf 0
w~q,t !. ~36!

Note that, from Eq.~9!, this looks like multiplying both sides
of Eq. ~9! by AkT/m* , but with a very important difference
namely, the factorAkT/m* is inside the differentiation op
erator since it depends on (q,t). Upon substituting the rel-
evant expressions given above, we end up with the quant
corrected current equation to order\2 as
06611
m-

]

]t
@m* n~q,t !v#1¹q@m* n~q,t !v22\2Pp#

5S 2
]

]q
V~q! Dn~q,t !2¹q@n~q,t !kT#

1S ]

]t
m* n~q,t !v D

c

, ~37!

where

Pp52
n~q,t !

24m* kT
¹2V~q!

2F 1

12~kT!3
¹2V~q!

Qheat f lux

r~q,t !
v

1
1

12~kT!2
¹2V~q!v21

m*

24~kT!3
¹2V~q!v4G

3n~q,t !. ~38!

We should point out that Gardner@5# missed out the\2 terms
involving the quantum-corrected velocityv in the left-hand
side of the current equation given above. These are in
ently dynamical and nonequilibrium quantum correction
We believe these represent an important quantum nonlin
ity needed to preserve some amount of coherence inO(\2).
Clearly, to obtain the highly nonlinear current-voltage re
tionship in resonant tunneling structures one needs hig
nonlinear terms as given in Eq.~37!. These quantum correc
tions can also be interpreted as quantum corrections to
‘‘ballistic’’ diffusion coefficient and the potential as

]

]t
m* n~q,t !v5H S 2

]

]qDVe f fJ n~q,t !2De f f¹qn~q,t !

1S ]

]t
m* n~q,t !v D

c

, ~39!

where
De f f~q!5FkT1m* v21
\2n~qW ,t !

24m* kT
¹2V~q!1

\2

12~kT!3
¹2V~q!

Qheat f lux

r~q,t !
v1

\2

12~kT!2
¹2V~q!v21

\2m*

24~kT!3
¹2V~q!v4G , ~40!

Ve f f~q!5FV~q!1kT1m* v21
\2n~qW ,t !

24m* kT
¹2V~q!1

\2

12~kT!3
¹2V~qW !

Qheat f lux

r~q,t !
v1

\2

12~kT!2
¹2V~q!v2

1
\2m*

24~kT!3
¹2V~q!v4G . ~41!

The evolution equation for the energy is obtained from a combination of the equation forf 0
w(q,t)12 f 2

w(q,t). First, let us
examine the expression for the total energy, namely,
9-10
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W~q,t !5
Nc

2
kT@ f 0

w~q,t !12 f 2
w~q,t !#

5
Nc

2 S F12
A

8
1

B

24
1

CkT

24 G f 0
FD~q,t !kT1F12

A

8
1

B

24
1

CkT

24 G u2

m*
f 0

FD~q,t !

1F2C~kT!2

48
1

6C

24

Qheat f lux

r~q,t !
u1

2CkT

24m*
u21

C

24m*

u4

m*
G f 0

FD~q,t !D . ~42!

To order\2, we have

~uw!25u21
2Cm*

12

Qheat f lux

r~q,t !
u. ~43!

Then we end up with

W~q,t !5S kT

2
1

uw2

2m*
1

\2

48m* kT
¹2V~q!F11

2Qheat f lux

~kT!2r~q,t !
uw1

uw2

m* kT
1

uw4

m* 2~kT!2G D n~q,t !. ~44!
rg
;
e
o-

u
g

by
i

t i

s

Note that the leading quantum correction to the total ene
is similar to that given by Wigner several decades ago
differs by a factor of 1

2 since we have also included th
contribution of nonequilibrium-induced higher-order m
ments, specifically the contribution off 4

FD ~see Appendix C!,
which is made available by using the spectral resolution
ing the Hermite polynomials. Moreover, even the avera
momentumuw is also a quantum-corrected momentum
virtue of the dynamical corrections. All the rest are dynam
cal and nonequilibrium quantum corrections not presen
Ref. @5#.

From Eq.~14!, we have the following expression:
06611
y
it

s-
e

-
n

]

]t
W~q,t !52¹qH 3AkT

m*
kTNcf 3

w~q,t !

1
3

2
AkT

m*
kTNcf 1

w~q,t !J
1F S 2

]

]j DV~j!GU
j5q

1

Am* kT
kTNcf 1

w~q,t !.

~45!

Upon substituting the Wigner Hermite coefficients in term
of the classical moments~Appendixes B–D!, we obtain
]

]t
W~q,t !52¹qH W~q,t !v1kTn~q,t !v2

\2

m*
¹2V~q!Fn~q,t !

16kT
v1

23

24~kT!3
Qheat f lux

m* v2

2

1
7n~qW ,t !

24~kT!2

m* v3

2
1

3n~qW ,t !

24~kT!3

m* 2v5

2 G1
\2

m*
¹2V~q!F 1

48kT
AkT

m*
n~q,t !2

1

4~kT!2
Qheat f luxG

1F11
\2

24m* ~kT!3
u¹V~q!u2G Qheat f luxJ 1S 2

]

]qDV~q!n~q,t !v, ~46!

which can be written as

]

]t
W~q,t !1¹q@W~q,t !v~q,t !2\2PW~q,t !v~q,t !#5S 2

]

]q
V~q! Dn~q,t !v~q,t !2¹qkTn~q,t !v~q,t !

2¹qQheat f lux~q,t !1S ]

]t
W~q,t ! D

c

, ~47!

where
9-11
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PW5
n~q,t !

16m* kT
¹2V~q!1H 1

m*
¹2V~qW !F1

23

24~kT!3
Qheat f lux

m* v
2

1
7n~qW ,t !

24~kT!2

m* v2

2
1

3n~qW ,t !

24~kT!3

m* 2v4

2 G
2

1

m*
¹2V~qW !F 1

48kT

AkT/m*

v
n~q,t !2

1

4~kT!2

1

v
Qheat f luxG2

1

24m* ~kT!3
u¹V~qW !u2

1

v
Qheat f luxJ . ~48!

We may also cast the energy conservation equation in terms of heat generation and heat loss on the right-hand side a

]

]t
W~q,t !5S 2

]

]q
Ve f f

W ~q! Dn~q,t !v~q,t !2De f f
W ¹qn~q,t !v~q,t !2¹qQheat f lux~q,t !1S ]

]t
W~q,t ! D

c

, ~49!

where

Ve f f
W ~q!5V~q!1

3kT

2
1

m* v2

2
1

\2

12m* kT
¹2V~q!1

\2

48m* kT
¹2V~q!Fm* v2

kT
1

m* 2v4

~kT!2 G
2

\2

m*
¹2V~q!F 7

24~kT!2

m* v3

2
1

3

24~kT!3

m* 2v5

2 G1
\2

48m* kT
¹2V~q!

AkT

m*

v
1

\2

24m* ~kT!3
u¹V~q!u2

Qheat f lux

nv

2
\2

4m* ~kT!2
¹2V~q!

Qheat f lux

nv
1

\2

48m* ~kT!3
¹2V~q!m* v

2Qheat f lux

nv
2

23\2

24m* ~kT!3
¹2V~q!

m* v2

2

Qheat f lux

nv

~50!
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De f f
W 5Ve f f

W ~q!2V~q!. ~51!

For the heat flux, we substituteQheat f lux52k¹T in all the
formulas above, wherek is the thermal conductivity. The
validity of this heat-flux formula and the Wiedemann-Fra
law in the quantum domain has recently been discusse
Ref. @17#. We believe that physically meaningful quantu
corrections should be in the form of the quantum correcti
to the effective potentialVe f f

W (q), in the sense of Bohm
Hamilton-Jacobi-particle dynamics, and toDe f f

W for the quan-
tum diffusion, in the sense of the stochastic formulation
quantum mechanics@18#, as given above.

Summarizing, we have the QHD equations Eq.~34!, Eqs.
~37!,~38!, and Eqs.~47!,~48! cast in the form given by Gard
ner @5# for comparison. These are the forms of the QH
equations given in the literature@5#. The leading correction
of the energy conservation equation differs from that giv
by Gardner@5# in sign and is3

4 in magnitude. However, the
corresponding leading term in the effective potential in E
~50! is the same as the one used in@3#. The dynamical terms
within the curly brackets in Eq.~48! were entirely missed in
@5#. The leading-term discrepancy is attributed to the con
bution of higher-order moments or Hermite coefficien
which are not accounted for in the strictly equilibriu
Wigner-function-based quantum corrections that characte
the procedure in@5#. Just as we did for the current equatio
these extra quantum corrections can also be similarly in
preted as the quantum correction to the work done by
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electron pressure and to the effective potential. From
nonequilibrium quantum-mechanical point of view, Eq
~34!, ~39!, and~49! are the physically more meaningful ve
sion of the QHD equations.

VI. THE QUANTUM DRIFT-DIFFUSION EQUATIONS

In cases where the temperature is uniform and in equi
rium with the crystal lattice, we only need the continuity
particle conservation equation and the current equat
These are the workhorse equations of semiconductor de
physics. Even if the temperature varies, it maybe desirabl
truncate the hierarchy to these two equations only if the te
perature variation is given, otherwise one has to solve
QHD equations to obtain the variation of temperatu
T(q,t). We will treat the two cases, uniformT and given
variableT(q), in what follows. The quantum drift-difusion
equations follow from these two equations. Careful attent
must be paid to the relaxation times in deriving the semic
ductor QDD equations from the continuity equation and c
rent equation given above. We note that their relaxat
times have a very large discrepancy if one considers the
laxation timetd for the particle densityn to be infinite, i.e.,

td@tm, ~52!

where the particle-density relaxation timetd⇒` and tm is
the finite ~say 10214 s) momentum relaxation time. Rewrit
ing the particle conservation equation as
9-12
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]

]t
n52¹nv2

n2n0

td
, ~53!

and setting the collision term@(]/]t)m* nv#c52m* nv/tm
for the current equation, we have

]

]t
~m* nv !1¹q@m* nv22\2Pp#

5S 2
]

]q
V~q! Dn2¹q~nkT!2

m* nv
tm

. ~54!

Because the currentnv relaxes infinitely fast compared ton,
tm introduces an elementary time scale to the problem. I
a very good approximation to assume that the current
already relaxed while following the current continuity equ
tion, and hence we can set (]/]t)(m* nv)50. This approxi-
mation is also good even if there are generation and rec
bination terms in the particle conservation equation, as l
as the generation and recombination rates are much sm
than the momentum relaxation rate. We have

nv5
tm

m*
S 2

]

]q
V~q! Dn2¹q

tm

m*
~nkT!

2¹q

tm

m*
@m* nv22\2Pp#. ~55!

First we treat the uniformT case. Then we obtain

J5emEn1eD¹q~n!1m¹q@m* nv22\2Pp#, ~56!

wherem is the electron mobility,D is the electron diffusion
constant, andJ52env is opposite to the direction of th
electron velocityv. We immediately get the first version o
the QDD equations as

]

]t
n52¹nv, ~57!

J5emEn1eD¹q~n!1m¹q@m* nv22\2Pp#, ~58!

where

Pp52
n

24m* kT
¹2V~qW !2F 1

12~kT!2
¹2V~qW !v2

1
m*

24~kT!3
¹2V~qW !v4Gn. ~59!

We may also take the physically meaningful point of vie
that the quantum corrections contained inPp are absorbed a
quantum corrections to the potential and diffusion consta
Then we have the second version of the QDD equatio
which reads

]

]t
n52¹nv, ~60!
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J5emEe f fn1eDe f f¹q~n!1m¹q~m* nv2!, ~61!

where

eEe f f5¹H V~q!1
\2

24m* kT
¹2V~q!1

\2

12~kT!2
¹2V~q!v2

1
\2m*

24~kT!3
¹2V~q!v4J , ~62!

De f f5
m

e H kT1
\2

24m* kT
¹2V~q!1

\2

12~kT!2
¹2V~q!v2

1
\2m*

24~kT!3
¹2V~q!v4J . ~63!

Note that the presence of the last term in the current equa
comes from the contribution of the second-order or kine
energy moment in the hierarchy, namely,f 2

w(qW ,t) or

^H̃2(p)&rw(q,t). This is not a quantum correction but
higher-order moment correction and is partly responsible
the classical velocity-overshoot mechanism in GaAs devic
We can also absorb this term in the effective potential a
diffusion coefficient to obtain the third version of the QD
equations as

]

]t
n52¹nv, ~64!

J5em Ẽe f fn1eD̃e f f¹q~n!, ~65!

where

eẼe f f5¹H V~q!1m* v21
\2

24m* kT
¹2V~q!

1
\2

12~kT!2
¹2V~q!v21

\2m*

24~kT!3
¹2V~q!v4J ,

~66!

D̃e f f5
m

e H kT1m* v21
\2

24m* kT
¹2V~q!

1
\2

12~kT!2
¹2V~q!v21

\2m*

24~kT!3
¹2V~q!v4J .

~67!

Note the coherent quantum corrections toẼe f f and D̃e f f for
the QDD equations. We can express the derivatives of
potentialV(qW ) in terms of derivatives of lnn. In Eq.~29!, we
take the logarithm of both sides of the equation to obtain

2V5kT ln n2kT lnF12
A

8
1

B

24
1

CkT

24 G2kT ln A.

~68!
9-13
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We should point out that this approximation should only
used in those terms containing the\2 quantum corrections a
it is based on the equilibrium Wigner distribution functio
We can neglect the second term since this gives a contr
tion of order\4 in Ẽe f f and D̃e f f . We can also neglect th
last term in derivatives ofV for uniform T and nondegenerat
semiconductors. Thus,

¹2V~qW !52kT¹2 ln n. ~69!

We rewriteẼe f f and D̃e f f as

eẼe f f5¹H V~q!1m* v22
\2

24m*
¹2 ln n2

\2

12kT
~¹2 ln n!v2

2
\2m*

24~kT!2
~¹2 ln n!v4J , ~70!

D̃e f f5
m

e H kT1m* v22
\2

24m*
¹2 ln n2

\2

12kT
~¹2 ln n!v2

2
\2m*

24~kT!2
~¹2 ln n!v4J . ~71!

Thus, quantum corrections to the semiconductor dr
diffusion equation result in explicitly renormalizing the tot
drift force and the ‘‘diffusion constant.’’ These are nonequ
librium concepts appropriate to transport problems. T
leads us to the important concept of quantum diffusion c
rection, not fully appreciated in previous formulations f
cused on stationary concepts of energy and stress te
Thus, aside from the quantum potential correction, we h
also explicitly taken into account the quantum diffusion c
rection. These equations together with the Poisson equa
for the potentialF, constitute the QDD equation that is e
pected to serve as a fast quantum-transport solver for em
ing nanotransistors and heterojunction devices. These re
can readily be extended to 3D. In 3D, including a giv
variationT(q), we write the QDD equations as

]

]t
n52“•nv, ~72!

J52env5emEe f fn1eD̃e f f¹n. ~73!

Here we define

eEe f f5¹H V~q!1kT1m* v•v¢2
\2

24m* kT
“•“kT ln

n

A

2
\2

12~kT!2 S“•“kT ln
n

AD v•v

2
\2m*

24~kT!3 S“•“kT ln
n

AD uvu4J , ~74!

where we includedkT in the potential correction to cover th
case of a given variation ofT(q). The diffusion coefficient
now reads
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D̃e f f5
m

e H kT1m* v•v2
\2

24m* kT
“•“kT ln

n

A

2
\2

12~kT!2 S“•“kT ln
n

AD v•v

2
\2m*

24~kT!3 S“•“kT ln
n

AD uvu4J . ~75!

VII. COMPARISON WITH OTHER RELATED WORKS

A recent paper by Ankerholdet al. @19# discusses quan
tum corrections to the effective potentialVe f f and diffusion
coefficientDe f f of a quantum Smoluchowski equation in th
context of the path integral technique. The barrier system
considered to be coupled to the heat bath in the strong
tion limit at low temperatures. They found that at modera
temperatures, where the thermal fluctuations mask the q
tum fluctuations, the influence of the quantum correction
the effective potential prevails, effectively lowering the ba
rier height. What is more intriguing in their work is that a
low temperatures strong effects of quantum fluctuations
the diffusion coefficient are revealed.

Our drift-diffusion equations, which correspond to the
Smoluchowski equation, agree with their result in that t
leading corrections to the effective potential and diffusi
coefficient involve the second derivative of the potential. O
results differ in the measurement scale of the quantum
rection used. Ankerholdet al. use the quantum fluctuation i
the position coordinates, namely,^q2&2^q2&cl , which is a
function of\ and damping constant, but also goes to zero
the limit as\⇒0. The corresponding classical problem
the one considered by Ankerholdet al. is the classic Kram-
er’s problem of Brownian motion over a potential barri
@20#, whereas we are interested in the motion of Fermi-Di
particles in semiconductor heterojunction nanostructures
der an arbitrary bias. Since the typical solution for the s
tionary current of the drift-diffusion equations depends exp
nentially on the potential and temperature, it is also expec
that the quantum-corrected stationary current will depend
ponentially on the effective potential and quantum fluctu
tions. This would also mean that the escape rate over
barrier will be strongly dependent on the quantum fluctu
tions, as was indeed found by Ankerholdet al. The effect of
friction in our drift-diffusion equations is incorporated in th
mobility parameter m, and depends arbitrarily on th
strength of the scattering or friction. This parameter ari
from the relaxation time or mean free path approximation
the collision term in Eq.~2!, which can be rigorously derived
from the nonequilibrium quantum field theoretical Green
function technique for Fermi-Dirac particles@7,8#. Indeed, in
the absence of quantum corrections near equilibrium,
effective diffusion coefficient satisfies the Einstein relatio

Several other papers, although directly related to
present work, do not discuss the quantum correction to
diffusion coefficient at all but instead focus on the calcu
tion of the smooth effective classical potential in QHD b
9-14
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employing the path integral technique of Feynman a
Kleinert @21# using a Boltzmann distribution. Gardner’s lat
work and that of others@22# exemplify this type of effort.
From our viewpoint, there are really two separate issue
be resolved; the first can be characterized as numerical,
the second issue is fundamental and physical. These is
are~a! the treatment of the abrupt potential in heterojunct
semiconductor devices, and~b! the correct quantum nonlin
earity capable of approximating quantum coherence in re
nant tunneling structures~RTS’s!. The first arises because o
the presence of higher-order derivatives of the classical
tential occurring in the quantum corrections. We feel that
second issue is crucial to the foundation of QHD and QD
as viable tools for providing a fast quantum transport sol
for nanodevices. This quantum coherence is manifested,
experimentally and through numerical simulation of Eq.~2!
@9,23#, by the highly nonlinear current-voltage (I -V) charac-
teristics of RTS’s. Roughly, theI -V characteristic is given by
I 5C1Vu(Vp2V)1C2(V2Vp)u(V2Vp), whereu(V2Vp)
is a step function andVp corresponds to the current peak
resonant current voltage. Thus, theI -V characteristic is
highly nonlinear, exhibiting a resonant peak and fast curr
collapse after resonance, and generally showing a signifi
peak-to-valley ratio at low temperatures. A detailed disc
sion of the physics of resonant tunneling structures is gi
by Buotet al. @23#. We feel that we have given in this pap
the important nonequilibrium quantum nonlinearity capa
of approximating the highly nonlinearI -V characteristic of
resonant tunneling nanodevices. In the high-tempera
limit, where the Fermi-Dirac distribution goes into the Bo
zmann distribution, then the use of the Feynman-Klein
smooth effective classical potential would be advantage
to the numerical implementation. However, there may
other ways to resolve this numerical problem other than
Feynman-Kleinert smoothing procedure.

In view of the use of the Boltzmann distribution in th
Wigner method of expanding the Wigner distribution fun
tion to O(\2), several authors restart the derivation by so
ing the Bloch equation for the density matrix, where t
Boltzmann distribution is assumed from the beginning@22#.
In this way the connection to the Feynman-Kleinert pa
integral technique becomes natural, and the resulting Q
equations have a smooth effective classical potential. H
ever, since we are interested in charge carriers in semi
ductors obeying Fermi-Dirac statistics, it is clear that t
starting point of these formulations assumed that the t
perature is high enough for the Fermi-Dirac distribution
turn into a Boltzmann distribution. It should be pointed o
that in the direct numerical simulations of Eq.~2! the Fermi-
Dirac distribution was always used for the supply of tunn
ing electrons, yielding results in agreement with experime
@7,9#. Moreover, having a smooth effective classical poten
only solves the numerical issue cited above, but not ne
sarily the fundamental physical issue.

The method used in this paper is based on the rigor
expansion of the free energy toO(\2) using Fermi-Dirac
statistics without the need for a small parameter. Thus,
have given a formulation based on the Fermi-Dirac part
distribution from the beginning, valid for all temperatu
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ranges, as well as incorporating all important quantum n
linearities in the form of nonequilibrium quantum correctio
not considered before. This quantum nonlinearity is deem
necessary to properly approximate the highly nonlinear re
nant tunnelingI -V characteristic of RTS’s.

VIII. CONCLUDING REMARKS

The analytical results presented in this paper show
the quantum corrections to the Wigner distribution transp
equations involve dynamical and nonequilibrium correctio
not treated before to our knowledge. These quantum dyna
cal corrections go to zero in the absence of current and
flux. The physically meaningful quantum transport corre
tions are the quantum corrections to the drift force~potential!
and diffusion coefficients which are inherently nonequili
rium quantities. This is not at all surprising since quantu
mechanics has the properties of both particles and fluctua
fields or waves. The quantum correction to the drift force
potential demonstrates the particle aspect in the sense o
Bohm Hamilton-Jacobi particle formulation of quantum m
chanics, whereas the quantum correction to the diffusion
efficients demonstrates the fluctuating field aspect in
sense of the stochastic formulation of quantum mecha
initiated by Nelson@18# and supported by the recent work o
Ankerhold et al. @19#. In fact, quantum diffusion is at the
heart of the localization/delocalization theory of Anders
@24#.

The ‘‘spectral’’ aspect of our approach lies in the use
the Hermite polynomial expansion of the nonequilibrium d
tribution function in phase space which allows us to estab
the exact nature of the quantum hierarchy in real space
herent in the exact Wigner transport equation in phase sp
This is coupled with the use of the Buot formula for TrH n to
obtain the equilibrium Wigner distribution function solutio
as an expansion in powers of\2. This avoids the need for a
rather restrictive assumption based on a perturbative ex
sion in terms of a small parameter which was originally do
by Wigner @15#. Thus, our approach eliminates the conce
tual difficulty of applying the QHD and QDD equations t
strongly varying potentials in heterojunction devices whe
the small parameter used by Wigner is not valid. Moreov
the use of the Hermite polynomial expansion enables u
microscopically examine the equations for the various m
ments in the decoupling procedure. It allows us to acco
for the contribution of higher-order moments to the soluti
of the lower-order moments.
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APPENDIX A: EXPANSION OF WIGNER DISTRIBUTION FUNCTION TO O„\2
…

Upon expanding the cosine function toO(\2) in Eq. ~18!, we obtain the Buot general formula for the trace of any opera
raised to any powern. Thus, TrK n is given by

Tr K n5~N\3!21 Trband(
pW ,qW

H @K~pW ,qW !#n2
1

2! S \

2D 2F ~n21!~n22!

2
@K~pW ,qW !#n22S H ]2K~pW ,qW !

]pW ]pW
(

]2K~pW ,qW !

]qW ]qW
J

2H ]2K~pW ,qW !

]pW ]qW
(

]2K~pW ,qW !

]qW ]pW
J D 1S ~n21!~n22!~n23!

6
2

~n21!~n22!

2 D
3@K~pW ,qW !#n23S H ]2K~pW ,qW !

]pW ]pW
(

]K~pW ,qW !

]qW

]K~pW ,qW !

]qW
J 1H ]2K~pW ,qW !

]qW ]qW
(

]K~pW ,qW !

]pW

]K~pW ,qW !

]pW
J

2H ]2K~pW ,qW !

]pW ]qW
(

]K~pW ,qW !

]qW

]K~pW ,qW !

]pW
J 2H ]2K~pW ,qW !

]qW ]pW
(

]K~pW ,qW !

]pW

]K~pW ,qW !

]qW
J D 12S ~n!~n21!~n22!

6
2

~n21!~n22!

2 D
3@K~pW ,qW !#n23S ]K~pW ,qW !

]pW
•

]2K~pW ,qW !

]qW ]pW
•

]K~pW ,qW !

]qW
1

]K~pW ,qW !

]qW
•

]2K~pW ,qW !

]pW ]qW
•

]K~pW ,qW !

]pW
2

]K~pW ,qW !

]qW
•

]2K~pW ,qW !

]pW ]pW
•

]K~pW ,qW !

]qW

2
]K~pW ,qW !

]pW
•

]2K~pW ,qW !

]qW ]qW
•

]K~pW ,qW !

]pW
D G1O~\4!J , ~A1!

where$(% is a symmetrized tensor contraction, i.e.,

H ]2K~pW ,qW !

]pW ]pW
(

]2K~pW ,qW !

]qW ]qW
J [

]2K~pW ,qW !

]pi]pj

]2K~pW ,qW !

]qi]qj
1

]2K~pW ,qW !

]qi]qj

]2K~pW ,qW !

]pi]pj
, ~A2!

and use is made of the Einstein convention where repeated indices are summed over. In evaluating the summat
integral, (N\3)21(pW ,qW⇒h23*d3pd3q.

For treating the valence band transport of some semiconductors like GaN, the 636 matrix nature of the valence band
K(pW ,qW ) may have to be accounted for in evaluating Eq.~A1!. For most systems of interest in semiconductor transport phy
we can simplify Eq.~A1! by assuming thatK(pW ,qW ) is a diagonal matrix. For the case whereK(pW ,qW ) is diagonal in band index
Eq. ~A1! can readily be evaluated to yield

Tr K n5Trbandh
23E d3pd3qH @K~pW ,qW !#n2

1

2! S \

2D 2

@K~pW ,qW !#n22~n21!~n22!

3S ]2K~pW ,qW !

]pW ]pW
:
]2K~pW ,qW !

]qW ]qW
2

]2K~pW ,qW !

]pW ]qW
:
]2K~pW ,qW !

]qW ]pW
D 2

1

2! S \

2D 2

@K~pW ,qW !#n23
~n21!~n22!~n23!

3

3S ]2K~pW ,qW !

]pW ]pW
:
]K~pW ,qW !

]qW

]K~pW ,qW !

]qW
1

]2K~pW ,qW !

]qW ]qW
:
]K~pW ,qW !

]pW

]K~pW ,qW !

]pW
22

]2K~pW ,qW !

]pW ]qW
:
]K~pW ,qW !

]qW

]K~pW ,qW !

]pW
D 1O~\4!J ,

~A3!

where the double-dot product indicates tensor contraction,

]2K~pW ,qW !

]pW ]pW
:
]2K~pW ,qW !

]qW ]qW
[

]2K~pW ,qW !

]pi]pj

]2K~pW ,qW !

]qi]qj
, ~A4!

using the Einstein convention for the repeated indices. We should point out here that in
066119-16
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K~pW ,qW !5H~pW ,qW !2«F5ElS pW 2
eAW

c
D 1V~qW !2«F ,

El(pW 2eAW /c) is the full energy-band function, bypW replaced withpW 2eAW /c in the presence of a magnetic field. Th

@K(pW ,qW )#n23 terms in Eq.~A3! can be reduced to@K(pW ,qW )#n22 terms, plus terms which are gradient with respect topW andqW
in the absence of a magnetic field. In the effective-mass approximation, and in the absence of the magnetic field,~A3!
reduces to

Tr K n5Trbandh
23E d3pd3qH @K~pW ,qW !#n2

1

2! S \

2D 2 n~n21!

3
@K~pW ,qW !#n22S ]2K~pW ,qW !

]pW ]pW
:
]2K~pW ,qW !

]qW ]qW
D

2
1

2! S \

2D 2 n~n21!

3 S ]

]qW
•

]2K~pW ,qW !

]pW ]pW
•

]K~pW ,qW !

]qW
@K~pW ,qW !#n221

]

]pW
•

]2K~pW ,qW !

]qW ]qW
•

]K~pW ,qW !

]pW
@K~pW ,qW !#n22D

1
1

2! S \

2D 2

~n21!S ]

]qW
•

]2K~pW ,qW !

]pW ]pW
•

]K~pW ,qW !

]qW
@K~pW ,qW !#n221

]

]pW
•

]2K~pW ,qW !

]qW ]qW
•

]K~pW ,qW !

]pW
@K~pW ,qW !#n22D 1O~\4!J .

~A5!

Therefore, using Eq.~19!, it follows that the expression for the Wigner distribution function toO(\2) is given by Eq.~21!.

APPENDIX B: DERIVATION FOR f 3
w
„q,t… IN TERMS OF THE MOMENTS AND f 0

FD
„q,t…

We need the third-order Hermite polynomial coefficient in the equation for (]/]t)W(q,t) which can be determined from
Eq. ~26!:

f 3
w~q,t !5F12

A

8
1

B

24
17

CkT

24
1

C

24m*
u2G f 3

FD~q,t !1
CkT

24
@ f 1

FD~q,t !120f 5
FD~q,t !#2

C

12
AkT

m*
u@ f 2

FD~q,t !14 f 4
FD~q,t !#.

~B1!

The Fermi-Dirac Hermite coefficientsf 4
FD(q,t) and f 5

FD(q,t) are evaluated in Appendixes B and C, respectively. Substitu
in terms of the moments andf 0

FD(q,t), we obtain
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8
1
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1
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1

1
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24

C

m*

u3~q,t !
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J 1H 1

3

C

24m*
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Qheat f lux

kT
u2

1
1

6
r~q,t !

C

24m*

u5~q,t !

~Am* kT!3J 1
C

24
AkT

m*
r~q,t !u1H 1

6~24!
CkTr~q,t !

2
5u

3~24!Am* kT
CkTr~q,t !2

u3~q,t !

3~24!~Am* kT!m*
Cr~q,t !2

10
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CAm*
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Qheat f lux

1
3

2

C

24
Am*
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Qheat f lux
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u2

m*
1

C

24m* 2

u5

6Am* kT~kT!
r~q,t !J 2

C

12
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r~q,t !u3

2m* kT

2
C

12

5

3
Am*
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Qheat f lux
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u2
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2

u3

3~12!Am* kTm*
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C

12m* 2

u5
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1
C

~12!6
AkT

m*
r~q,t !u. ~B2!

Collecting terms, we end up with
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2

1

3
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C

24m*
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. ~B3!

APPENDIX C: DERIVATION FOR f 4
FD

„q,t… IN TERMS OF THE MOMENTS AND f 0
FD

„q,t…

We need the fourth-order Hermite polynomial, namely,

^H̃4~p!&[^He4~j!&5K S p

Am* kT
D 4L 2K 6S p

Am* kT
D 2L 1^3&5K S p

Am* kT
D 4L 26H̃2~p!23H̃0~p!. ~C1!

Therefore
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Substitutingp5p81u, then
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~m* kT!2 L 1K ~3p831p82u!u
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Thus we have
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Dividing by 2@(2pm* kT)3/2/(2p\)3# f 0
FD(q,t), we thus obtain
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If we simply approximate the fourth-order moment of the random fluctuation in^p84/(m* kT)2& by 4r(q,t)(kT)2/4(kT)2,
then we have

f 4
FD~q,t !5F 5

12

Qheat f lux

r~q,t !~kT!2
u1

1

12

1

kT

u2

m*
1

1

12

1

~kT!2

u4

m* 2
2

1

24G f 0
FD~q,t !. ~C8!

APPENDIX D: DERIVATION FOR f 5
FD

„q,t… IN TERMS OF THE MOMENTS AND f 0
FD

„q,t…

We have
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Thus, we have
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Dividing by 2@(2pm* kT)3/2/(2p\)3# f 0
FD(q,t), we thus obtain
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Again we make the following approximations:
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