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Relaxation and overlap-probability function in the spherical and mean-spherical models
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The problem of the equivalence of the spherical and mean-spherical models, which has been thoroughly
studied and is understood in equilibrium, is considered anew from the dynamical point of view during the time
evolution following a quench from above to below the critical temperature. It is found that there exists a
crossover timet* ;V2/d such that fort,t* the two models are equivalent, while fort.t* macroscopic
discrepancies arise. The relation between the off equilibrium response function and the structure of the equi-
librium state that usually holds for phase ordering systems is found to hold for the spherical model but not for
the mean-spherical one. The latter model offers an explicit example of a system which is not stochastically
stable.
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I. INTRODUCTION

Let us consider a system with scalar continuous or
parameterw(xW ) in a volumeV and Hamiltonian

H@w~xW !#5
1

2EV
dxW @~¹w!21rw2~xW !#, ~1!

where r>0. The spherical model of Berlin and Kac@1# is
obtained by considering the extensive random variable

C5
1

VEV
dxWw2~xW ! ~2!

and computing equilibrium properties with the Gauss
weight rg@w#5(1/Zg)e

2(1/T)H[w] under the microcanonica
constraintC5a, where a is a given number. The mea
spherical model of Lewis and Wannier@2#, instead, is ob-
tained by imposing the constraint in the mean, or canonic
^C&5a, which makes the model considerably easier
solve. The spherical model was originally introduced by B
lin and Kac as an exactly soluble model displaying critic
phenomena. Subsequently, the enforcement of a sphe
constraint~in either form, microcanonical or canonical! on
the free part of nonlinear problems has become an extrem
useful and practical way to generate mean-field approxi
tions.

However, despite the great popularity of the method, i
usually overlooked that the equilibrium properties of the t
models, as was recognized early on, coincide above but
below the critical point. The origin of the discrepancy w
clarified first by Lax@3# and further investigated by Yan an
Wannier@4#. Finally, Kac and Thompson@5# showed how to
connect the averages in the two models. It is easy to un
stand that the microcanonical and canonical constraints
equivalent as long as the fluctuations^dC2&5^C2&2^C&2
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are negligible. Indeed, above the critical temperatureTC one
has the usual behavior for thermodynamic quantities^dC2&
;1/V. Not so belowTC , where fluctuations ofC turn out to
be finite and independent of the volume^dC2&;a2.

An important consequence of this, as we shall see in
following, is that the nature of the mixed state belowTC is
quite different in the two models. It is then interesting
investigate whether the two models are equivalent or
when considering time dependent properties in the relaxa
process following a quench from above to below the criti
point. This is a relevant question since, in practice, dynam
can be solved only in the mean-spherical case and in
literature it is taken for granted that the mean-spherical fo
of dynamics applies to the spherical case as well. On
basis of the previous considerations, clarification of t
point amounts to analyzing the time evolution of^dC2&. As
we shall see, this depends on the order of the limitst→` and
V→`; namely, it turns out that ifV is kept finite during the
relaxation there is a crossover from the preasymptotic beh
ior ^dC2&;1/V to the asymptotic onêdC2&;a2 with the
crossover timet* ;V2/d. Instead, ifV→` from the outset,
then ^dC2& stays negligible for any finite time sincet* di-
verges. In any case, in the scaling regimet,t* , the time
dependent evolution is identical in the two models, as u
ally assumed.

Although reassuring, this conclusion opens an unexpec
and interesting problem when it comes to testing the conn
tion between static and dynamic properties introduced
Cugliandolo and Kurchan@6# for mean-field spin glasses an
then established in general by Franzet al. @7# for slowly
relaxing systems. The dynamic quantities are the autoco
lation function C(t,tw) and the integrated linear respon
function x(t,tw), while equilibrium properties are encode
into the overlap-probability functionP(q) @8#. The statement
is that, if x(t,tw) depends on time through the autocorre
tion functionx„C(t,tw)…, then one has

2T
d2x~C!

dC2 U
C5q

5 P̃~q!, ~3!
©2002 The American Physical Society13-1
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where P̃(q) is the overlap-probability function in the equ
librium state obtained when the perturbation giving rise
x(t,tw) is switched off. Therefore, the unperturbed overl
probability P(q) can be recovered from the dynamics
P̃(q) coincides with or is simply related toP(q). This hap-
pens for stochastically stable systems@7#. Formulated origi-
nally in the context of glassy systems, this connection
tween statics and dynamics applies also to phase orde
processes in nondisordered systems@9#. A detailed account
of the latter case can be found in Ref.@10#. Now, the inter-
esting point is that the spherical and mean-spherical mo
do share the same relaxation properties, and therefore
samex(C) and the sameP̃(q), while the corresponding un
perturbed overlap probabilities are profoundly different.
particular,P(q) can be recovered fromP̃(q) in the spherical
model, but not in the mean-spherical one.

The paper is organized as follows. In Secs. II and III t
relevant properties of the spherical and mean-spherical m
els are presented. The relation between the two mo
is discussed in Sec. IV and comments on the connec
between statics and dynamics are made in the conclu
Sec. V.

II. SPHERICAL MODEL

The dynamical evolution is described by the Lange
equation

]w~xW ,t !

]t
52

dH@w#

dw~xW ,t !
1h~xW ,t !, ~4!

whereh(xW ,t) is a Gaussian white noise. Taking forH@w# the
Gaussian model~1! and Fourier transforming with respect
space, we have

]w~kW ,t !

]t
52vkw~kW ,t !1h~kW ,t ! ~5!

with vk5k21r and

^h~kW ,t !&50,

^h~kW ,t !h~kW8,t8!&52TVdkW1kW8,0d~ t2t8!, ~6!

whereT is the temperature of the quench. Integrating Eq.~5!,
we obtain

w~kW ,t !5Rg~kW ,t !w~kW ,0!1E
0

t

dt8Rg~kW ,t2t8!h~kW ,t8!,

~7!

whereRg(kW ,t)5e2vkt. Considering an infinite temperatur
initial state with

^w~kW ,0!&50,

^w~kW ,0!w~kW8,0!&5DVdkW1kW8,0 , ~8!
06611
-
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and taking averages over the initial state and thermal no
from Eq. ~7! follows ^w(kW ,t)&50, ^w(kW ,t)w(kW8,t)&
5C(kW ,t)VdkW1kW8,0 , where the equal time structure factor
given by

C~kW ,t !5Rg
2~kW ,t !D1

T

vk
@12Rg

2~kW ,t !#. ~9!

With the initial condition~8! and the linear equation~5!, the
configuration @w(kW ,t)# executes a zero average Gauss
process whose probability distribution is given by

rg„@w~kW !#,t…5
1

Zg~ t !
e2(1/2V)(

kW
w(kW )C21(kW ,t)w(2kW ), ~10!

whereZg(t)5*d@w(kW )#e2(1/2V)(kWw(kW )C21(kW ,t)w(2kW ). From Eq.
~10! one can compute the one-time properties of the Gau
ian model, including those at equilibrium obtained by letti
t→`.

Let us next define the joint probability of a configuratio

@w(kW )# and a random variableC by

rg„@w~kW !#,C,t…5rg„@w~kW !#,t…dS C2
1

V2 (
kW

uw~kW !u2D .

~11!

Clearly, rg„@w(kW )#,t… is recovered by integrating overC,
while the probability ofC is given by

rg~C,t !5E d@w~kW !#rg„@w~kW !#,C,t…. ~12!

Introducing the probability of@w(kW )# conditioned to a given
value ofC,

rg„Cu@w~kW !#,t…5
rg„@w~kW !#,C,t…

rg~C,t !
~13!

we may also write

rg„@w~kW !#,t…5E dCrg~C,t !rg„Cu@w~kW !#,t…. ~14!

Notice that conditioning with respect toC is tantamount to
imposing the spherical constraint. Hence, the probability d
tribution for the Berlin-Kac spherical model@1# can be writ-
ten as

rs„@w~kW !#,t;a…5rg„C5au@w~kW !#,t…. ~15!

III. MEAN-SPHERICAL MODEL

As stated in the Introduction, the mean-spherical mode
obtained by imposing the constraint in the me
(1/V2)(kW^uw(kW )u2&5a. This can be done by the Lagrang
multiplier method or, which is the same, by modifying E
~5!, letting the parameterr be a function of time,
3-2
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]w~kW ,t !

]t
52@k21r ~ t !#w~kW ,t !1h~kW ,t !, ~16!

wherer (t) is to be determined self-consistently through t
constraint, which can be rewritten as

1

V (
kW

C~kW ,t !5a. ~17!

The structure of the solution of the equation of motion
mains the same:

w~kW ,t !5Rms~kW ,t,0!w~kW ,0!1E
0

t

Rms~kW ,t,t8!h~kW ,t8!,

~18!

where now

Rms~kW ,t,t8!5
Y~ t8!

Y~ t !
e2k2(t2t8) ~19!

with Y(t)5eQ(t) and Q(t)5*0
t dt8r (t8). The equal time

structure factor is given by

C~kW ,t !5Rms
2 ~kW ,t,0!D12TE

0

t

dt8Rms
2 ~kW ,t,t8!, ~20!

where, clearly, the initial value D must also
be consistent with Eq.~17!. This requires V21(kWD
5*@ddk/(2p)d#exp(2k2/L2)D5a where, as we shall alway
do in the following, in transforming the sum overkW into an
integral we make explicit the existence of a high-moment
cutoff L. Hence, eventuallyD5(4p)d/2L2da. Finally, the
probability distribution keeps the Gaussian form~10!

rms„@w~kW !#,t…5
1

Zms~ t !
e2(1/2V)(

kW
w(kW )C21(kW ,t)w(2kW ),

~21!

where nowC(kW ,t) is given by Eq.~20!.
In order to have an explicit solution the functionY(t)

must be determined. This is done in Appendix A where,
simplicity, the computation has been limited to the case
,d,4. For large time one finds

Y2~ t !5H Bet/t for T.TC

B@et/t1~ t/t* !2v# for T<TC, ~22!

where

TC5
2Ld22

~4p!d/2~d22!
a ~23!

and the expressions forB, t, v, andt* are listed in Appen-
dix A. Here we point out thatB andt are independent of the
volume for T.TC , while B vanishes andt diverges asV
→` for T<TC . Inserting Eq.~22! in Eq. ~20!, for T.TC
we find
06611
-

r
2

C~kW ,t !5
D

B
e22(k211/2t)t1

T

k211/2t
@12e22(k211/2t)t#

~24!

and forT<TC,

C~kW ,t !5
D

B

~ t/t* !ve22k2t

@11~ t/t* !vet/t#

12TE
t̂

t

dt8e22k2(t2t8)~ t8/t !2vF11~ t8/t* !vet8/t

11~ t/t* !vet/t G ,

~25!

where t̂ is the microscopic time necessary to elapse for E
~22! to apply. Notice that from Eq.~A9! and from Eq.~A16!
it follows that t* andt are bothO(V2/d) for T5TC , while
for T,TC andd.2 the two time scales are separated w
t* ;V2/d!t;V.

In any case,t is the equilibration time. Takingt@t from
Eqs.~24! and ~25! it follows that

C~kW ,t !5Ceq~kW !5
T

k21j22
, ~26!

where the equilibrium correlation lengthj is related tot by
j252t. Hence, using Eq.~A9! TC may be identified with the
static transition temperature separating the high-tempera
phase wherej is independent of the volume from the low
temperature phase wherej diverges with the volume:

j;H S T2TC

TC
D 21/(d22)

for 0,
T2TC

TC
!1

V1/d for T5TC

V1/2 for T,TC .

~27!

Finally, let us comment on the nature of the equilibriu
state. As Eq.~21! shows, eachkW mode is Gaussianly distrib
uted, with zero average, at any time including at equilibriu
Hence, in the low-temperature phase the system does
order. The static transition consists in thekW50W mode devel-
oping a macroscopic variance as the temperature is low
from above to belowTC @11#:

^w0
2&;H V for T.TC

V(d12)/d for T5TC

V2 for T,TC .

~28!

For the sake of illustration let us considerT50, where from
Ceq(kW )5aVdkW ,0 it follows that:

rms@w~kW !#5
1

A2paV2
e2w0

2/2aV2

)
kWÞ0

d„w~kW !…. ~29!
3-3
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IV. THE CONNECTION BETWEEN THE TWO MODELS

In order to explore how the spherical and the me
spherical models are connected, let us rewrite Eq.~21!, fol-
lowing the same steps which led to Eq.~14! and obtaining

rms„@w~kW !#,t…5E dCrms~C,t !rms„Cu@w~kW !#,t… ~30!

which yields the relation between the two models since
conditional probabilityrms„Cu@w(kW )#,t… enforces the con-
straint of Berlin and Kac. Actually, to be precise, this qua
tity is not exactly the same as the spherical model distri
tion, since in Eq.~15! the constraint is imposed on th
Gaussian model, while here it is imposed on the me
spherical model. In the following we will ignore the diffe
ence.

Looking at Eq.~30! the state in the mean-spherical mod
can be regarded as a mixture of states in the spherical m
with constraint values weighted byrms(C,t). The properties
of the two models are the same if this weight is narrow
peaked about the mean value^C&5a, while discrepancies
are to be expected if the weight spreads over significa
different values ofC. Therefore, the key quantity controllin
the connection between the two models isrms(C,t). The
corresponding characteristic function is

Q~x!5^eixC&5e2(1/2)(
kW

ln[12(2/V) ixC(kW ,t)] , ~31!

where ^•& stands for the average computed with Eq.~21!.
The moments of C are then given by ^Cn&
5@dnQ(x)/d( ix)n#)x50 and, in particular,

^C~ t !&5
1

V (
kW

C~kW ,t !5a, ~32!

^dC2~ t !&5^C2~ t !&2^C~ t !&25
1

V2 (
kW

C2~kW ,t !. ~33!

Let us first consider what happens at equilibrium by lett
t→` and inverting Eq.~31!. Following Kac and Thompson
@5# and using Eqs.~26! and ~27! for T.TC one finds

rms~C!5
1

A2ps
e2(C2a)2/2s ~34!

with s5(1/V2)(kWCeq
2 (kW ). For large volume this can be re

written as s5(2/V)*@ddk/(2p)d#e2k2/L2
/(k21j22)2 and

since the integral is finite we have^dC2&;O(1/V). Instead,
for T,TC one finds

rms~C!

5H 0 for C,aT/TC

e2(C2aT/TC)/2a(12T/TC)

A2p~C2aT/TC!a~12T/TC!
for C.aT/TC ,

~35!
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which gives

^dC2&52@a~12T/TC!#2. ~36!

Hence, we have that in going from the high-temperat
to the low-temperature phase the fluctuations ofC from mi-
croscopic become macroscopic and, as anticipated ab
significant differences must be expected in the equilibri
states of the two models. In order to see this explicitly, let
consider T50 where the equilibrium state in the mea
spherical model is given by Eq.~29!. The joint probability of

@w(kW )# andC is given by

rms„@w~kW !#,C…5
1

A2paV2
e2w0

2/2aV2

)
kÞW 0

d„w~kW !…

3dS C2
1

VE dxWw2~xW ! D ~37!

which, due to the presence of thed functions forkWÞ0W , can
be rewritten as

rms„@w~kW !#,C…5
1

A2paC
e2C/2a)

kWÞ0

d„w~kW !…

3
V

2AC
@d~w02VAC!1d~w01VAC!#.

~38!

Identifying the first factor in the right hand side with theT
→0 limit of Eq. ~35!, we find the conditional probability

rms„Cu@w~kW !#…5
1

2
@d~w02VAC!

1d~w01VAC!#)
kWÞ0

d„w~kW !…, ~39!

which gives theT50 state in the spherical model with
valueC of the constraint. Comparing Eqs.~29! and~39!, the
difference in the low-temperature equilibrium states of t
two models is quite evident. While in the mean-spheri
model w0 is Gaussianly distributed, in the spherical mod
the probability ofw0 is bimodal. The large fluctuations~36!
around the average ofC do appear belowTC since it is
necessary to spread out the weight ofC in order to recon-
struct a Gaussian distribution by mixing bimodal distrib
tions.

This difference in the structure of the low-temperatu
equilibrium states shows up quite clearly in the correspo
ing overlap-probability functions@8#

P~q!5E d@w#d@w8#r@w#r@w8#d~Q@w,w8#2q!,

~40!

where
3-4
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Q@w,w8#5
1

VE dxWw~xW !w8~xW !5
1

V2 (
kW

w~kW !w8~2kW !.

~41!

Keeping on considering, for simplicity, theT50 states and
looking at the characteristic functionQ(l)5*dqP(q)eilq

from Eqs.~29! and~39! with C5a it follows that~Appendix
B!:

Qms~l!5
1

A11~la!2
~42!

and

Qs~l!5cos~la!. ~43!

Inverting, we have

Pms~q!5
1

ap
K0~ uqu/a!, ~44!

whereK0 is a Bessel function of imaginary argument and

Ps~q!5
1

2
@d~q2a!1d~q1a!#. ~45!

The plots of these two functions in Fig. 1 illustrate the gre
difference in the ground states.

Having analyzed the properties in the final equilibriu
states, let us now go back to the dynamical problem. No
that att50, with C(kW ,0)5D, from Eq. ~31! it follows that
rms(C,t50) is given by Eq. ~34! with s
52D2Ld/(4p)d/2V. Hence, in a quench toT.TC fluctua-
tions of C remain microscopic throughout the time evol
tion, while in a quench toT,TC at some point̂ dC2(t)&
must cross over fromO(1/V) to O(1). Again, for simplicity,
we show this in the case of theT50 quench. From Eq.~25!
in the limit T→0 we have

FIG. 1. TheT50 overlap probability function for the spherica
and the mean-spherical models witha51.
06611
t

e

C~kW ,t !5
D~ t/t0!d/2e22k2t

@11~ t/t* !d/2#
, ~46!

wheret05(2L2)21. Inserting this into Eq.~33! we find for
t/t0@1 andt* /t0@1,

^dC2~ t !&52a2~ t/t* !d
@11~ t* /2t !d/2#

@11~ t/t* !d/2#2
~47!

which gives

^dC2~ t !&5H 2a2~ t/2t* !d/2 for t!t*

2a2@12~2222d/2!~ t* /t !d/2# for t@t* .
~48!

Therefore,t* is the crossover time separating the time
gime t!t* with ^dC2(t)&;O(1/V) from the time regime
t@t* with ^dC2(t)&;O„(t* )2d/2

…;O(1).
We may now comment on the noncommutativity of t

limits. If V is kept finite and the limitt→` is taken first, the
system equilibrates and the two models at equilibrium
equivalent aboveTC but not below. This conclusion remain
valid if, after having reached equilibrium, the limitV→` is
taken. If, instead, the limitV→` is taken first, then̂dC2&
;1/V for quenches both above and belowTC , since in the
latter case the crossover timet* diverges. Hence, the two
infinite volume models are always equivalent during rela
ation. Therefore, as stated in the Introduction, all dynami
quantities are the same in the two models if theV→` limit
is taken from the outset.

V. CONCLUDING REMARKS

We have analyzed the relationship between the sphe
and the mean-spherical models, at equilibrium and dur
relaxation from an initial high-temperature state to a low
temperature state. By monitoring the behavior of the fluct
tions ofC we have found that the two models are equivale
in a quench aboveTC , while discrepancies arise in a quenc
below TC if the volume is kept finite and the time is large
than the crossover timet* ;V2/d. In the infinite volume limit
t* diverges and the relaxation dynamics is the same in
two models for all times. In particular, the integrated auto
sponse function

x~ t,tw!5E
tw

t

dt8E ddk

~2p!d
R~kW ,t,t8!e2k2/L2

~49!

is expected to have the same form in both models. As an
pated in the Introduction, this poses an interesting prob
when considering the connection between statics and dyn
ics.

In order to explain this it is necessary to expand som
what on the behavior of the autocorrelation and respo
functions in a phase ordering process@9,10,13#. The basic
feature is the split of both these quantities into the sum o
stationary and an aging contribution:

C~ t,tw!5Cst~ t2tw!1Cag~ t/tw!, ~50!
3-5
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x~ t,tw!5xst~ t2tw!1xag~ t,tw!, ~51!

respectively, due to thermal fluctuations and defect dyna
ics. The time scales of these contributions are widely se
rated. In particularCst(t2tw) decays rapidly fromM0

22M2

to zero ~where M is the spontaneous magnetization at t
temperature of the quench andM0 is the zero temperatur
spontaneous magnetization! while Cag(t/tw) decays fromM2

to zero on a much longer time scale. The stationary term
Eqs.~50! and ~51! are related by the equilibrium fluctuatio
dissipation theorem

Txst~ t2tw!5Cst~ t,t !2Cst~ t2tw!. ~52!

Rewriting the right hand side in terms of the full autocorr
lation function one finds@9,10#

Txst~ t2tw!5H M0
22C~ t,tw! for M2<C<M0

2

M0
22M2 for C<M2,

~53!

which yields

2T
]2xst~C!

]C2 U
C5q

5d~q2M2!. ~54!

The next statement is that the aging contribution of
response function obeys the scaling form

xag~ t,tw!5tw
2ax̂~ t/tw! ~55!

and therefore vanishes fortw→` if a.0. As of yet knowl-
edge of the exponenta remains limited. According to heuris
tic arguments@9,12# a ought to coincide with the exponentu
controlling the defect densityr(t);t2u, namely,u51/2 for
a scalar order parameter andu51 for a vector order param
eter @13#, independent of dimensionality. However, exa
analytical results for the one-dimensional Ising mod
@14,15#, careful numerical computations@10# for the Ising
model in dimensionsd52,3,4, and exact analytical resul
for the largeN model@16# ~which is equivalent to the mean
spherical model! give the nontrivial behavior

a5H uS d2dL

dU2dL
D for d,dU

u for d.dU

~56!

with logarithmic corrections atd5dU . HeredL51 anddU
53 for the Ising model, whiledL52 anddU54 in the large
N case. What happens atd5dL , wherea50, has been ana
lyzed in detail in@15,10,16#. Let us here considerd.dL ,
wherea.0 and the aging contribution of the response fun
tion does asymptotically vanish. Then, putting together E
~3! and ~54! one finds@16,17#

P̃~q!5d~q2M2!. ~57!

Now, as stated in the Introduction, if stochastic stabil
holds P̃(q) equals the overlap probability functionP(q) of
06611
-
a-

in
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e

t
l

-
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the unperturbed system, up to the effects of global symm
tries which might be removed by the perturbation. This
what usually happens in a phase ordering system, like
Ising model, where the perturbation breaks the up-do
symmetry and one has

P̃~q!52u~q!P~q!. ~58!

Even if only one-half of the states are kept in the order
rameter functionP̃(q) obtained from dynamics, by using th
symmetryP(q)5P(2q) it is obviously possible to recove
the full unperturbed overlap function. Indeed, this is wh
takes place in the spherical model, where the unpertur
overlap function~45! is given by the sum of twod functions
and P̃(q)52u(q)Ps(q) holds. Not so in the mean-spheric
case, where the unperturbed overlap function~44! is non-
trivial and P̃(q)Þ2u(q)Pms(q) as can be seen at a glanc
from Fig. 1. Clearly, in the latter casePms(q) cannot be
reconstructed from knowledge ofP̃(q). Therefore, stochas
tic stability does not hold in the mean-spherical model.
might be interesting to investigate this point in other mod
treated with the spherical constraint.
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APPENDIX A

In order to determineY(t) explicitly, let us rewrite Eq.
~17! by separating out of the sum thekW50W term, as we ex-
pect it to become macroscopically occupied at low tempe
ture:

C~kW50,t !

V
1

1

V
(
kWÞ0W

C~kW ,t !5a. ~A1!

For large volume the sum may be approximated by an in
gral and using Eqs.~19! and ~20! we find

aY2~ t !2
2T

V E
0

t

dt8Y2~ t8!22TE
0

t

dt8 f S t2t81
1

2L2D Y2~ t8!

5DF 1

V
1 f S t1

1

2L2D G , ~A2!

where

f S t1
1

2L2D 5E ddk

~2p!d
e22k2(t21/2L2)

5F8pS t1
1

2L2D G2d/2

. ~A3!

The above equation can be solved by Laplace transfor
tion, obtaining
3-6
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L~z!5
D@1/V1zh~z!#

az22T@1/V1zh~z!#
, ~A4!

whereL(z) and h(z) are the Laplace transforms ofY2(t)
and f (t11/2L2), respectively. The large time behavior
Y2(t) is controlled by the smallz behavior ofL(z). For 2
,d,4 we have

h~z!5K1gzd/2211O~z!, ~A5!

where K5(4p)2d/2Ld22/(d22) and g52(8p)2d/2G(1
2d/2) are positive constants. Inserting them in Eq.~A4! we
have

L~z!5
D@1/V1Kz1gzd/2#

a~12T/TC!z22Tgzd/222T/V
, ~A6!

where TC5a/2K5(4p)d/2a(d22)/2Ld22. Inverting the
Laplace transform we have

Y2~ t !5Bet/t1I ~ t !, ~A7!

where the first contribution comes from the residue at
single pole atx051/t on the positive real axis and

I ~ t !5
1

2p i E0

`

dx@L~xe2 ip!2L~xeip!#e2xt ~A8!

is the contribution from the cut along the negative real ax
Looking for the zero of the denominator of Eq.~A4! we find

t55
F a

2TCg
~12T/TC!G2/(22d)

for 0,
T2TC

TC
!1

~gV!2/d for T5TC

a

2T
~12T/TC!V for T,TC ,

~A9!

and computing the residue

B5Da$2Tt@a~d/221!~T/TC21!1dTt/V#%21.
~A10!

For T.TC the exponential dominates and the contributi
from the cut can be neglected in Eq.~A7!, since to leading
orderB and t are independent of the volume. Not so forT
<TC , where taking into account the contribution from th
cut we have

Y2~ t !5B$et/t1~ t/t* !2v@16~ t/ t̃ !f#% ~A11!

with

v5H 22d/2 for T5TC

d/2 for T,TC ,
~A12!

f5H d/2 for T5TC

1 for T,TC ,
~A13!
06611
e

.

B55
DV124/d

2TC
2 g4/d

for T5TC

D

aV
~12T/TC!22 for T,TC ,

~A14!

t̃ 5H 1

8p F ~d/221!G2~22d/2!V

2 cos~dp/2!G~22d/2!G
2/d

for T5TC

Fa~12T/TC!G~d/2!

4TG~d/221!V G for T,TC ,

~A15!

t* 5H @~d22!2D22~8p!d22g8/d#1/(d24)V2/d for T5TC

V2/d

8p
for T,TC ,

~A16!

and where in Eq.~A11! the 1 and 2 signs apply toT
5TC and T,TC , respectively. Notice that in all casest*
<t and t̃>t* ; therefore the dominant contribution is give
by

Y2~ t !;H t2v for t,t*

et/t for t.t* .
~A17!

APPENDIX B

Inserting Eq.~29! into the definition~40! we obtain for
the overlap function in the mean-spherical model atT50,

Pms~q!5
1

2paV2E dw0dw08e
2(w0

2
1w082)/2aV2

dS w0w08

V2
2qD .

~B1!

The corresponding characteristic function is given by

Qms~l!5
1

2paV2E dw0dw08 expH 2
1

2aV2
~w0

21w08
2

22ialw0w08!J ~B2!

and, going over to polar integration variables, one finds

Qms~l!5
1

2paV2E0

2p

dqE
0

`

drr

3expH 2
r 2

2aV2
~122ial sinq cosq!J

5
1

pE0

2p dq

22aleiq1ale2 iq
. ~B3!

This integral can be rewritten in the form (1/ip)rgdz/(2z
2alz21al) whereg is a circle of radius 1 with center a
3-7
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the origin of the complex plane. Since there is a simple p
at z05(12A11a2l2)/al insideg we obtain

Qms~l!5
1

A11~la!2
~B4!

and inverting the Fourier transform we find

Pms~q!5
1

2paE2`

`

dx
e2 i (q/a)x

A11x2
. ~B5!
tt

06611
leTaking into account that there are branch points at6 i and
that the integration contour is closed in the negative ima
nary half plane forq.0 and vice versa forq,0, eventually
we obtain

Pms~q!5
1

paE1

`

dy
e2(uqu/a)y

Ay221
5

1

pa
K0S uqu

a D ~B6!

whereK0 is a Bessel function of imaginary argument.
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