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Quantum hydrodynamic equations and quantum-hierarchy decoupling scheme
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There is a need to extract the relevant device physics from exact quantum transport formulations, and hence
to reduce the complexity of quantum transport simulations for practical applications. We use a Hermite
polynomial expansion to drastically reduce the number of degrees of freedom associated with the momentum
variables. The result is a quantum hierarchy in real space. We also give a general procedure for the quantum-
hierarchy decoupling scheme to derive the quantum hydrodyn@ti®) and quantum drift-diffusion trans-
port equations. We present some numerical results for the quantum hierarchy. A rigorous foundation of a
decoupling procedure is given whereby the lower-order equations are renormalized in terms of a self-consistent
effective potential, quantum diffusion coefficient, and moments, endowed with all the quantum corrections to
order 2. Our decoupling scheme is based on the general expression7ef To order#?, valid at all
temperatures without the need for expansion in terms of the small parameter and high temperature assumption.
This is very important conceptually since existing QHD formulations, using expansion to7crdare based
on a Boltzmann distribution with the restrictive assumption of a small parameter, which is not valid in abrupt
heterojunction semiconductor devices. They also fail to account for important quantum nonlinearity in the form
of nonequilibrium quantum corrections. These nonequilibrium quantum corrections are expected to play a
major role in approximating the coherence manifested by the highly nonlinear current-voltage characteristics of
resonant tunneling structures.
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I. INTRODUCTION distribution functions, thus illuminating the quantum correc-
tions in more detail than previously. Their coefficients in the
As is well known in the classical domain, the solution of distribution function expansion provide the basis moments
distribution function transport equations entails large com-spanning the space of all physical moments.
puting resources, and efforts to reduce the problem complex- In contrast with previous fragmented attempts to incorpo-
ity are vigorously soughfl]. This task is even more de- rate quantum effects in the potential or moments of the clas-
manding when solving quantum distribution function sical hydrodynamic transport equatioi®, the method em-
transport equations in terms of computational speedployed here is consistent and general without the need to
memory, and numerical efficiency. Thus, there is a real needxpand in terms of a small parameter as was done by Wigner
to reduce the problem size in numerically simulating quanseven decades ago. The results are a straightforward conse-
tum transport problems, both for fundamental study as welguence of the fundamental quantum distribution function
as for design optimization of optoelectronic and nanoelectransport equations. This lead to self-consistent quantum cor-
tronic devices. This work is motivated by the lack of anrections to both the potential and moments of the quantum
appropriately fast quantum transport solver for short channehydrodynamic(QHD) and quantum drift-diffusion(QDD)
and 12 A gate oxide nano-complementary metal-oxideequations. In QDD, quantum diffusion, in the sense of sto-
silicon (CMOS) technology, nano-optoelectronic devices chastic quantum mechanics, is coherently taken into account
(multiband quantum transport dynamicand heterostructure together with the quantum potential. The procedure incorpo-
SiC-GaN high-power device technology, where quantunrates quantum coherence®#%2) which is often lacking in
tunneling and coherence may play a significant role. procedures based @u hocaddition of a quantum correction
To significantly reduce the number of degrees of freedonto the potential in classical drift-diffusion equations.
associated with the momentum variables, we use the Hermite The classical drift-diffusion and hydrodynamic transport
polynomial expansion of the quantum distribution function.equationger sedo not have explicit quantum corrections. It
The result is a “quantum hierarchy” in real space. We choses only when higher-order moment equations are considered
these basis functions since they possess desirable propertiésat the quantum hydrodynamic equations differ from the
namely, (a) they form “bounded” eigenfunctions of har- classical hydrodynamic equations. This is also referred to
monic oscillators, and they are also eigenfunctions of thénere as the quantum hierarchy in real space. The practical
Fourier transforni2], (b) they are related to the Weyl trans- need to consider only the first low-order Hermite coefficients
form and representation theory of the Heisenberg group imr moments and low-order derivatives demands the renor-
quantum mechanics, and as we shall geethey provide a malization of the potential and Hermite coefficieits mo-
unified “spectral” resolution of the quantum and classicalments. It should be mentioned at the outset that any
quantum-hierarchy decoupling scheme will have some re-
stricted range of validity and predictive capability of the
*On sabbatical leave from the U.S. Naval Research Laboratoryguantum mechanical effects. We will discuss a general de-
Washington, DC 20375. coupling procedure, which consistently renormalizes the po-
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tential and moments. This is done by deriving the generaproblems [7,8]. A fully time-dependent one-dimensional
form of the stationary Wigner distribution function solution (1D) numerical simulation of Eq2), coupled to the Poisson
for any Hamiltonian system, expanded in powerd:8f equation, was successfully initiated by Jensen and Bljot
The basic idea is that important quantum effects can be For one-dimensional problem, we expand the 1D Wigner
determined for the system under time-independent situationglistribution function solution, based on dimensional grounds,
transport simply adds asymmetry and additional nonequilibas follows:
rium quantum corrections to the quantum distribution func-
tion. The whole of mesoscopic physics is in fact built on the fa-vD(p'q’t)zz
assumption that quantum effects at equilibrium determine the m  (2mh)?
allowed discrete quantum channels for transporting charge (3
carrlers[4]. .Th's assumption is expected to be |nyaI|d forThe factor in front of the summation symbol allows the co-
highly nonlinear and ultrafast quantum dynamics. The

uantum-hierarchy decounling technique proposed in thiefﬁcientsf‘,ﬂ”(q,t) to be dimensionless. The expansion is for
9 y piing gque prop ach pointg in real space so that the parameteand mass

paper serves as a rigorous extension and generalization of tw;k may be allowed to depend oni,t). In what follows, we
existing QHD formulations; see, for example, Ri]. will let T(q,t) vary but treatm* as a constanfl(qg,t) may

be interpreted as the temperature of a shifted Maxwellian

Il. HERMITE POLYNOMIAL EXPANSION AND THE distribution; however, the expansion holds for a general
QUANTUM HIERARCHY IN REAL SPACE Wigner distribution function.

The Hermite polynomial coefficient)(q,t) are directly
related to the average of the Hermite polynomials them-

selves, namely, (H,(p))p"(q,t)=Nn!fY(q,t), where
dn (Ho(p))=1. N is given by N.=2(27m*kT)¥? (27#)°.

*

f¥(q,t)e P72 KTH (p).

The relevant Hermite polynomial is defined by the Rod-
riguez formula[6],

2 2
Hen(x)=(—1)"¢" IZFG X1 The moments for the particle density, momentum, and en-
X ergy can be expanded in terms of Hermite coefficients, giv-
[n/2] (x)"—2m ing these coefficients a more elementary character as the ba-
=n! —_ym_—_- 1 sis moments, spanning the space of physical moments. The
nt2 (-1) : (o : ) SPATINS . .
m=0 m!2™(n—2m)! particle density distributiop®(q,t), particle-current density

distribution J(q,t), average kinetic energy density distribu-
The Orthogonality of the relevant Hermite pOlynomials iStion W(q,t), and energy density f|u§@2p/2m*2 , are given
expressed by [*_ e **He,(x)He,(x)dx=y2mn! Smn- by pY(a,t)=NcfE(a,t),  I(q,t) =N KkT/m*f{(q,t),
In what follows, let us take the dimensionless variableW(q,t)=(N/2)kT{f{(q,t)+2f5(q,t)}, and (p2p/2m*?)
x=&=p/m*kT, and define the momentum basis states=(N./2)ykT/m*3kT{f}(q,t) +2f%(q,t)}, respectively.
Hm(p) as He,(X)=He,(&)=Hn(p). The orthogonality Therefore, thenth moment of the Wigner distribution func-
is expressed by ffwe"’zlzm*”ﬁn(p)ﬁm(p)dp tion with respect to the momentum variable is expanded in

B e S To illustrate th heme for eliminat terms of themth- and lower-order Hermite coefficients

—New *Omn. 10 TIUSTrate the scheme for € a f¥(qg,t). This is not surprising since the Wigner distribution

ing the momentum variables in the quantum transport equa, . L . . .
unction can in principle be expanded in terms of either its

tions, let us consider the single-band Wigner transport eqUa - ents or its correlation functions
tion for a conventional resonant tunneling diode. We have Substituting the expansion dt,(p,q.t) in terms of the

tgr?\(/eetnrabnys[%c])rt equation for the Wigner distribution function Hermite polynomial in the Wigner distribution transport

equation,
9 B p 277 , 1% dJ 27Tm*kT * KT,
Efw(p,q,t)——qufw(p,q,tHFf dp’dv V(q—g) %} Y fo(q,t)e P2 KTH (p)
v\  |[(p—p")
V| g+ = fw(p’,q,t
q 2 S”_{ h U} W(p a ) p 2m*kT w —p22m* KT
:% el (2mh)? fa(a,t)e”? Hm(p)

J
+ Efw(p!q!t) (2)

collision

) ) ) ) 2w 2mm* kT

Since we are interested in quantum effects, we ignore for the  +—- E (2—h)2
m T

. fia.0) [ ap'de
moment any scattering contained in the collision term and h

consider only coupling to the Poisson equation for self- v

consistency of the potential. A differential form of B®) is V(q— 7) (p—p") i

the basis for gradient expansion theories. All these and the X oLl S Tu}e‘p' 2T (P
classical Boltzmann equations are included in the nonequi- _\/(q+ ?)

librium Green’s function equation by performing on it the

“lattice” Weyl transformation appropriate for solid-state (4)

066119-2



QUANTUM HYDRODYNAMIC EQUATIONS AND QUANTUM.. .. PHYSICAL REVIEW E 66, 066119 (2002

yiglds the.e.xact hierarchy of coupled equations for the Her- N.f5(q,t)
mite coefficients, the quantum hierarchy,

NCf\iv(qvt)
8 kT w
N 1, t)——vq[ (41 \ SNt (@) 7| Nefa(a.)
m gt| Ncf3(a,)
kT w ch\éllv(qit)
FN e Nefima(ad Nof2(a,1)
1 0 Loy 0 0 0 0
=2 &m(@NfR(a)
! V27m*kTj!l “m Eim(@NeFm(aL). L1o 0 L, 0 0 O
- 0 Ln 0 Ly 0 O
. . o o S Lz 0 L3 O
where ifj is evenmis odd and vice versa;,(q) is given by 270
the following exact expression: 0 a°Lz 0 Lz 0 Lygs
[m/2] P RLS, 0 ALY 0 Ls O
_q 2 ; -
‘fjm(Q)—S’JT \IZWm*kTm!(l)mlgo [Hej(_IW) ch‘S’(q,t)
x|V q+2—JZ—kT) ey Ncf5(a,t)
m X , (7
Ncf3(a,t)
Hem-2(y) w
><||2|n;n—_2|)l y=omE kT [ (6) Nefa(a.t)
12 (m=21)! y=0 Nf2(a,0

where inHe;(—i4d/dy) the variable argument is replaced by

the differential operator. These are explicitly written here upwhere the matrix elements in powersfare quantum cor-
to the fifth order equation, incorporating th€' quantum  rections which go to zero has=0. The matrix elements are
correction, as defined as follows:

d w KT

AN (@0 = =Y\ N, ®
J w KT w kT w
S Nef¥(a,0 =~ V1 2 _m*N°f2(q'”+ —NfE(a,0)

1
Nf"”qt) l \/ Nf(qt)+\/ Nqut)]
+ ﬁ) )} —=N.fY(q,t (10
g Ve g:qu—kT (a.b),

iNfW( t)=— 4\/kTN fy(q,t +\/kTN f¥(q,t H( ﬁﬂ } ! N.fY(q,t

ot c'3 q.0)= q m* (q ) m* (q ) 24 J (f) §=q(\/WF)3 c O(q: )
+ —i)]v )} —1 N.f5(q,t 11
é,g (g y=o /—m*k_l_ C Z(q’ )' ( )
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a B kT kT ﬁz(a)3 1 .
SiNefa(a,)=—-V, 5\/Fch5(q,t)+ \/Echs(q,t) LT [V(&)] §=q(Jm*——kT)3NCfl(q't)

—+

5”[ V(é)]

1
——Nf¥q,t),
g:q(m) 3(q )

(12

W \ / w A / W (9 ° 1 w

h

4_8{( jrf) (fL q(J*—kP

where V(§) is the self-consistent potential. The following

(g.t)—

FriM N (a,1),

2

Jg\3 1
—| Vv N fY¥
12[( ﬁ%) (g)L_q(\/m*kT)S of2(a1)

(13

The momentum variables were eliminated at the cost of

equation corresponds to the equation for the second momerititroducing the indices for the Hermite polynomials, i.e.,

kT[N f¥(q,t) + 2N F¥(q,1)]

kT W KT W
Ne\/ —3KT(q,) + 2N, \/ —3kTf4(qt)
m m
KT
-\ Nef(a,0). (14)

:—Vq

+2

g)V(E)

We have thus reduced the integro-differential Wigner trans-
port equation to an exact differential equation involving only
spatial variables. This is the domain of computational fluid
dynamics(CFD), where several already well-established ef-

ficient computational techniques can be employ#,11]

(although the numerical handling of higher derivatives is
mostly an uncharted domain even in turbulence CFD simu-

lations.

We should point out that, to any order ", the
guantum-hierarchy equations can also be obtained using th

differential form of Eq.(2) in phase space, namely,

J P
Efw(p!qi)z - qufw(p,q,t)

[

2l

2n ( 1)n aZnJrl

(2n+1)! (;q2n+1v(c“

2n+1
Xwa(p,q,t), (15
by using the identities pHy(p)=Vm*KT[H . 1(p)
+mHp_1(p)], (919p)Hm(P) = mHp-1(p)/ ymM*KT,

coupled with integration by parts. However, E(s). and (6)
are exact, compact, and elegant.

f}”(q,t). The extension to 3D, although tedious, is straight-
forward by using the product of Hermite polynomials as ba-
sis functions, namely,

fw(ﬁ.d,t>=|§n £V n(a,0)e P PTG (p), (16)

where the 3D basis function is g|,m,n(5)

=H|(px)ﬁm(py)i:|n(pz). Note that anisotropy in the effec-
tive massm* and temperature parameft€rcan be incorpo-
rated in the above 3D expansion if needed. The technique is
similar to the method of moments for solving the classical
Boltzmann equation.

We have given a mathematical recipe for the quantum
distribution transport version, which is exact. The first ap-
proximation occurs when we impose closure on the hierar-

chy of “moment equations,” which is also a hierarchy/of
quantum corrections, by using only a finite number of indi-
ces. An ideal way to close the hierarchy is to invoke a more
eqorous procedure for decoupling the higher-order moments
SO as to bestow their quantum corrections, including nonlo-
cality, on the lower-order moment equations under consider-
ation. We will discuss this procedure in more detail later.

About 100 discrete points is a typical discretization of the
momentum variables. If we truncate to two or five indices,
this gives a factor of 50 or 20 reduction in the degrees of
freedom associated with the momentum variables. The cor-
responding matrix or problem size is thus reduced by a factor
of 2500 or 400. Further reduction in spatial variables by a
factor of 10 is possible by using a multiquadric methad],
which will cause a total reduction in problem size by at least
a factor of 40 000, i.e., four orders of magnitude. Thus for 3D
quantum transport problems, there is a potential to reduce the
size of the problems by several orders of magnitude, perhaps
by a factor of more than & We hope to report our efforts
on the multiquadric method, applied to E@) directly, in
future communications.
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The form of the classical Boltzmann equation under Her-steady-state solution of Eq9), provided that|f%(q,t)]
mite polynomial expansion without collision ternisallistic ~ <f{(q,t), consistent with our numerical result. Typically,
casg and for the 1D case for comparison purposes can beyr each bias the steady-state solution takes only few seconds
readily obtained from the above results by simply taking thewo converge n a 1 GHz PC.
limit #=0. We see that the coupling of the coefficients in  We have also avoided this association by using smooth
the Boltzmann equation is “nearest neighbor,” in the spaceparrier potentials and a smooth doping profile using the
of the Hermite coefficient discrete indices, compared to thesgussian approximation; we then take the potential deriva-
quantum case, which gives a quantum correction to theve directly and also make use of the Poisson equation. The
lower-order coefficients via their coupling to the equationssmoothness of our barrier potential can be adjusted through
containing powers of:2 occurring at the third- and higher- the use of the following barrier function:
order coefficients in the quantum hierarchy. Since these co-
efficients have direct relations to the moments, we see that

quantum corrections emerge only in the equations for the Va(q)=V0 1— (2arctan(q—b)/a]/m+1)

third- and higher-order coefficients. This manner of incorpo- 5(d B 2

rating quantum correction has the virtue of incorporating

quantum coherence under all nonequilibrium situatioRisis N (—2arctaf(gq+b)/al/m+1) } 17
means that the classical semiconductor hydrodynamic equa- 2 '

tions per sedo not have any explicit quantum correction.
This should be differentiated from quantum corrections of . . ,
lower-order moments and potential, which naturally ariseVNereb determines the half width of the barriea, deter-
from the quantum correction of the transport equations of thé™Nes the smoothness and steepness of the barrier edge, and
coupled higher-order moments leading to the exact WigneV e IS the barrier height or band-edge discontinuity. At steady
distribution function. Thus, a quantum-hierarchy decouplingstate, f1(q.t), which determines the current density, be-
scheme is needed to effectively deal only with low-ordercomes constant across the device.
equations incorporating quantum coherence, at least to Figure 1 shows the simulation results for thé-i-n*
O(#?). diode, where we do not expect to find any quantum correc-
It is worth mentioning that the difficulty of numerically tion or tunneling correction to the current. For the smawth
handling higher derivatives for strongly varying potentials in Gaussian doping we used a decay distance of 20 A. Figure 2
order to capture quantum coherence and nonlocality may aghows the result for a single-barrier diode, constructed from
tually drive researchers to more serious research in findinghe n“-i-n™ diode of Fig. 1 by placing a barrier in the in-
alternative and efficient ways to numerically implementtrinsici region(zero doping in the simulationEquation(17)
quantum distribution function transport equations. This is in-was used to construct the barrier potential with the following
deed foreseeable when addressing ultrafast and highly noparameters: barrier halfwidth=15 A, barrier decay length
linear quantum dynamics. We are also currently working ora=3 A, and barrier heigh¥p=0.36 V. In Fig. 3, the reso-
employing the multiquadric method to implement Eg) nant tunneling diodéRTD) structure simulated has the same
numerically with a reduced number of degrees of freedondevice parameters as the RTD used by Buot and Jdi$ém
[12]. their numerical simulation of the exact Wigner distribution
transport equation, Eq2). Thus for the RTD simulated we
employ abrupt doping through a Gaussian decay length of
103 A, and an abrupt barrier potential withi=0.1 A in
Eqg. (17). We used a fully implicit time steepening scheme
We present some numerical results obtained from our nuWhiCh simultaneously includes the Poisson equation together
merical imp|ementati0n of the Coup|ed “bare” QHD or with the finite-volume discretization method. The even-
quantum-hierarchy equations, E@8), together with the ap- indexed Hermite coefficients, e.dy and 3, are defined
propriate boundary conditions. These equations are coupleglithin the volume center, whereas the odd-indexed coeffi-
to the Poisson equation for self-consistency in the potentiakients, e.g.f} andfj, are defined at the volume faces for
Our purpose here is simply to examine the complexity of thenumerical stability. Note that] and f3 are related to the
numerical simulation of the quantum correction to oréiér  particle current and heat flux. Steady-state solutions were
in Egs.(8)—(13). For simplicity, we also tredl as uniform in  obtained within a few seconds, since in the fully implicit
the crystal lattice; thudN, drops out from these equations. method the time step can be made 100 ps to obtain the steady
We will only present the results obtained by truncating Eqgsstate.
(7) to the third-order moment equation where the quantum For the double-barrier structure our calculations shows
correction first appear. We made calculations for transporthat quantum coherence or resonant tunneling is not captured
across onn"-i-n* diode and single-barrier and double- to order#? by the coupled “bare” QHD equations consid-
barrier structures. We only calculate for the steady-state corered. In almost all diode structures considered, the currents
dition, whereby we can associate the third derivative of theare almost identical with those obtained by setting0. We
strongly varying barrier potential with a derivative of conclude that to obtain coherence the equations for the
smoother density functions, namely, —/9)3V(q) higher-order moments, which give the nonlocality and off-
=kT(a/99)°In{f{(q,t) +2f%(q,t)}, consistent with the diagonal long-range correlations in real space needed for tun-

III. NUMERICAL RESULTS FOR THE QUANTUM
HIERARCHY
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FIG. 1. (a) Simulatedn™-i-n* diode at zero bias, showing the
values off}), Np/N., and potentiaV. N, is the doping density
andN_. is defined in the text; hendgp /N, is the “doping value” of
f'. (b) n*-i-n™ diode atV;,s=0.04 V showing the relative values FIG. 2. (@ Single-barrier diode ai/,;,s=0.0 V, showing
of f§', Np/Ng, ¥, f¥, andf¥. The potential is not shown. The Np/N., fy, and the potential(b) Vy,;,s=0.3 V. (c) Magnified
current value calculated correspondingftbis 2.62< 10° Alcm?., values offy, f{', 3, andf} for Vyi.s=0.3 V. The actual value of
(c) Energy density distributioproportional to €{+2f%)] at the current simulated from the constant valug'pis 2600 A/cn?.

Vbias:0-04 V.

The solid line is the potential.
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IV. TRUNCATION-DECOUPLING SCHEME TO ORDER  #2

Currently, ad hocprocedures for incorporating quantum
effects fall into two general classes, naméd), construction
of an effective potentidl3], and(b) construction of the quan-
tum hydrodynamic equations using an expansion of the
Wigner distribution function in powers df?, based on the
small-parameter perturbation theory described by Wigner
seven decades agé]. Since the potential is modified di-
rectly in (a), clearly there will be differences in the calcu-
lated currents with and without quantum corrections. How-
ever, it is not clear that this type of renormalization captures
the essential nonlocality for tunneling, and especially the co-

herence in double-barrier structures. Our preliminary inves-
tigation suggests that it does not capture coherence and reso-
nant tunneling. In view of this, it seems uncertain whether
the difference in the calculated current with and without
quantum correction irta) is due entirely to a quantum tun-
neling process. On the other hand, since it is the Wigner
distribution function that is approximated i), it seems
more likely that the essential nonlocality and off-diagonal
long-range correlation in real space is captured in the result-
ing QHD equations. Although it is doubtful if théh) ap-
proach can capture truly time-dependent or fast quantum
transport processes, it should be useful enough to simulate
semiconductor devices. In what follows, we will propose a
self-consistent unification of th@) and (b) approaches.

. The approach used by Wigngs] has in fact been gener-
alized by one of the present authdfsA.B.) three decades
ago[13,14. The derivation is not based on perturbation of a

. small parametef5,15|, but on the lattice Weyl-Wigner for-
malism for solid-state physidd3]. We summarize here the

=Nt
0 /'-' l_'L\

0 100 600

8 T T T T

1N

ARBITRARY UNITS

it underlying philosophy of the lattice Weyl-Wigner derivation.
-2 : ' : ' : The fundamental starting point is the formula derived by
0 100 200 300 400 00 600 =
POSITION (A) ° Buot [13] for the expansion in powers @ of TrAgy, ex

pressed in lattice phase-space representation, for any quan-
FIG. 3. (@ RTD diode atVy,.=0.0V. (b) RTD diode at tum operatorAp, . Inn part!cular, for any solid-state Hamil-
Vpias= 0.03 V, showing the relative values & , f7', 5, andfy . tonian operator, TH" is given by
The actual value of the current simulated from the constant value of
f} is 3.28< 10* A/em?. The solid line is the double-barrier poten-
tial across the device.

TrH"=(N%%) " Tryang

.S " El (a(n PICIPT() a(k>)
Co§ = —= T T T T
neling and coherence, are very important. Clearly, the trun- p.q 2 i,_k<:k1 p dq9 dJdq dIp
cation to the third-order coefficients was not able to capture )

all the #2 corrections since the higher-order equations also 1 W2 @ s = Y
contain#? corrections. We note that, for the ballistic case XS H (P, a)H ™ (p.a) - - - H™(p,g)
considered, tunneling and coherence cannot be separated; the

so-called sequential tunneling across double-barrier struc- +HO(p,)H" V(p,q)---HD(p,q)], (18

tures strictly occurs only if there is no inelastic scattering

within the barriers but scattering occurs within the quantum
well. In view of the difficulty in treating higher-order deriva- hereH(p q) s the lattice Wey transform df{. H(p q) Is

tives, it has become imperative that one accounts for th(§"’nply the classical expression f in most cases of smgle-
quantum corrections of the higher-order moments by renorband dynamics. However, for multiband cases ed¢h,q)
malizing the lower-order moment equations through somds @ matrix in the band indices; they do not commute, and
sort of renormalization procedure. What we have also acI'bana MUst also be taken in Eq18). One may, however,
complished here is a demonstration of the usefulness of thdecouple the bands, if possible, before applying the formula,
Hermite polynomial expansion technique with the sameds was done for a relativistic Dirac electron gas and the
complexity inherent in numerically simulating hydrodynamic k- p model of bismuth-antimony alloyd 3,14]. This formula
transport equations. has been shown to have a wide range of applications in solid-
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state problems. This is connected with the fact that any func- P)en(@) =N /m*kTfP(q)=u, (22)
tion of H, such as the free enerdy( ), whereX=H—¢g Peo ¢ !

ande is the Fermi potential, can be expressed as a powewhere f£°(q) is the first-order Hermite coefficient of the
series inkC through the use of the Laplace transforrF¢#C)  shifted Fermi-Dirac distribution. Although the treatment in

[16]: 3D is straightforward, we will consider 1D here to simplify

the discussion. We also expand the “1D” Fermi-Dirac distri-

F(K)=—KTIn(1+e T bution as
fﬁix sKg 27m* kT
= _ 2 * i~
o PO fER(p,a )= ——— > fiP(q,)e P2 KTH (p).
(2mh)° m
n (23

S
et=2> K" (19

~ With the essential quantum effects to ordéralready taken

care of at equilibrium, we can solve for the nonequilibrium

Hence the problem of taking the tracefofK’) is reduced to Fermi-Dirac distributio_n_ function by simp_ly using it; first
the problem of taking TK.". Let A" be the total number of few r_nomgnts or coefficients of thg Hermite polynomial ex-
particles in the system. Then we have pansion, i.e., we may employ the first two or three equations
for the Hermite coefficients or of the moments. In capturing
P . quantum effects, we can assume that the last two terms in
N=— ETr F(K)=(NA3) " Tryang 2 fu(p,q), Eq. (21) are negligible since these do not contribute at very
F

p.q (20 low temperatures, and writk,(p,d,t) in one dimension as

.. fP(pay=f"PK(p,qt)
which defines the Wigner distribution functiof,(p,q). v
Thus an expansion of T¢" in powers of#? will be re- K2 ) 92 .
flected, through Eq(19), in a similar expansion for the ———VV(q) — P (K(p,a.1)

Wigner distribution function. 8m ek
In Appendix A, we expand the cosine function in E&8) 2 Pe
to order#?, and obtain the expression of the Wigner distri- + |VV(q)|2—f1D(K(p,q,t))
bution to order#? for any Hamiltonian, through Eq(19). 24m* 58§
The result is
? 2 (93 2le K t
52 +24m*2V V(q) asg(p w)“f=(K(p,q,1)),

fu(P,0)=f(K(p, ) — ——V2V(q)f"(K(p,q))
8m

(24)
2 e 2 2 where p—u)? in the last term is consistent with the fact that
- 2 am* [VV(a)[*F" (K (p,a)) the shifted Fermi-Dirac distribution corresponds to a shift in
the band-edge minimum iK(p,q,t) by virtue of a drifting
h L. L electron gas. We make use of the following relations to
N M*2p~VVV(q)-pf”’(K(p,q)) evaluate the Hermite polynomial expansion of the last term
of Eq. (24):
h? . [F(K)\"
+ IVV(q)IZ(—( )> p? KT N
8m* K m*sz(p)=F[Hm+z(p)+(2m+1)Hm(p)
ﬁZ R . F(K) " ~
+ 8m*2p-VVV(q)'p(—K ) : (21 +m(m-1)Hp_2(p)],
. 2pu. 2u KT - ~
where f(K(p,q)) is the Fermi-Dirac distribution function, — —>Hm(P)=——\/ —IHm+1(p) + MHy_1(p)],
and the differentiation is with respect to the scalar function m m m 25
K(p.q).
The task for the device quantum transport equation is to U2 2

modify the equilibrium Fermi-Dirac distribution function ap-
pearing in Eq(21) to a self-consistent nonequilibrium value. m
As a first approximation, we can assume a shifted Fermi- o )
Dirac distribution function corresponding to a shift in the T© 5|£npllfy the equaﬂogs that2 foIIovgs, I2et us dezznote
band-edge minimum in the parabolic band model, with thdhe 7° factors as A=(A"/m*)V*V(q)dsoeg, B=(h"/
shifted momentum origin given in 1D by m*)|VV(q)|?6% ded, and C=(A2/m*)V2V(q)d®ded. A

*Z’Hm(p)zmﬁm(p)-
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and B are dimensionless, where&has the dimension of R

inverse energy. The Wigner distribution function Hermite co- 0(q,0)= { 1- 8 +
efficients are related to the Fermi-Dirac distribution function

Hermite coefficients, through E¢24), by the following:

CkT

22t oa f6°2(q,t), (28

and therefore in the nondegenerate limit we have

A B C
w =1— =+ — i 2 - A B CKT
fn(g,t)=|1 g " 24+(2m+1) o1+ pym— u NG =1- =+ —+ Ae~ (VKD (29)
8 24 24
FD CkT FD
Xfn (D + 5 [fm-2(Q, D) +(M+2)(m+1) where A=2[(27m*kT)%?%(274)%]e*r’T. Note that the
last term, notably absent in existing QHD formulatidese,
C KT e.g., Ref[5]) is due to the presence of the “random” vari-
><f51'12(q,t)]—1—2 —u[fi2a(a.h) able, i.e., the {—u)® term in Eq.(24), which gives the
m “fluctuation” or thermal energk T upon integration over the
+(m+1)fF2 (q,0)] (26) momentum variable. We also have to orde
m+1 4 ]
Note that the Wigner distribution Hermite coefficients /k_TfW * e 1_ﬁ+E+CkaFD .
fY(qg,t), are expanded as a linear combination of the Fermi- m* 1(a.0)= 8 24 24| g.t)

Dirac distribution Hermite coefficients, namelfj;D_z(q,t),

fia(a,t), fE(a.t), fi2 1(a,t), andfi2 »(a,t). Thisis due o Y, C Qneatinux 0
to the presence of the last term in Eg4). m* 12 p(a.t) |
V. DERIVATION OF THE QUANTUM HYDRODYNAMIC Thus the quantum-corrected velocity is defined by
TRANSPORT EQUATIONS
As we have indicated before, as a first simplification we u® u  C Qpeat flux
_chi Ny . . . v=—= —+ — —|. (31)
can assume a momentum-shifted Fermi-Dirac distribution m* m* 12 p(q,t)

function. We will later consider nondegenerate semiconduc-
tors to make contact with existing formulations of QHD in __ o
the literature. We use the Hermite polynomial expansion ofl NiS means that the quantum-corrected velocity is higher for
the Fermi-Dirac distributiorf:2(p,d.t) of Eq. (23). We can non-Maxwellian classical distribution, i.e., in the presence of
readily identify the first three Hermite coefficients of the gﬁz{nftj;' The Wigner distribution particle current is thus
Fermi-Dirac distribution as followsN.f5P(q,t)=p(q,t),

2m*kT)p(q,t), and Ncf5P(q,t) ={2/31Vm* /KT Queat fiux/
KT+1/3!p(q,t)ud(q,t)/ (Vym*kT)3. Expressing all coeffi-
cients in terms of the zero-order coefficieiﬁD(q,t), we

NP (a,t) = (u/m*kT)p(q,t), N f5°(q,t) = (u?/ -
J(q,t>:Nc\/Ff¥<&,t)

w

u
have —n(a,0) —. 32
m*
2(0,0) = ———=152(a,)
LAY kT O To order#?, we can writen(q,t)(C/12)Qneat fiux £(a,1)
=(C/12)Qpeat flux- Thus, the continuity equation is
2
f5P(q,t) = f5°(q,t), 2 ] n(g,t)u
2 (@D="—0 <o (@Y (27 2 n@0=-v (q*)
2 m* Qheat flux h? > 1
FD Y _xheat Tlux.FD _ 2
f3 (q7t) {3! kT kTp(q,t) fO (q,t) 1Zn*v v V(Q)(kT)3Qheatflux '
3 (ymrkT)® © )

This differs from that given in existing QHD formulations by

) o ) ] _ the absence of the last term of E83) in Ref.[5]. Equation
Therefore the Wigner distribution function Hermite coeffi- (33) amounts to the replacement vfin Ref.[5] by u", the

cients can now be determined from E@6). We have for  quantum-corrected momentum, thereby giving the usual con-
fo(q,t) tinuity equation
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J n(g,t)u? 4

—n(g,t)= —VL:—Vn(q,t)v. (34) St n(a,tv]+ Vol m*n(q,v?~42P;]

ot m*

_ J
For the second-order coefficient, we have L %V(Q) n(g.t) = Vo[n(a,HkT]
a *
N D, KT, C o +pmn(a.to |, (37)
20D =1-g+ 5+ H+24m*u c
where
2 CKkT 3C
% ng q,t)+ + 2= Qheat flux u n(q,t)
2m*kT 48 24 p(q,t)(kT) P,=————V3/(q)
24m* kT
o 24m* Uzl ng((i,t). (39 VZV(C]) Qheat quxv
12(kT)® p(Q,t)
. . *

where we made usit?f»the expression ffE)‘?(q,F) in terms N V2V(q)o?+ V2V(Q)o
of the moments anél,°(q,t) derived in Appendix C. Taking 12(kT)? 24(kT)3
the velocity moment of the Wigner distribution function
equation gives the current equation xn(q.t). (38)

We should point out that Gardngs] missed out thé? terms
KT involving the quantum-corrected velocity in the left-hand
—Nf¥(q,t) side of the current equation given above. These are inher-
m* ently dynamical and nonequilibrium quantum corrections.
We believe these represent an important quantum nonlinear-
w w ity needed to preserve some amount of coheren€(itr).
=—Vq Zﬁchz(Q-tH Echo(q't) Clearly, to obtain the highly nonlinear current-voltage rela-
tionship in resonant tunneling structures one needs highly
1 P nonlinear terms as given in EB7). These quantum correc-
+ _{ ( — _) V(q)}ch‘g(q,t). (36) tions can also be interpreted as quantum corrections to the
m* aq “pallistic” diffusion coefficient and the potential as

d
ot

Jd Jd
Note that, from Eq(9), this looks like multiplying both sides Em* n(g,thv=1| — E) Veff] n(d,t) = DetVgn(q,t)

of Eq. (9) by VkT/m*, but with a very important difference,

namely, the facton’kT/m* is inside the differentiation op- a
erator since it depends om,t). Upon substituting the rel- +ymn(@.be ], (39
evant expressions given above, we end up with the quantum- ¢
corrected current equation to ordef as where
ﬁzn(ﬁ.t) hz Qheat flux hz ﬁzm*
D, =/ kT+m*v2+ ———V2V(q)+ vav v VaV(q)v?+ VaV(q)v?|, (40
ert(Q) A KT (@) 12(KT)? ) o(a.D) 12(KT)? )] TGE )] (40)
fi%n(d,t) & - Qneatiux  H?
V, =| V(q)+kT+m*v?+ ———V2V(q)+ 2y V2V(q)v?
erf(d)=| V(Q) Ly ) 12(KT)? Q) @t T Lok (Qu
h2m*
+ VaVv(q)vt|. 41
pakm " V(@ (4D

The evolution equation for the energy is obtained from a combination of the equatifi(fpt) +2f3(q,t). First, let us
examine the expression for the total energy, namely,
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N
W(a,t) =5 kT[f5(q,t)+2f3(q,0)]

N A B CKT A B CKT uszD
== 1_§+ﬂ+_ 1__+_+_F°(q't)

o (@ UKTH 1= g+ 52+ =7

2 24

2C(kT)? g Qneat flux | 2CKT 24 c u

+ u u —_—
48 24 p(q,t) 24m* 24m* m*

]fEE’(q,t)). (42)

To orderA?, we have
2Cm* Qpeat filux

uW 2=U2+ u 43
() 2 pab) “3
Then we end up with
kT u"? h? 2 u"? u"
W(g,t)=| —+—+ V2v(q)| 1+ Qneat flux w + n(g,t). (44)
2 2m*  48m*kT (kT)?p(q,t) m*kT m*2(kT)?

Note that the leading quantum correction to the total energy P KT
is similar to that given by Wigner several decades ago; it EW(q,t)= —Vq[ 3 —*kTNCf‘é"(q,t)
differs by a factor of3 since we have also included the m
contribution of nonequilibrium-induced higher-order mo- 3 kT
ments, specifically the contribution 6§° (see Appendix & +=\/—kT ch‘f(q,t)}
. . . . . _ 2 m*
which is made available by using the spectral resolution us
ing the Hermite polynomials. Moreover, even the average

d 1
momentumu® is also a quantum-corrected momentum by +|| = (9—) V(g)} TkTNCf‘{’(q,t).
virtue of the dynamical corrections. All the rest are dynami- ¢ g=q VM*KT
cal and nonequilibrium quantum corrections not present in (45)
Ref.[5].

] ] Upon substituting the Wigner Hermite coefficients in terms
From Eq.(14), we have the following expression: of the classical moment&\ppendixes B—I), we obtain

2

d he n(q,t) 23 m*v?
—W(q,t)=—Vy) W(q,t)v+KkTn(q,t)v — —VV(q)
at m¥*

16kT v+ 24(kT)3Qheat fluxT

1 [KT 1
m Fn(q.t)_ WQheat flux

17
- %) V(a)n(q.t)v, (46)

7n(q,t) m*v?’+ 3n(qg,t) m*%°
24(kT)? 2 24kT)® 2

ﬁZ
+—V2V(q)
m

2

+ e —
24m* (kT)3

|VV(Q)|21 Qheat flux] +

which can be written as

J J
EW(q,tHVq[W(q,t)v(q,t)—thw(q,t)v(q.t)]=( - Ev(q)) n(g,t)v(q,t) = VgkTn(g,t)v(q,t)

J
_VQOeathw(Qat)'f' Ew(q,t)) (47)

C
where

066119-11



F. A. BUOT, Y. JIANG, AND A. |. FEDOSEYEV PHYSICAL REVIEW E566, 066119 (2002

~n(q,t) vAv(Q) ¢ 1 Vv + 23 o m*v+ 7n(q,t) m*v?  3n(q,t) m*%*
ekt T e ST A e T2 T ogkm2 2 akT)® 2
1 - 1 JKT/m* - 1
T w2 4 Nxim _ - . R 2 =
o VNV 75T n(q.t) 2kT)2 0 Qheat flux 24m*(kT)3|VV(q)| 5 Qneat flux] : (48)

We may also cast the energy conservation equation in terms of heat generation and heat loss on the right-hand side as follows:

d d d
Ew(qat):< - %V\é\?f(q)) n(qyt)U(q,t)_ D\e/\équn(qit)v(q!t)_VQOeat fIU)&qit)_F Ew(qit)> ’ (49)
Cc
where
3KT m*v2 2 2 *UZ m*Zv4
V¥(q)=V(q)+ ——+ +———V2V(q)+ V2V +—
kT
72 md 3 mRs| #2 m* 2
——VAV(a) ;5 - + v2v(q) + | 7v(q [ Snea
m* 24kT)? 2 24kT)® 2 48m* kT v 24m* (KT) nv
2 #2 2 2312 m* p2
_ VZV(Q) Qheat flux+ V2V(q)m*v Qheat flux VZV(Q) v° Qneat flux
4m* (kT)? nu 48m* (kT)® nu 24m* (kT)3 2 nu
(50)
|
and electron pressure and to the effective potential. From the
W W nonequilibrium quantum-mechanical point of view, Egs.
Deti=Veri(d) —V(Q). (51 (34), (39), and(49) are the physically more meaningful ver-

) ) sion of the QHD equations.
For the heat flux, we substitu®@eca¢ = — «VT in all the

formulas above, wher& is the thermal conductivity. The
validity of this heat-flux formula and the Wiedemann-Franz VI- THE QUANTUM DRIFT-DIFFUSION EQUATIONS
law in the quantum domain has recently been discussed in

: ' . I here the t ture i if di ilib-
Ref. [17]. We believe that physically meaningful quantum N cases Where e ‘emperature IS unirorm and i equit

rium with the crystal lattice, we only need the continuity or
X N : %article conservation equation and the current equation.
to the effective potentiaVe(q), in the sense of BohM  Tpege are the workhorse equations of semiconductor device
Hamilton-Jacobi-particle dynamics, andddy for the quan-  physics. Even if the temperature varies, it maybe desirable to
tum diffusion, in the sense of the stochastic formulation oftryncate the hierarchy to these two equations only if the tem-
quantum mechanidsi8], as given above. perature variation is given, otherwise one has to solve the
Summarizing, we have the QHD equations E3f), Eqs.  QHD equations to obtain the variation of temperature
(37),(38), and Eqs(47),(48) cast in the form given by Gard- T(q t). We will treat the two cases, uniforii and given
ner [5] for comparison. These are the forms of the QHDyariapleT(q), in what follows. The quantum drift-difusion
equations given in the literatuf®]. The leading correction  equations follow from these two equations. Careful attention
of the energy conservation equation differs from that giverys be paid to the relaxation times in deriving the semicon-
by Gardner(5] in sign and is; in magnitude. However, the qyctor QDD equations from the continuity equation and cur-
corresponding leading term in the effective potential in Eqrent equation given above. We note that their relaxation
(50 is the same as the one used &. The dynamical terms  times have a very large discrepancy if one considers the re-

within the curly brackets in Eq48) were entirely missed in  |axation timer, for the particle density to be infinite, i.e.,
[5]. The leading-term discrepancy is attributed to the contri-

bution of higher-order moments or Hermite coefficients
which are not accounted for in the strictly equilibrium
Wigner-function-based quantum corrections that characterize
the procedure if5]. Just as we did for the current equation, where the particle-density relaxation timg=-c and 7, is
these extra quantum corrections can also be similarly interthe finite (say 10 '* s) momentum relaxation time. Rewrit-
preted as the quantum correction to the work done by théng the particle conservation equation as

T4 Ty (52
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d n—n J=euetin+eDgtVy(N)+ uVy(m*nv?), 61
O n=—vno- 0 53 MEetf etfVq(N) + uVg(m*nov?) (62)
7d where
and setting the collision terfn(d/dt)m* nv .= —m* nv/ 7, 5 5
for the current equation, we have e€...=V1iV(q)+ V2V(q)+ V2V(q)v2
eff (a) ar KT (a) 12kT)2 (@)
J
E(m*nv)%—Vq[m*nuz—thp] 5 2m
ey 3V2V(q)v4], (62
( v )) Tynkn- T (59 e
=|-—= n—Vy(nkT)—
ﬁq q a Tm n 2 ﬁZ
o Derr=— | kT+ V2V(q) + VAV(q)v?
Because the curremtv relaxes infinitely fast compared to € 24m* kT 12(kT)?2

Ty, introduces an elementary time scale to the problem. It is
a very good approximation to assume that the current has 2 4

already relaxed while following the current continuity equa- + 24(kT)3V V(a)o™. (63)

tion, and hence we can se¥/¢t)(m*nv)=0. This approxi-

mation is also good even if there are generation and reconNote that the presence of the last term in the current equation
bination terms in the particle conservation equation, as longomes from the contribution of the second-order or kinetic

as the generation and recombination rates are much small i i we

than the momentum relaxation rate. We have Ehergy moment in the hierarchy, namelf(d.t) or

2k

(H,(p))p"(q,t). This is not a quantum correction but a

higher-order moment correction and is partly responsible for
Tm d Tm . . . g -

nv = _( - —V(q)) n—V,— (nkT) the classical velocity-overshoot mechanism in GaAs devices.
m* aq m* We can also absorb this term in the effective potential and

diffusion coefficient to obtain the third version of the QDD

- :
—Vq—m[m* nvz—ﬁsz]. (55) equations as
m* 3
—n=-Vnvo, 64
First we treat the unifornT case. Then we obtain at v (64
J=euén+eDVy(n)+uV[m*nv?—#2P,],  (56) J=euZein+eDerVy(n), (65)
where i is the electron mobilityD is the electron diffusion where
constant, andl=—env is opposite to the direction of the
electron velocityy. We immediately get the first version of ~ . 2 2 )
the QDD equations as e&er1=V| V(Q) +m* v+ am kTV V(q)
J 2 2k
"= Vv, (57 + V2V(q)u2+ V2V(q)ot!,
12(kT)?2 24(kT)3
J=euén+eDVy(n)+uVm*nv?—#2P,], (58 (66)
where “ 2
Derr=—1{ kT+m*v?+ vav
. o eff= g AT KT )]
=— VaV(q)— VaV(q)v
Py 12(kT)? (@ 42 2mr
+ 5 VAV(Q)v®+ VAV(q)v .
s, 12(kT) 24kT)3
+ VaV(g)v®|n. 59
24(KT)? (a) (59 67)

We may also take the physically meaningful point of view Note the coherent quantum correctionsélg; and Dy for
that the quantum corrections containedPipare absorbed as the QDD equations. We can express the derivatives of the
quantum corrections to the potential and diffusion constantpotentialV(q) in terms of derivatives of In. In Eq.(29), we
Then we have the second version of the QDD equationgake the logarithm of both sides of the equation to obtain
which reads
A B CkT
—V=KTInn=kTIn|1- <+ =+ ——|—kTIn A

J 8 24" 24
En— —Vno, (60) 69)
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We should point out that this approximation should only be 5 M 52 n
used in those terms containing thé quantum corrections as Defr=—=| kT+m*v.v— ———V. VkTInZ
it is based on the equilibrium Wigner distribution function. € 24m* kT
We can neglect the second term since this gives a contribu- 2 N
tion of order#* in €.t andDes. We can also neglect the — —Z(V.VkTm_)V.V
last term in derivatives o for uniform T and nondegenerate 12(kT) A
semiconductors. Thus, .
. n
V2V(q)=—KkTVZ?Inn. 69 - <V~VkTIn—) v]*t. (75
(a) (69) 24(KT)3 A [v]
We rewrite&ss; andDofs as
~ h? h?
€= V1 V(q)+m* 2_ - v2Inn— m_(vz In n)v2 VIl. COMPARISON WITH OTHER RELATED WORKS
24m A recent paper by Ankerholdt al. [19] discusses quan-
2% tum corrections to the effective potentil; and diffusion
- 5(V2In n)v“] , (70)  coefficientD ¢ of a quantum Smoluchowski equation in the
24(kT) context of the path integral technique. The barrier system is
52 2 considered to be coupled to the heat bath in the strong fric-
Be”:ﬁ KT+m*p2— V2Inn— (VZInn)v? tion limit at low temperatures. They found that at moderate
e 24m* 1XT temperatures, where the thermal fluctuations mask the quan-
) tum fluctuations, the influence of the quantum correction in
_ hom* V2| 4 71 the effective potential prevails, effectively lowering the bar-
24(kT)2( nmu™. (71) rier height. What is more intriguing in their work is that at

low temperatures strong effects of quantum fluctuations in

Thus, quantum corrections to the semiconductor driftthe diffusion coefficient are revealed.
diffusion equation result in explicitly renormalizing the total ~ Our drift-diffusion equations, which correspond to their
drift force and the “diffusion constant.” These are nonequi- Smoluchowski equation, agree with their result in that the
librium Concepts appropriate to transport prob|ems_ Th|dead|ng corrections to the effective potential and diffusion
leads us to the important concept of quantum diffusion corcoefficient involve the second derivative of the potential. Our
rection, not fully appreciated in previous formulations fo- results differ in the measurement scale of the quantum cor-
cused on Stationary Concepts of energy and stress tenséﬂction used. Ankerholdt al. use the quantum fluctuation in
Thus, aside from the quantum potential correction, we havéhe position coordinates, namelig®) — (g%, which is a
also explicitly taken into account the quantum diffusion cor-function of#i and damping constant, but also goes to zero in
rection. These equations together with the Poisson equatidhe limit asi=0. The corresponding classical problem to
for the potentiakb, constitute the QDD equation that is ex- the one considered by Ankerho#d al. is the classic Kram-
pected to serve as a fast quantum-transport solver for emer§!’s problem of Brownian motion over a potential barrier

ing nanotransistors and heterojunction devices. These resultd0l, whereas we are interested in the motion of Fermi-Dirac
can read"y be extended to 3D. In 3D, inc|uding a gi\/enpartldes in semiconductor heterOJunCtlon nanostructures un-

variationT(q), we write the QDD equations as der an arbitrary bias. Since the typical solution for the sta-
p tionary current of the drift-diffusion equations depends expo-
—n=-V-nv, (72)  hentially on the potential and temperature, it is also expected
at that the quantum-corrected stationary current will depend ex-

ponentially on the effective potential and quantum fluctua-
tions. This would also mean that the escape rate over the
barrier will be strongly dependent on the quantum fluctua-
tions, as was indeed found by Ankerha@tal. The effect of
- n friction in our drift-diffusion equations is incorporated in the
eEeff:V[V(q)+kT+ m*v-v— WV‘VKTMZ mobility parameter ., and depends arbitrarily on the
strength of the scattering or friction. This parameter arises

J= —enVZGMEeffn+ebefan. (73)

Here we define
2

2 n from the relaxation time or mean free path approximation to
(V . VkTIn—)v-v the collision term in Eq(2), which can be rigorously derived

12(kT)? A from the nonequilibrium quantum field theoretical Green’s
P function technique for Fermi-Dirac particlg8,8]. Indeed, in
_ A7m (V-VkTInE)|v|4 (74) the absence of quantum corrections near equilibrium, our
24(kT)3 A ' effective diffusion coefficient satisfies the Einstein relation.

Several other papers, although directly related to the
where we included T in the potential correction to cover the present work, do not discuss the quantum correction to the
case of a given variation of(q). The diffusion coefficient diffusion coefficient at all but instead focus on the calcula-
now reads tion of the smooth effective classical potential in QHD by

066119-14



QUANTUM HYDRODYNAMIC EQUATIONS AND QUANTUM . .. PHYSICAL REVIEW E 66, 066119 (2002

employing the path integral technique of Feynman andanges, as well as incorporating all important quantum non-
Kleinert[21] using a Boltzmann distribution. Gardner’s later linearities in the form of nonequilibrium quantum corrections
work and that of other§22] exemplify this type of effort. not considered before. This quantum nonlinearity is deemed
From our viewpoint, there are really two separate issues tfecessary to properly approximate the highly nonlinear reso-
be resolved; the first can be characterized as numerical, af@nt tunneling -V characteristic of RTS's.
the second issue is fundamental and physical. These issues
are(g) the treatment of the abrupt potential in heterojum_:tion VIIl. CONCLUDING REMARKS
semiconductor devices, artd) the correct quantum nonlin-
earity capable of approximating quantum coherence in reso- The analytical results presented in this paper show that
nant tunneling structuregRTS’S). The first arises because of the quantum corrections to the Wigner distribution transport
the presence of higher-order derivatives of the classical peequations involve dynamical and nonequilibrium corrections
tential occurring in the quantum corrections. We feel that thenot treated before to our knowledge. These quantum dynami-
second issue is crucial to the foundation of QHD and QDDcal corrections go to zero in the absence of current and heat
as viable tools for providing a fast quantum transport solveflux. The physically meaningful quantum transport correc-
for nanodevices. This quantum coherence is manifested, botions are the quantum corrections to the drift fofpetentia)
experimentally and through numerical simulation of E2).  and diffusion coefficients which are inherently nonequilib-
[9,23], by the highly nonlinear current-voltagé-y¥) charac-  rium quantities. This is not at all surprising since quantum
teristics of RTS's. Roughly, thieV characteristic is given by mechanics has the properties of both particles and fluctuating
I =C1VO(Vy—V)+Cy(V-V,)0(V-V,), whereg(V-V,) fields or waves. The quantum correction to the drift force or
is a step function an¥,, corresponds to the current peak or potential demonstrates the particle aspect in the sense of the
resonant current voltage. Thus, theV characteristic is Bohm Hamilton-Jacobi particle formulation of quantum me-
highly nonlinear, exhibiting a resonant peak and fast currenghanics, whereas the quantum correction to the diffusion co-
collapse after resonance, and generally showing a significafficients demonstrates the fluctuating field aspect in the
peak-to-valley ratio at low temperatures. A detailed discussense of the stochastic formulation of quantum mechanics
sion of the physics of resonant tunneling structures is givefhitiated by Nelsor{ 18] and supported by the recent work of
by Buotet al.[23]. We feel that we have given in this paper Ankerhold et al. [19]. In fact, quantum diffusion is at the
the important nonequilibrium quantum nonlinearity capableheart of the localization/delocalization theory of Anderson
of approximating the highly nonlinedrV characteristic of [24].
resonant tunneling nanodevices. In the high-temperature The “spectral” aspect of our approach lies in the use of
limit, where the Fermi-Dirac distribution goes into the Bolt- the Hermite polynomial expansion of the nonequilibrium dis-
zmann distribution, then the use of the Feynman-Kleinertribution function in phase space which allows us to establish
smooth effective classical potential would be advantageouthe exact nature of the quantum hierarchy in real space, in-
to the numerical implementation. However, there may beherent in the exact Wigner transport equation in phase space.
other ways to resolve this numerical problem other than thdhis is coupled with the use of the Buot formula forAf' to
Feynman-Kleinert smoothing procedure. obtain the equilibrium Wigner distribution function solution

In view of the use of the Boltzmann distribution in the as an expansion in powers &f. This avoids the need for a
Wigner method of expanding the Wigner distribution func- rather restrictive assumption based on a perturbative expan-
tion to O(%2), several authors restart the derivation by solv-sion in terms of a small parameter which was originally done
ing the Bloch equation for the density matrix, where theby Wigner[15]. Thus, our approach eliminates the concep-
Boltzmann distribution is assumed from the beginniag].  tual difficulty of applying the QHD and QDD equations to
In this way the connection to the Feynman-Kleinert pathstrongly varying potentials in heterojunction devices where
integral technique becomes natural, and the resulting QHIhe small parameter used by Wigner is not valid. Moreover,
equations have a smooth effective classical potential. Howthe use of the Hermite polynomial expansion enables us to
ever, since we are interested in charge carriers in semicoricroscopically examine the equations for the various mo-
ductors obeying Fermi-Dirac statistics, it is clear that thements in the decoupling procedure. It allows us to account
starting point of these formulations assumed that the temfor the contribution of higher-order moments to the solution
perature is high enough for the Fermi-Dirac distribution toof the lower-order moments.
turn into a Boltzmann distribution. It should be pointed out
that in the direct numerical simulations of E@) the Fermi-
Dirac distribution was always used for the supply of tunnel-
ing electrons, yielding results in agreement with experiments One of the author§F.A.B.) is grateful to Dr. Andrzej
[7,9]. Moreover, having a smooth effective classical potentialPrzekwas, CFDRC, and Professor Edwin Kan and Venkat
only solves the numerical issue cited above, but not necedNarayaran, Cornell University, for stimulating discussions
sarily the fundamental physical issue. and for drawing his attention to the urgent need for a fast

The method used in this paper is based on the rigorousultidimensional quantum transport solver. This work was
expansion of the free energy ©(%2) using Fermi-Dirac  performed during F.A.B.’s stay at CFDRC while on sabbati-
statistics without the need for a small parameter. Thus, weal leave from the U.S. Naval Research Laboratory. This
have given a formulation based on the Fermi-Dirac particlevork is partly funded by DARPA. He is thankful to Dr. A.
distribution from the beginning, valid for all temperature Przekwas and Dr. A. Singhal for their hospitality at CFDRC.
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APPENDIX A: EXPANSION OF WIGNER DISTRIBUTION FUNCTION TO  O(%42)

Upon expanding the cosine function®{#?) in Eq. (18), we obtain the Buot general formula for the trace of any operator
raised to any powen. Thus, Trk" is given by

p.g

TrC"=(NA®) " Trpane, {[K(p Q1" (2)

1)(n— K *K(p,q
(n— )2(n 2 KeGT 2({ (P.9) Epaq)]
apap 4qdq

[ #Kp.a) fK(ﬁﬁ))4«(n—1xn—2xn—3)_(n—lxn—ZU
paq 3q9p 6 2

2 g ~ g 2 o~ ~
X[K(ﬁ,a)]ng({a K(P.A)  IK(P.A) aK(gm] [a K(p.a)  oK(p.d) (9K(p.q)]
apap a9 aq

4999 ap ap
| PR K@) K| | *KP.A) IK(P.G) K (p,A) _%2(<n><n——1><n——2>__(n——l)(n——2>
paq aa  p dqap ap q 6 2
KE.aT3 2 K(p.Q) P°K(p,a) IK(P,Q)  dK(p,d) #*K(p.q) oK(p.a) K(p.G) 7°K(p.G) IK(P.q)
’ ap aqap aq aq apaq ap aq apap aq
IK(p,q) 7K K
B (riq) (p, q) (p.9) oY), (A1)
p 9q4q p
where{®} is a symmetrized tensor contraction, i.e.,
PR, KB, _*K(p,g) K (p.A) | #*K(p,G) P°K(P.d) 42)
apap 4qdq Iapidp;  d9;dq; dgiod;  Ipidp;

and use is made of the Einstein convention where repeated indices are summed over. In evaluating the summation as an
integral, N7%) ~'=; 5=h3[d®*pdq.

For treating the valence band transport of some semiconductors like GaNxtBearatrix nature of the valence band in
K(p,q) may have to be accounted for in evaluating ). For most systems of interest in semiconductor transport physics,

we can simplify Eq(A1) by assuming tha(p,q) is a diagonal matrix. For the case whétép,q) is diagonal in band index,
Eq. (A1) can readily be evaluated to yield

n_ 3~A43 n 1 h ? -\ 1n—2
TrC " =Trpand ™ fd pd®ai [K(p,q)]"— 5>+ [K(p,a)]" “(n—=1)(n—2)

¥Mpq>#Kmq> ﬁwﬁﬁx¥K6ﬁ> (n—1)(n—2)(n—3)

1 (ﬁ>2 L
513 [K(p,a)]

apap  9qaq gpaq  dqap 3
(?2K(p q) JK(p,q) JK(p, q) #K(p,q) K(p,q) JK(p,q) 252K(I0 q) 9K(p,q) JK(p, q)) oh4 !,
dpop  4q q gq9q  dp ap apod 49 7P
(A3)

where the double-dot product indicates tensor contraction,

.

9*K(p,q) | 9°K(p,a) _ #°K(p,q) #°K(p,q) )
apap  4qdq pidp;  99;9q;

using the Einstein convention for the repeated indices. We should point out here that in
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>
-

. eA -
K(p,@)=H(p,q)— SFZEA(p_T +V(q)—&E,

E,(p—eA/c) is the full energy-band function, bp replaced withp—eA/c in the presence of a magnetic field. The

[K(ﬁ,ﬁ)]”‘3 terms in Eq.(A3) can be reduced tﬁK(ﬁ,(ﬁ)]”‘2 terms, plus terms which are gradient with respeq5 tmd(i
in the absence of a magnetic field. In the effective-mass approximation, and in the absence of the magnetic (&8, Eq.
reduces to

1(#\°n(n—1) #*K(p,q) azK(ﬁ,@)
TrK"=Trpan d3pdqs [K “——(—) K n-2 —
= Thoan [ 0 [[ TR [ e
1 (% 2n<n—1>(a #K(p.a) KpP.Q .o, 9 PKpP.G KEa oo
57|35 "= = ——=—[K(p,q)]"
5 (2) 3 \s  opop pr: [K(p.a)] +&p pEFY pr: [K(p,a)]

1
+ —

| =

2 J K K .- J K K
) n- 1)( (P.G) IK(p, q)[K(p,q)]n,2+ (P.a) (p q)
aq pap aq 8p 9qdq

I\)

[K (5,@]”2) +0<ﬁ4)}.
(A5)
Therefore, using Eq19), it follows that the expression for the Wigner distribution functionQi¢%2) is given by Eq.(21).

APPENDIX B: DERIVATION FOR f¥(q,t) IN TERMS OF THE MOMENTS AND fSD(q,t)

We need the third-order Hermite polynomial coefficient in the equation #oitfW(q,t) which can be determined from
Eq. (26):

8

. LB, CKT
fS(Q-t): 1- 2

c c [kT
27t ar ZlfFD(q t)+—[f P(qg,t)+20fEP(q,1)]— 7 U[f P(a.t) +43°(q,0)].
(B1)

The Fermi-Dirac Hermite coefficient$(q,t) andfEP(q,t) are evaluated in Appendixes B and C, respectively. Substituting
in terms of the moments arfg"(q,t), we obtain

(2mm* kT)3/2 w A B CKkT M* Qneat flux . 1 ua(Qat)
e e R 7R 7 5 KTokr e Y Eees

2 [m* 1) C u¥q,t 1 C m*
+152C _Qheat fluxT p(q ) e (q ) +i3 _Qheat fluxU2
24 kT 24 m* (Vm*KT) 3 24m* V KT KT

C u(qt) C [kT 1
6p(q )24m* e 24\/ p(q,t)u+ 6(24)CkTp(q,t)

—S—UCkT (q,t)— u*(a.t Cp(q t)—l—oC m—*Q
324kt ey (ymrkmme T 324 N kT e e

+3 C /m* Qneat flux u? " C u® (.0 C /kTP(q,t)u3
22aNKT KT 24w ? 6ymrkrkn) 0] T 12V e 2kt

* 2 3 5
C5 m Qheat flux U

"23VIT KT w3012 Jmrkrar 40T 2m*23\/m*—kTp(q)

c kT
+—(12)6 Fp(q,t)u. (B2

Collecting terms, we end up with
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(27rm kT)%? w A B CKT 2 [m* Qneat fiux | 1 A B CkT 3(q )
! ——CKkT, 4 m” 1 —\ / KT C
6(24) p(q,1)— 3(24) kTQheat flux— 3(24) p(g,Hu
3C m* Qheat flux u? C KT p(q,t)u3 1 C U5(Qat)
T — — —zp(at (B3)

224NV KT KT m* 12N m* 2m*kT 3p(q’)24m*(\/m*kT)3'

APPENDIX C: DERIVATION FOR f§P(qg,t) IN TERMS OF THE MOMENTS AND f§P(q,t)

We need the fourth-order Hermite polynomial, namely,

<H4(p)>E<He4(§)>:<(\/%r >_<6(\/%I' >+<3>:<(\/m?‘TI') >—6ﬁ2(p)—3ﬁo(p). (Cy

Therefore

2(2wm kD*? oo L ( p )4 C@amtkT)¥? 1_(2mm*kT)3?
fan=15 a2 VTR T g

_ FD
4 _( 1
~\ m*kT

Substitutingp=p’ +u, then

(|

2
{p"4+4p3u+4p'2u+u?)

14 r3+2 12 4 /2+ 2 3 /3+ 12
:< P 2>+<[|0 P (p2 U)U]U>+<( 4P 2U)U> 3
(m*KT) (m*KT) (m*KT)
_ p' N 2 0 +W _ @, t)kT— +3Qheatflux
(m* kT)2 (kT) heat flux p (kT)2
p(q KT u?
Tkt h

Thus we have

27m*kT)32 1 14 2 u u HKT u?
u FD(q,t):l_2(< P >+ [Qheat f,UX+W—*+p(q,t)kT—*]u+3Qhe""”“’Xu+ p(Q.UKT u”
( m m

(27h)3 m*kT)?[  (KT)? (kT)? (kT? m*
(2mm*kT)¥? 1_(2mm*kT)¥? __
- f _—_ @
(2’7Th)3 2 (qvt) 8 (27771)3 0 (q1t)' (C5)

(2m*KT)%? 1 p't 1 2 p(q,t) 1 p(g.hu?
2—3fED q,t)= 1_2 . > + 1_2 ZQheathux+1_2 KT + 2 *
(27h) (m*KT) (kT) (kT) m

1 2 u 1 Qneat flux 1 p(q,t) u? p(q,t)u2 1
+1—2Wp(q’t)ﬁlu+ TZWU—’_]Z KT v . gPlab, (€O

L2mmkD® 0(qu0)= {1< p'4 >+ 5 Queatnx L p(@t v 1 1 p(a, t)u]
(m

R— u S —
(27h)3 *KT)? 12 (kT)? 12 kT m*  12(kT)2 m*2
Dividing by 2[ (2rm*kT)%%(27%)%]f5P(q,t), we thus obtain
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5°(q,t)= fFD(q t). (C

1 p,4 " S Qhneat flux " 11 u? 1 1 U4 1
12p(q.t) \ (m*kT)?

_—u —_———
12 5(qt) (kT2 12KT m* 12(kT>

If we simply approximate the fourth-order moment of the random fluctuatiofpif/ (m*kT)?) by 4p(q,t)(kT)%/4(kT)?,
then we have

Qneat flux 11 u? 1 1 u?

fFD
Wu 1_2ﬁm 12 (kT)2 m+2 24 (g,t). (C8)

f3°(q,0)=

APPENDIX D: DERIVATION FOR fEP(q,t) IN TERMS OF THE MOMENTS AND f{P(q,t)

We have

(Hs(p))=(Hes(&))=&>— 1063+ 15¢

3
Therefore

/
2(277m*kT)32fFD q t)zi p
> 120

(27h)3 JM*KT

p | p R B U
ﬁ) >_<10(W )>—<( )> (10H5(p))—(15H4(p)). (DY)

T°(q.t). (D2)

° (27Tm*kT)3’2fFD( 0 1 (2m*kT)3?
2anE 2PV AT )3

Substitutingp=p’ +u,

5 2
1 1
<( ka> >: ( ) ({p’5+5p’4u+8p’3u2+8p’2 34+5p’ u4+u5}>

m* VM* KT\ m*kT

2 15
) <{p15+5p/4u+8p/3u2+8p12u3+u5}>:<p—>

1 1
- kT( m*kT VMK T(M*KT)?

. < [p'3+2p"2u+(p'?+ u2)u]u2> +<(5p’4+7p’3u+5p’2u2)u>

Ve KT(mekT)? JmeKT(mkT)?

p’® 1 u u 5p
= 2 2W—+2 kT—
<\/Wr(m*kT)2>+\/Wl'(kT)2‘ Qneat tut 2W 0+ 2p(a,1) Tm*] <m<m*kn>

Qheat flux 2 5p(q,t)kT ud

\/—(kT)2 N JMFKT(KT)2 m*

(D3)

3 p/5 5p u
_<Vm*kT(m*kT)> <\/—(m *KT)2 > \/—(kT) [ Qheatflux+2W —+7p(q, kT }u

(D4)

Thus, we have

il I(T)waD( )= . P + °P + ! 29Q oW
(27h)3 5 (0, 120 [m*KT(m*KT)?2 \/W'(m*kT)z \/WI'(kT)Z heat flux e

u 1 Qheat flux 3(q t) 1 u
N YV QU SN P L L L I Z -
+7p(q't)ka”*]u} [3! ETEETLA 2(\/*—k) 4p(q't)z m*kT
Dividing by 2[ (27m*kT)¥%(27%)%]f5P(q,t), we thus obtain
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theathux W i
- P(q,t) P(Qat) m*

E0(qu )= 1] 1 p'® Lt 5p . 1
47 120] p(ad) Jm*kT(m*kT)2/  P(A.D) \ ym*kT(m*kT)?/  Jm*kT(kT)?

u 1 Qheat flux 1 3(q t) u
+7kT—|u?{ f§P(q,t + f6P(q,t)— ———=15P(q,1), D5
m ] (q ) [ kTp(q t)kT 3| 2(\/*—k) 0 (q ) SW 0 (q ) ( )
FD _ 1 1 p/5 1 Sp Qhneat flux u2
fs-(q,t)=
120| p(q,t) \ JmrkT kT(m*kT)? p(q t) | Vm*KkT(m*kT)?2 \/ kKT(kT)2p(q, t)
u3 U5 ) U3 1 m* Qheat flux
+| KT + +7KT t —
( JM*KT(KT)?m*  m*kT(kT)2m*? VM*KT(KT)?m* 0" (a.0- KT p(a, KT
1 u¥q,) u
4= ) §FD 1) — fFD 1), D6
FO(qut)= 1 1 p'® N 1 5p
Y= 120 p(A,D) \ ym*kT(m*kT)2/  P(A1) | ym*KT(m*kT)?
+lo Qheat flux W24 u® >(q, b-¢ 1 [m* Qpeat fluxf D(q.t)
VM*kT(KT)?p(q,t) VM*KT(KT)2m*? KT p(q, kT ©
ud(q,t) u
- ’ fEP(q,t) — ———="FP(q,t). D7
soymknm kT © PV g i o (@Y ©7
Again we make the following approximations:
P\ _4p(qt)(kT)?
(m*KkT)? 4(kT)?
p’s Vm*kT4p(q,t)(KT)? ©08)
Jm*KT(m*kT)?  Jm*kT4(kT)?
Then we obtain
(q t)= u S(q t) E_i u? m_*Qheathux+ u® fFD(q t)
120 12/m*kT 60(ym*kD)m*kT |6 40kTnr| V KT p(q,.0KT ~ 120/m*kT(kT)2m*2| ©
(D9)
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