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The local structure of a solid-on-solid interface in a two-dimensional kinetic Ising ferromagnet or attractive
lattice-gas model with single-spin-flip Glauber dynamics, which is driven far from equilibrium by an applied
field or chemical potential, is studied by an analytic mean-field, nonlinear-response RearyRikvold and
M. Kolesik, J. Stat. Physl00, 377(2000], and by dynamic Monte Carlo simulations. The probability density
of the height of an individual step in the surface is obtained, both analytically and by simulation. The width of
the probability density is found to increase dramatically with the magnitude of the applied field, with close
agreement between the theoretical predictions and the simulation results. Excellent agreement between theory
and simulations is also found for the field dependence and anisotropy of the interface velocity. The joint
distribution of nearest-neighbor step heights is obtained by simulation. It shows increasing correlations with
increasing field, similar to the skewness observed in other examples of growing surfaces.

DOI: 10.1103/PhysReVvE.66.066116 PACS nuni)er05.90+m, 68.35.Ct, 75.60.Jk, 68.43.Jk

I. INTRODUCTION In a previous papel7], we introduced a dynamic mean-
field approximation for the microstructure of an interface in a
The motion of surfaces and interfaces plays a central roléwo-dimensional kinetic Ising ferromagnet with a single-
in many scientific and technological disciplines. In particular,spin-flip Glauber dynami¢8,9], driven by an applied field
the dynamics of interfaces such as phase and grain bounfit0,11]. This model is directly applicable to many magnetic
aries in solid materialfl] and domain walls in magnef&]  and ferroelectric systems and other cases where the interface
and ferroelectrics heavily influence both dynamic and staticlynamics are not inhibited by coupling to a conserved field
material properties. Among interfaces characteristic of two{12,13. Based on the resulting local interface structure, we
dimensional systems are steps on crystal surf§8gsdo-  obtained a nonlinear-response approximation for the steady-
main walls in thin magnetic and dielectric filnj2], and  state propagation velocity, which was shown to be in good
boundaries between different types of vegetation such as sagreement with dynamic Monte CarMC) simulations for
vanna and rainforeg#]. a wide range of fields and temperatures. However, since the
An enormous amount of work in recent years has beempproximation was based on the Burton-Cabrera-Frank
devoted to the dynamics and structure of moving and growfBCF) unrestricted solid-on-solidSOS model [14], the
ing interfaceg5,6]. However, despite the fact that many im- overhangs and bubbles in the Ising interface were handled in
portant interface properties, such as mobility and catalytian uncontrolled way. Here we therefore consider the perfor-
and chemical activity, are largely determined by theero-  mance of our approximation for the unrestricted SOS model,
scopicinterface structure, most of this effort has been conso that overhangs and bubbles are absent at all times by
centrated on large-scale scaling properties. Although the dedefinition of the model. In particular, we obtain the surface
tailed atomistic mechanisms by which interfaces move areelocity under the Glauber dynamic as a function of applied
often not known, useful understanding can be obtained fronfield and temperature, as well as its anisotropy for tilt angles
stochastic models in which the motion occurs through ranbetween 0° and 45°.
dom nucleation and migration of local topological features In a recent papefl5], we showed that the microscopic
such as kinks and steps]. It is therefore important to gain interface structure, and thus the mobility, can depend dra-
better insight for different stochastic dynamics into how thematically on the details of the dynamics. The most significant
driving force(such as an applied magnetic or electric field, adifference is between dynamics in which the transition prob-
chemical-potential difference, or the amount of rainfall in theabilities of the individual spins factorize into one part that
case of models of vegetation distributjomay alter the mi-  depends only on the change in interaction energy due to the
croscopic structure of the interface, thereby leading to dransition and one that depends only on the change in the
highly nonlinear velocity response. field energy(soft dynamicq16]), and dynamics that cannot
be factorized in this wayhard dynamic$16]). For soft dy-
namics, the interface structure for all values of the field re-
*Electronic address: rikvold@csit.fsu.edu mains thesameas in equilibrium at zero fielfil5], so that a
"Electronic address: kolesik@acms.arizona.edu linear-response approximation yields an exact result for the
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propagation velocity. In the present paper we concentrate on 3
the standard Glauber dynamii8,9], which belongs to the y 01- 00-
class of hard dynamics and thus leads to a more complicated 2
and interesting behavior. 10— | 21+ | 10-
Both the driven Ising and SOS surfaces belong to the 1
Kardar-Parisi-Zhang (KPZ) dynamic universality class —~ 11- | 20+ | 11- 01-
[5,17], in which the macroscopic, stationary distribution for X ¢
flat, moving interfaces is Gaussian, corresponding to a ran- < 01+ 11+ | 11= i 11=| 21+ | 10= | 01=
dom walk with independent increments. Nevertheless, the -1
step heights in several discrete models in this class are cor- 0l+: 01+ 10+ | 21-| 11+
related ashortdistance$18—20. In the mean-field approxi- 2
mation developed here, these short-range correlations are ig- 00+ 01+
nored. The resulting discrepancies, which are minor, will be -3
elucidated by comparison with MC simulations. -4 3 =2 -1 0 1 2 3 4
The remainder of this paper is organized as follows. In X

Sec. Il we introduce the SOS interface model and derive a .

linear-response approximation for its velocity in a nonzero _F!G- 1. Ashort segment of an SOS interface h(x) between a

external field. In Sec. Il we develop a mean-field approxi-PoSitively magnetized phasr “solid” phase in the lattice-gas
mation for the time evolution of the single-step probability p'c.ture below afd a negativéor “fluid” ) phase ab(.)ve' The step
density function(PDP), as well as for its stationary form heights ares(x) =h(x+1/2)=h(x~1/2). Interface sites represen-
The latter enables us’ to extend the approximation for ;[h tative of the different SOS spin classege Table | and Table)lbre

interf truct d velocity i | arked with the notatiorjks explained in the text. Sites in the
Intérface structure and velocity o a noniinéar-response EV€liniform bulk phases are 60 and 00+. This interface was gener-

The a_nalytlc_:al apprOX|mat|ons are compared with d3,"’]am'(‘ated with a symmetric step-height distribution, corresponding to

MC simulations in Sec. IV. In Sec. IVA we nurr_1er|cally =0, but it would be impossible to estimaie accurately from the

solve the mean-field equation of motion for the single-stepsport segment shown here. After RET.

PDF and compare the resulting values of the time-dependent

average interface step height with MC simulations. In Secand—1 for large negative and positiwe respectively. With-

IV'B we compare the simulated stationary single-step PDFgyt |oss of generality we takd=0, such that the interface

with the theoretical prediCtionS. In Sec. IV C we compare th%n average moves in the posm\w direction. This |Sing

simulated stationary interface velocity with the theoreticalmodel is equivalent to a lattice-gas model with local occupa-

predictions for various values of applied field, temperaturetjgn variablesc, , €{0,1} [21,22. Specifically, we identify

and interface tilt angle. In Sec. IV D we compare simulationsg= + 1 with c=1 (occupied or “solid”) ands=—1 with ¢

and analytical predictions for the detailed stationary interface- g (empty or “fluid”). The applied field is related to the

structure, including the asymmetry of the simulated imerfac?attice-gas chemical potentigt as H=(u— u)/2, where

at nonzero fields. A summary and conclusion are found in o=—4(J,+J,) is the coexistence value pf. In this paper

Sec. V. we use Ising or lattice-gas language interchangeably as we

feel it makes a particular aspect of the discussion clearer.

Il. MODEL AND DYNAMICS A single-spin-flip(nonconservativedynamic which satis-

The original BCF SOS model considers an interface in Jies detailed balance, such as the Metropolis or Glauber al-
lattice gas o1S=1/2 Ising system on a square lattice of unit 9°rithms[8,9], ensures the approach to equilibrium, which in
lattice constant as a single-valued integer functigm) of ~ this case is a uniformly positive phase with the interface
the x coordinate, with steps(x) = h(x+ 1/2)—h(x— 1/2) at pushed pﬁ to pqsmve |n.f|.n|ty. Such glgorlthms are defined
integer values ok. A typical SOS interface configuration is PY @ single-spin transition probabilityW(s, y— —sy.,)
shown in Fig. 1. In this paper, like in Refd, 15, we use the = W(BAE,BU). Herep is the inverse of the temperatufe
highly symmetric Ising language, in which the two possible(Boltzmann's constant is taken as UnjtAE is the energy
states of the sitex(y) are denoted by the two “spin” values change corresponding to a successful spin flip, and the op-
s,y==1. (In order that the step positions and the interfacefional parameteiU is an energy barrier between the two
heights be integer as stated above, we place the spins at ofiftes that enters into Arrhenius-type stochastic dynamics
half-integer values ok andy, i.e., at the centers of the unit 23] and other dynamics that include a transition s{au}.
cells separated by dotted lines in Fig) The configuration The detailed-balance conditidqmalid for transitions between

energy is given by the nearest-neighbor Ising Hamiltoniarpllowed  states is  expressed —as W(BAE,BU)/

with anisotropic, ferromagnetic interactiodg andJ, in the W(—BAE,BU)=e P2, where the right-hand side is inde-
x andy direction, respectively: pendent ofU. (In the case of soft dynamics, the detailed-

balance condition is satisfied independently for the two parts
of W.) In order to preserve the SOS configuration at all

H=~- Xzy Scy(IxSxr1y T dySxy+1+H), () times, flips are allowed only at sites which have exactly one
broken bond in the direction.
whereZ, , runs over all sites. The quantity is the applied With the Ising Hamiltonian there are only a finite number

“field,” and the interface is introduced by fixing, y=+1 of different values ofAE, and the spins can therefore be
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TABLE I. The spin classes in the anisotropic square-lattice SOS  In this paper, as in Ref7], we use the standard discrete-
model. The first column contains the class labghs. The second time (hard Glauber dynamic with the transition probability
column contains the total field and interaction energy for a spin infg,gj
each classkz(jks), relative to the energy of the state with all spins
parallel andH=0, Eg=—2(J,+J,). The third column contains W(Sey— —Sxy) =[1+ef4E] 71 @)
the change in the total system energy resulting from reversal of a
spin fromsto —s, AE(jks). In both E(jks) —E, and AE(jks), for all transitions that are allowed by the SOS constraint.

the upper sign corresponds $5= —1, and the lower sign te= Time is measured in MC steps per sgMCSS.
+1. In the BCF SOS model the heights of the individual steps
: : : are assumed to be statistically independent and identically
Class,jks E(jks) —Eo AE(jks) distributed. The step-height PDF is given by the interaction
01s 2 +H+2], F2H+ 4], energy corresponding to thé(x)| brokend,-bonds between
1152 H+2(3+d,) +2H spins in the columns centered at<1/2) and &+ 1/2) as
21s? TH+2(21,+Jy) F2H-43, S(x)1=Z( &)~ 130 gn(#)5(x) 3
10sP® *H+2J, F2H+4), PLoC)1=2(¢) ' @
20s® TH+4, F2H-4(3—3y) The Boltzmann factok = e ?#% determines the width of the

PDF, andy(¢) is a Lagrange multiplier which maintains the
&The classes having nonzero populations in the SOS model and hean step height at anindependent valug,5(x))=tand

which flipping a spin preserves the SOS configuration. where ¢ is the overall angle between the interface andxhe
®The classes having nonzero populations in the SOS model and iBxis. The partition function is

which flipping a spin would produce an overhang or a bubble and is

therefore forbidden. +oo 1—X2
Z(p)= > Xendi= . @
divided into classe$11,25,28, labeled by the spin valus o=—w 1—2X coshy(¢)+X?
and the number of broken bonds between the spin and its
nearest neighbors in theandy direction,j andk, respec-  With y(¢) given by
tively. The ten spin classes consistent with the SOS model 5 . 91/
are denotediks with je{0,1,2 and ke{0,1}. They are ey(¢):(1+x Jtang+[(1-X?)*tarf ¢+ 4X?] ®)
shown in Fig. 1 and listed in Table | and Table II. 2X(1+tang)

TABLE II. The mean populations for the spin classes of the SOS interface, with the corresponding contributions to the interface velocity
under the hard Glauber dynamic. The first column contains the class Igb&IsThe second column contains the mean spin-class popula-
tions for general tilt angleb, with coshy(¢) from Eq.(5). The third and fourth columns contain the spin-class populationg fof [using
¥(0)=0] and ¢=45° (using Eq.(7) for exd ¥(45°)]), respectively. Using(=e "2 in these expressions yields the linear-response result
in which the spin-class populations are evaluatedHer 0. Using X=X(T,H) from Eq. (17) with the transition probabilities of the
particular dynamic usefhere, Glauber, so tha(T,H) is explicitly given by Eq(18)], one gets the nonlinear-response approximation. The
fifth column contains the contributions to the mean interface velocity irythieection from spins in classg& — andjk+, Eq.(9), using
the SOS-preserving hard Glauber dynamic.

Class,jks (n(jks)), generalg (n(jks)), =0 (n(jks)), ¢=45° (vy(ik))
B , tanh(BH)
01s 1 2Xcoshz(2¢)+x 1 . 1_2 ng\lx)r
(1-%?) (1+X) 2(1+X9) T CostiH)
11s 2X[(1+X?)coshy(¢) —2X] 2X 1 tanh(3H)
(1—X?)? (1+X)? 2
. , ) 2 tanh(BH)
e X1-2X cost() X1 X - Wﬁmr
(1—X ) (1+X) 2(1+X ) + WﬁH)
2X2 |2 cosBy(¢)—1—2X coshy(¢h)+ X2
Lo 1-x? 1-2X coshy(¢)+X? 2X3(1+2X) 1+2X2+3%4 0
X2 1—2X coshy( ) +X?] (1=X3)(1+X) 2(1-XY
(1-X)?
08 X 1—2X coshy(p)+X?] x4 x4 0
(1-X?)3 (1—X?)(1+X)? 2(1-X%
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(see details in Ref(7]). Simple results are obtained fak
=0, which yieldsy(0)=0 and
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Z(0)=(1+X)/(1-X), (6) _ Tt
and for ¢=45°, which yields —
(45°) 2 Al PRV LS ¥
Y =
e (1+X7)/12X (7) w2\ \ % Al ?I
=\ % 7|5
and 9\2 /,L Q:, %:
2(45°)=2(1+X3)/(1-X?). ®) e g\WW o & w e
=y
The mean spin-class populatiofrg jks)) are all obtained o — P
from the product of the independent PDFs 8fx) and i T — T L
8(x+1). Symmetry ofp[ 8§(x)] under the transformation N @ @ T
(X,¢,8)—(—%,— ¢,— ) ensures that(n(jk—))=(n(jk = P T o T
+)) for all j andk. Numerical results illustrating the break- X L) ;
down of this up/down symmetry for lardél| are discussed 9, N l;i E« -
in Sec. IV D. As discussed in Ref7], calculation of the L -%\ i \ YOV
individual class populations is straightforward but somewhat /[T ’5 “on
. . . “© N > P~
tedious, especially for nonzegp. The final results are sum- el [ o x
marized in Table II. Y/ IS :\;/ X
Whenever a spin flips from- 1 to +1, the corresponding jral z’. N Ve
. : : N \
column of the interface advances by one lattice constant in g 5 - +
they direction. Conversely, the column recedes by one lattice — N —
constant when a spin flips from 1 to —1. The correspond- 3(0)>1

ing energy changes are given in the third column in Table I.
Since the spin-class populations on both sides of the inter-
face are equal in this approximation, the contribution to the
mean velocity in they direction from sites in the classes

FIG. 2. Figure for calculating the single-step transition rates in

jk— andjk+ becomes

<vy(jk)>=W(ﬂAE(jk—),ﬁU)—W(BAE(jk+),,BU).(9)

Eq. (14). Interface configurations are shown by bold line segments.
Spins abovdin front of) the interface equat-1, and spins below
(behind the interface equal-1. At the center is shown a step
8(0)=1 [here shown ag$(0)=+1]. A transition to5(0)+1 can

be effected by flipping either of the two spins in the dashed boxes.

The results corresponding to the hard Glauber transitioThe resulting configurations, which depend on the heights of the
probabilities used here, EQ), are listed in the last column neighboring steps, are shown to the right and left in the figure. The
of Table Il. The mean propagation velocity perpendicular tocorresponding energy changes and conditions on the neighboring

the interface becomes

<vL<T,H,¢>>=cos¢§ (n(jks))(vy(jk)), (10

step heights are given next to the arrows. The arrows pointing out-
ward from the center of the figure correspond to the transition de-
scribed above, while the arrows pointing toward the center corre-
spond to the reverse transitioA(0)+1— §(0). In this figure,J
stands forJ, . After Ref.[7].

where the sum runs over the classes included in the tables. . )
While the general result is cumbersome if written out in de-fespectively. It was shown in Refr] that Eq.(10) reduces to
tail, the special cases @=0 and$=45° lead to compact the results for the single-stef10,11,27,28 and the poly-

formulas
tanH 8H) 1+X?
ATHON= e | PX | Temean T
cosh{BH)
and
... tanh(BH) -
(v,(T,H,45%)= 22 sinh(2830)1? ¢
“coshBH)

12

nuclear growth[10,29,30 models at low temperatures for
strong and weak fields, respectively.

IIl. NONLINEAR RESPONSE

With X=e~2?A%, the results in Table Il correspond to a
linear-response approximation. In R¢T] we developed a
mean-field approximation leading to a field-dependent
X(T,H), based on a detailed-balance argument for the sta-
tionary state. Here we show that this detailed-balance rela-
tion follows naturally from a dynamic mean-field approxima-
tion for the equation of motion for the single-step PDF
during the approach to the stationary state.

We denote the total transition probability for the height of
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the single step ak to change fromd(x) to §(x)*1 as 1

WI8(x)— 8(x) = 1]. In terms of these transition probabili- ~ W[6=1—6,t]=5{[W(—2H) +W(+2H)][1-TT=(1)]
ties, the equation of motion for the single-step PDF,

p[ 8(x),t] becomes +[W(—=2H—-4J3,) +W(+2H—-4J,)]

dp[8(x),t X1z (D}, (14)
PO b6 LWL 80— 300~ 1] }
where the upper signs refer & + 1 and the lower signs to
+W[S(x)— 8(x)+1]} o=—1, I, (t)==3",,p[5,t], and Im_(t)
=3;7_,p[4,t]. For simplicity, we here write the singkite
+PLAX) +1IV8(x) +1— 8(x)] transition ratesV(BAE, BU) asW(AE).
+p[8(x)—LIW[8(x)—1—8(X)], (13 In the stationary limit, Eqs(13) and (3) lead to the
detailed-balance condition
where the coupling to the joint multistep probability density
is hidden in the singlestep transition rates)V (not to be iy((ﬁ)_p[ai 1] W[é—o6*1]
confused with the singlsite transition ratesV). X(T,H)e T p[é]  W[ex1—4]" (15)
To obtain an approximation forV[— 6*1], we em-
ploy the same mean-field assumption of independent steps @ghere the upper and lower signs have the same interpretation
in equilibrium. Ford(x)=1 to increase taj(x)+1, either as in Eq.(14). Using Eqs.(3) and(4), we get the stationary
the spin in front of the interface at+1/2 can flip from—1  values forll, andIl_,
to +1, or the spin behind the interface xat-1/2 can flip

from +1 to —1. In each of these caseSE can have two Xe"(?)(1—Xe "9)

different values, depending on the value &fx+1) and I, = > ,

8(x—1), respectively. The same argument holds also for the 1-X

reverse transitiong(x) +1— &(x). The energy changes and

corresponding conditions oA(x+1) and §(x—1), which " ~ Xe "9(1-Xe"¥) 16

are shown in Fig. 2, yield - 1- X2 ' (16)

W[5—>5i1,t]:£{[W(—2H)+W(+2H)]H+(t) which, when inserted together with E¢l4) in Eq. (15),
2 B yield a self-consistency equation fr The self-consistency
FTW(—2H+43.) +W( +2H + 4] equation reduces to a linear equation ¥#, and with the
[W( ) ( 0] help of the detailed-balance condition for the single-site tran-

X[1-T1.(t)]}, sition ratesW, the solution takes the form

e 2PHW(—2H—-4J,) +e*"W(+2H - 4J,)| ¥

_ 283,
X(T,H)=e"" W(—2H—43,) + W(+ 2H 43 : 17

which is independent of(¢). This solution is the same as Glauber dynamic used here, nor the equally common Me-
the one obtained in Ref7], but the derivation given in that tropolis dynamic with transition probabilityWy(s, ,—
paper did not explicitly show that all dependence ) —Syy) = min[1,e #2E] [8,9], satisfies this factorization con-
cancels out. The fact that(T,H) does not depend op(¢)  dition. Such hard dynamics lead to a nontrivial field depen-
is fortunate, since it enables both quantities to be calculateBlence inX. Inserting the Glauber dynamic defined by E2).
analytically. If this were not the case, they would have had tdnto Eg.(17), we explicitly get

be determined by simultaneous numerical solution of Egs. 12

(17) and (5). )T H) = &~ 26% e?PIxcosh28H) +e 2P
Equation(17) shows thai(T,H) depends on the specific G e ?Pxcosh28H) + e?Fx
dynamic, except foH=0, where it reduces to its equilib- (18)

rium value,X(T,0)=e" 2%, A situation in which theH de-

pendence in Eq17) cancels out, is that of the soft dynamics  All the results for the spin-class populations of the zero-
discussed in Sec. [The barrier energy can be contained field equilibrium interface, which are listed in Table I, can
in one or the other of the factoydn Ref.[15] we demon- now be applied to obtain a nonlinear-response approximation
strated that a soft dynamic yields an SOS interface that ifor the steady-state propagation velocity of flat, driven inter-
identical to the equilibrium SOS interface Ht=0 and the faces with hard dynamics. This simply requires replacing the
same temperature, regardless of the valuéloNeither the  zero-fieldX=e ™ 2#’x used in the linear-response approxima-
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tion by the field-depende(T,H), obtained from Eq(17) ensured by the largk,, ten times the value used in Refs.
using the transition probabilities corresponding to the par{7,32].
ticular dynamic used. For soft dynamics the linear-response
result withX=e~ % is exact. A. Approach to the stationary state

A physical reason for the marked difference between hard
and soft dynamics is best seen by comparing concrete ex-
amples of dynamics in the two classes, such as the har,
Glauber dynamic used here, E@®), and the soft Glauber

In order to both check the applicability of the mean-field
proximation at early times, and decide the approximate
e needed to reach the stationary state, we first studied the
transient behavior of the average step heigjl#) for ¢

dynamic used in Ref.15], —0atT=02) and 0.6
o BAEy o BAE In the dynamic MC simulatiok| §|) was measured during
We(Sy y— — Sy y) = , (190  a‘“time window”which was opened after a specified number
i Y 14 BAEN 14 e BAE of UPS, corresponding to a given approximate average evo-

lution time t in MCSS. To obtain an optimum balance be-

in the case of a very strong field. In the hard case, the effeg{yeen time resolution and accuracy, the width of the window
of the field completely dominates the transition rates, suclyas varied from approximately one MCSS at early times, to
that the rate is near unity for transitions that bring a spingpout ten MCSS at late times, and five independent runs
parallel to the applied field, and near zero for transitions inyere performed for each value bfStandard errors fdrand
the opposite directiorirespective of the change in interac- (| 5|) were estimated in the usual way as the empirical stan-
tion energy In the soft case, the probability of bringing a dard deviation in their measured values over the five realiza-
spin antiparallel to the field is also near zero, but the probyjgns, divided byy/5.
abilities of different transitions bringing a spin parallel to the  for comparison with the MC simulations, we solved the
field differ according to the corresponding change in the innean-field equation of motion for the single-step PDF,
teraction energy, as given by the second factor in (E€). Eq. (13), numerically by a first-order iterative scheme with a

In the following section we show that the nonlinear- ime step of 104 MCSS (shorter time steps made no dis-
response approximation developed in this section gives veryarpipje differenck Both the simulations and the solution of
good agreement with MC simulations of driven, flat SOSthe equation of motion were started from a sharp interface at

interfaces evolving under the hard Glauber dynamic for ¢ — g Results for fields between 0 andJl@re shown in
wide range of fields and temperatures. Fig. 3.

In general, we find overall qualitative agreement between
IV. COMPARISON WITH MONTE CARLO SIMULATIONS the simulations and the equation of motion. Ho#0.2T,

: : ai@dnd|H|=<2J, both methods have reached a common station-
We have compared the analytical estimates of step helgrgry value byt=10000 MCSS, while foil=0.6T, and|H|

distributions, propagation velocities, and spin-class popula: . T |
tions developed above with MC simulations of the same§3‘]’ stationarity is reached by=1 000 MCSS. Our choice

model for J,=Jy,=J. The details of our particular imple- Qf 5000 UPS as “warm-up time" in our studies of the sta-
mentation of the discrete-timefold way rejection-free MC tionary properties, corresponding to at least 10 000 MCSS, is

algorithm[25] are the same as described in Réfl, except fjh#S well Jus;mted. Hotvr\]/eve.r, trl1etr.e are S|?tn|flczn:hquar1lt|tt§1tlve ¢
that only transitions from the classes with one broiédrond iterences between the simuiation resutts and the soiution o

_ ; . . . Eq. (13 for early times. We believe this indicates that the
(k=1) are allowed. By keeping only the interface sites Inmean-field assumption of statistically independent step

memory, the algorithm is not subject to any size restriction in_ " i S . ;
they direction, and simulations can be carried out for arbir—]he'ghts IS not well justified untlllthe interface structure has
been randomized through a sufficient number of updates.

trarily long times. : -
The numerical results presented here are based on MC For the extremely strong fieldd =100, W(5—6=1)

simulations at the two temperatureb=0.2T. and 0.6 §W(5t1—>5)~1/2_ [sc_ee_ Eq.(14)] W.ith equality_ in the
[T,=— 2J/In(\2—1)~2.269 is the critical temperature for limit H/J—cc. In this limit the evolution of the interface
thé isotropic SQuare-Iéttice Ising modgB1]], with L width is essentially diffusional and 5[)=t"** without satu-
—10000 and,fixed;b between 0 and 45°. In oraer to engure ration at any finite time. Thus, the growth changes from the
stationarity we ran the simulation for 5.0®Qfold way up- KPZ universality class for finite fieldawvith increasing satu-

: ration value of| §|) asH increasek to the universality class
dates per updatable spiklPS before taking any measure- o . .
ments (100000 UPS for some of the strongest fields an8f the random-deposition modgs], in which ¢|4|) grows

largest values ofp at T=0.2T,). Exploratory simulations without bound, for infinite field. As seen in Fig(t8, both
with both larger and smalld.r (Cup t0 100 000) and *warm- methods agree with this result, although the amplitude for
X

up” times (see Sec. IV Ashowed that the values used in the the MC simulation is larger than predicted by the mean-field

i L . .~ equation of motion.
production runs were sufficient to ensure a stationary inter-

face. Stationary class populations and interface velocities
were averaged over 50000 UPS. In the stationary limit 1
UPS corresponds to between 2 MCSS for strong fields at Stationary single-step PDFs were obtained by MC simu-
both temperatures, and about 75 MCSS fd=0 at T  lation atT=0.2T. and 0.6 for =0 and several values of
=0.2T.. Adequate statistics for one- and two-step PDFs wa$i between 0 and 31 The simulation results fop[ 6] are

B. Stationary single-step probability densities
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FIG. 4. MC (data points and analyticalsolid lineg results for
the stationary single-step PDF, shown on logarithmic scalé.vs
10”7 _1 il sl T The fields areH/J=0 (filled squares 0.5 (filled triangles, 1.0
10 10 10 10 10 (filled starg, 1.5 (filled diamond$, 2.0 (empty squares 2.5 (empty
t (MCSS] triangles, and 3.0(empty stars (a) T=0.2T.. (b) T=0.6T,.

FIG. 3. Log-log plots of the mean step heighd|) vs timet (in X= 11 {lo"2— -1 Both these MC esti-
MCSS as predicted by the mean-field equation of motion for theﬁ}i&safsorX(T H) grge|>shOV\/<r|15i|r2 Fié ). Again, the agree-
single-step PDF, E13) (solid curves, and by dynamic MC simu- ment is excellent. The slight deviations of the estimate based

lations (crossed error bars indicating statistical standard errots in
and (|4])). From bottom to top, the results shown are fafJ  ©n (]8]) for large H are probably due to the fact that data

=0, 1, 2, 3, and 1QMC results forH/J=10 in part(b) only]. (@  Were only recorded in separate bins fér<64, so that the
T=0.2T,. (b) T=0.6T,. calculated average becomes inaccurate whenever higher

steps cannot be ignored. The estimate baseg[@] does
not suffer from this problem. However, the slight discrep-
ancy between both MC estimates on the one hand and

o peeles, " E6.(10 on e other, whch s een benueha 0.5 and 2
9 9 for T=0.2T., is probably a real effect.

A simple comparison between the analytical and simula-
tion results is given in Fig. &), which shows(| §|) vs H for ) , -~
$=0 atT=0.2T, and 0.67. The solid curves represent the C. Stationary interface velocities
theoretical result obtained by summation of Eg), (|4|) In this section we compare the simulated interface veloci-
=2X/(1—X?), with X from Eq. (18). There is excellent ties with the analytical approximation, E¢L0). Figure 6
agreement between the theoretical field dependence and tehows the normal velocity Wd for ¢=0. Included are both
MC data. Additional confirmation of the form of the single- the linear-response approximatidire., X=e~2#%) and the
step PDF, Eq(3), is obtained from the simulation results by nonlinear-response result wi¥(T,H) from Eqg. (18). Over-
calculating(| 8|), both directly by summation over the nu- all, there is excellent agreement between the MC results and
merically obtained PDF and from the probability of zero stepthe nonlinear-response theory, while the linear-response ap-
height as(|8])={p[0] *—p[0]}/2. proximation seriously underestimates the velocity, especially

A slightly different way to check the agreement betweenat the lower temperature. As for the Ising model with hard
the analytical predictions and the simulation results for theGlauber dynamics studied in R¢¥], these results show that
single-step PDF, is to compak&T,H) as given by Eq(18)  the latter approximation is clearly inadequate, and we in-
with the same quantity obtained from the simulations undeclude no further linear-response results in this papEne
the assumption that E¢3) holds. From this equation for the apparent agreement between the linear-response approxima-
PDF, usingZ(0) from Eq.(6), it follows thatX is given in  tion and the simulations for largkl/J is simply a conse-
terms ofp[0] asX={1—p[0]}/{1+p[0]}, and in terms of quence of the fact that the normal velocity is bounded

shown in Fig. 4, together with the theoretical result, Bj.
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FIG. 6. The average stationary normal interface velogity) vs
H for ¢=0. The MC results are shown as data points, the linear-
response results as dashed curves, and the nonlinear-response re-
sults as solid curvesa) T=0.2T.. (b) T=0.6T..

other hand, inverse anisotropy is found for the stronger
fields, growing gradually more pronounced with increasing
H [Fig. 7(b)], while for the weakest fields studied the veloc-

FIG. 5. (a) Average stationary step heigfis|), shown on loga-
rithmic scale vsH for ¢=0 at T=0.2T, and 0.6.. The curves

represent the theoretical result. The MC data were obtained directlx . tonic in t [Fig. 7()]. The agreement be-
by summation over the simulated single-step Piffied symbols y IS nonmonotonic in tae (Fig. Ac)]. 9

and from the probability of zero step heiglempty symbols See tween the simulations and the analytical results is excellent

text for details. Curve with filled circles and empty squar€s, everywhere. .
=0.2T,. Curve with filled triangles and empty circleE=0.6T, . The temperature dependence of the normal interface ve-

(b) The stationary PDF width paramet§¢T,H) vs H, the analyti- locity is shown in Fig. 8 for several values 'be/J bgtween

cal result Eq(18) (curves and estimates based on MC simulation 0.2 and 3.0. The agreement between the simulations and the

results with=0 for p[0] (empty symbolsand for(|8|) (filed ~ analytical results is excellent everywhere. This figure shows

symbols. See text for details. Curves and symbols have the samélearly that ad is lowered, the velocity changes increasingly

interpretations as irfa). In this and all the following figures, the steeply from zero to unity al/J=2, developing a step dis-

statistical uncertainty is much smaller than the symbol size. continuity atT=0. This result could also have been sus-
pected by comparing Figs(® and &b).

by unity for the SOS model. This isot the case when SOS- ) )

violating transitions are allowed. In this case the linear- D. Spin-class populations and skewness

response approximation differs significantly from the A closer look at the performance of the mean-field ap-

nonlinear-response result and the simulations for strongroximation for the interface structure is provided by the

fields, as shown in Fig. 2 of Reff7].) A slight disagreement mean spin-class populations. The analytical predictions for

between the simulations and the analytical predictions ishe class populations are based on the assumption that differ-

seen at 0.2, in the same range of field values as ¥iT,H) ent steps are statistically independent. A comparison of the

obtained from the single-step PDF in Sec. IV B. simulation results with the analytical predictions therefore
The dependence of the normal velocity on the tilt angle gives a way of testing this assumption.

is shown in Fig. 7 for several values Hf'J between 0.1 and The six mean class populatioqs,(01s)), (n(11s)), and

3.0. At T=0.2T the anisotropy undergoes a gradual chang&n(21s)) with s= =1 are shown v$i in Fig. 9 for =0 and

from increasing with¢ in agreement with the polynuclear T=0.2T. and 0.6 .. At both temperatures the analytical ap-

growth model at small angles and the single-step model foproximations follow the average of the populations $or

larger angles at weak fields, to Eden-type inverse anisotropy 1 ands=—1 quite well, but at intermediate fields in par-

[33—-33 at strong fields[Fig. 7(a)]. At T=0.6T., on the ticular, the populations in front of the surface<—1) and
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=0.1 forT=0.6T., shown on a magnified scale to reveal the non-
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Tl

FIG. 8. The average stationary normal interface velogity) vs

T for $=0. MC data are represented by data points, and analytical

results by solid curves. From below to above, the valugs/dfare
0.2,05,1.0,15, 2.0, 2.5, and 3.0.

the present model belongs for all finite, nonzero valueld.of

Such skewness was also observed in our study of the Ising
model in Ref[7], but in that case it was difficult to separate
it from the effects of bubbles and overhangs. Skewness has
also been observed in several other SOS-type models, such
as the body-centered SOS model studied by Neergaard and
den Nijs[18], the model for step propagation on crystal sur-
faces with a kink-Ehrlich-Schwoebel barrier studied by

Pierre-Louiset al.[19], and a model for the local time hori-
zon in parallel MC simulations studied by Kornissal.[20].

(However, no skewness is observed for the soft Glauber dy-

namic, a result which may be general for soft dynamithe

correlations associated with the skewness generally lead to a

broadening of protrusions on the leading ed{slltops” ),

~~
2
2

~

0.5
0.4
=0.3
0.2
0.1

0.8
g 0.6

'\
\E: 0.4
0.2
0

0.7
0.6

0

1

(a)

The skewness between the spin populations on the leading FiG. 9. Mean stationary class populatiofs(jks)) vs H for
and trailing edges of the interface are a consequence of sholg=0. (a) T=0.2T,. (b) T=0.6T,. From top to bottom at the left

range correlations between neighboring steps, and it is quitedge of both parts, the classes ars,0l1s, and 2 with squares
commonly observed in driven interfaces. This is the caserepresenting MC data fos=+1 and triangles fors=—1. The

even when thdéong-rangecorrelations vanish as they do for analytic approximations are indicated by the solid curves. Note the

interfaces in the KPZ dynamic universality class, to whichdifferent vertical scales in the two parts.
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€ (squarey defined in Eqs(20) and(21), respectively. The param-
eters are shown W for ¢=0. (8) T=0.2T,.. (b) T=0.6T.. Note

the different vertical scales in the two parts.

while those on the trailing edg€‘valley bottoms”) are
sharpened18], or the other way arounfl0]. In terms of

spin-class populations, the former correspondéni@1—))

>(n(21+)) and(n(11+))>(n(11-)). The relative skew-

ness can therefore be quantified by the two functions,

(n(21-))—=(n(

21+))

P {n(21-))+(n(
introduced in Ref[18], and

~(n(11+)—(n(

21+))"

11-))

€= {n(2Lr )+ (n(

These two skewness parameters are shown together in Fi
10. The relative skewness is seen to be considerably strong
at the lower temperature. This temperature dependence

especially pronounced faqr.

Yet another way to visualize the skewness is to conside
the joint two-step PDRp[ 6(x),8(x+1)]. Logarithmic con-
tour plots of this quantity for different values bff are shown
in Fig. 11 for =0 atT=0.6T. It is clearly seen how the
contours change wittd. For H=0 a symmetric diamond
shape with equidistant contours indicates statistical indeper
dence with single-step PDFs given by E§). For stronger
fields we find shapes that are elongated in the second qua
rant[ 8(x) <0, §(x+1)>0] and foreshortened in the fourth
quadrant 5(x)>0, &(x+1)<0]. This shape indicates that
large negatived(x) tend to be followed by large positive
8(x+ 1) (sharp valleys while positive 5(x) tend to be fol-
lowed by smaller negativé(x+ 1) (rounded hilltops

1))

(20

(21)
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FIG. 11. Contour plots of logp[ 6(x),d(x+1)] for ¢=0 at
T=0.6T;. (8 H/J=0. (b) H/J=1.0. (c) H/J=2.0. Note the dif-
ferent scales in the three parts. See discussion in the text.

While the contour plots for interfaces with=0 are al-
ways symmetric about the ling(x+ 1)=— §(x), as seen in
Fig. 11, for¢p>0 corresponding t¢5)>0, most of the prob-
ability is concentrated in the first quadrajn(x)>0, &(x
+1)>0], as shown forp=45° atT=0.6T, in Fig. 12. In
the case of tilted interfaces, too, the symmetry about the line
8(x+1)=48(x), which is obeyed foH=0 [Fig. 12a)], is
gradually destroyed with increasing fie[#Fig. 12b) and
12(c)]. We have not been successful in attempts to construct

30 30
20 20
10 10
< <
£ 0 & U
S 10 ©_10
-20 -20
_30 -30
-30-20-10 0 10 20 30 -30-20-10 0 10 20 30
6(x) o(x)
40
©
20 .
=
t 0
w
=20
—40

-40 -20 O 20 40
6(x)

FIG. 12. Contour plots of logp[ 6(x),8(x+1)] for ¢=45° at
T=0.6T;. (8 H/J=0. (b) H/J=1.0. (c) H/J=2.0. Note the dif-
ferent scales in the three parts. See discussion in the text.
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an analytical approximation which describes this evolutionsimulations. For such conclusions to be valid, the dynamic

of the joint two-step PDF with increasing field. must be chosen appropriately to the physical system of inter-
est. The hard type of dynamics would appear to be particu-
V. CONCLUSION larly suited for certain interfaces in magnetic or dielectric

. ) ] ) ) systems, where the local order parameter is not conserved.

In this paper, we have considered in detail the microstrucThe dynamics of such interfaces have in the past often been
ture of an unrestricted solid-on-soli®OS interface with  sydied with standard Glauber or Metropolis dynamics. Soft
Glauber dynamics, which is driven far from equilibrium by gynamics would seem more appropriate for solidification or
an applied field. The microstructure is of interest because lhdsorption problems where the driving force is a chemical-
determines a number of interface properties, such as mObi"tMotential differencé36,37], although diffusion often plays a
and chemical reactivity. We adapted to this model a meansomplicating role in these cases.
field, nonlinear-response approximation previously devel- T4 avoid any misunderstandings, we emphasize that the
oped for driven Ising interfaces without the SOS restrictionggft/hard classification refers to tllynamic andnot to the
[7]. In comparison to the Ising driven interface, which leavesyamiltonian. As discussed both in this paper and in Ref.
bubbles of the unstable phase in its wake and exhibits “overtl5], a system described by a particular Hamiltonian could
hangs,” the SOS interface is a relatively simple object. Theayglve according to a hard or a soft dynamic, depending on
absence of overhangs and of fluctuations in the stable anfle physical characteristics of the transition processes. A
unstable phasgbubbles behind and in front of the interface more thorough discussion of the physical aspects of the dif-

makes the SOS interface more suitable for description iRerences between hard and soft dynamics will be included in
terms of a mean-field type model. Moreover, unlike the Isingy forthcoming papef38].

contribute to the inaccuracy of the approximate treatmentyred by our model is, of course, the short-range correlations.
the simpler SOS structure makes it possible to identify theyamely, within the mean-field approximation used here, in-
short-range correlations as the only significant factor causingjyidual steps of the interface are assumed to be statistically
deviations between the true interface behavior and the meaghdependent. However, for increasing fields the interface un-
field theory. , _ _ _ dergoes a gradual breakdown of up/down symmetry. This is
To study the microstructure of the interface in detail, Wecjearly seen in our simulations here, as well as in several

investigated the interface velocity as a function of driving giher examples of driven interfacd3,18—2Q. It would
field, temperature, and angle relative to the lattice axes. Wgeem likely that one could construct a mean-field approxima-
also studied the local shape of the interface in terms of thgon at the two-step level, which might be able to predict this
spin-class populations and the probability density for indi-skewness for hard dynamics, as well as its absence for soft
vidual steps in the interface. In essentially all cases we founglynamics. However, such a theory has not yet been devel-
excellent agreement between our theoretical description qfpeq.
the stationary moving interface and the results of our dy- * Finally we note that, by comparison with the theoretical
namic MC simulations. o and numerical results presented here and in Réfsand

_ The microstructure of the moving interface depends cruj15], experimental observations of the driving-force depen-
cially on the details of the stochastic dynamics, and for th@jence of interface step heights and their correlations for

Glauber dynamic used here, the average height of a step Keady-state moving interfaces could add to our understand-
the interface was found to increase strongly with the appliegng of the underlying dynamic processes.

field. Our theory predicts that this should be the casith
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