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Relaxation and overlap-probability function in the spherical and mean-spherical models

Nicola Fuscé and Marco Zannetti
Istituto Nazionale per la Fisica della Materia, Unit@i Salerno, and Dipartimento di Fisica “E.R.Caianiello,”
Universitadi Salerno, 84081 Baronissi (Salerno), Italy
(Received 24 July 2002; published 11 December 2002

The problem of the equivalence of the spherical and mean-spherical models, which has been thoroughly
studied and is understood in equilibrium, is considered anew from the dynamical point of view during the time
evolution following a quench from above to below the critical temperature. It is found that there exists a
crossover timet* ~V?? such that fort<t* the two models are equivalent, while for-t* macroscopic
discrepancies arise. The relation between the off equilibrium response function and the structure of the equi-
librium state that usually holds for phase ordering systems is found to hold for the spherical model but not for
the mean-spherical one. The latter model offers an explicit example of a system which is not stochastically
stable.
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[. INTRODUCTION are negligible. Indeed, above the critical temperaiigeone
has the usual behavior for thermodynamic quantiié¥ ?)
Let us consider a system with scalar continuous order-1/. Not so belowT ¢, where fluctuations o¥ turn out to
parameterp(X) in a volumeV and Hamiltonian be finite and independent of the voluré¥?)~ o.
An important consequence of this, as we shall see in the
.1 . . following, is that the nature of the mixed state beldw is
H[(P(X)]:Ef dx[(Ve)>+re*(x)], (1) quite different in the two models. It is then interesting to
v investigate whether the two models are equivalent or not
when considering time dependent properties in the relaxation
process following a quench from above to below the critical
point. This is a relevant question since, in practice, dynamics
can be solved only in the mean-spherical case and in the
W= i f d;(‘pz()g) (2) literature i.t is taken for granted tha.t the mean-spherical form
Viv of dynamics applies to the spherical case as well. On the
basis of the previous considerations, clarification of this
and computing equilibrium properties with the Gaussianpoint amounts to analyzing the time evolution(@&¥?). As
weight py ¢]=(1/Zg)e- “DHI¢l under the microcanonical we shall see, this depends on the order of the litritse and
constraintV = «, where « is a given number. The mean V—o; namely, it turns out that i¥/ is kept finite during the
spherical model of Lewis and Wanni€2], instead, is ob- relaxation there is a crossover from the preasymptotic behav-
tained by imposing the constraint in the mean, or canonicallyor (s¥?2)~ 1/ to the asymptotic onésW¥2)~ o with the
(¥)=a, which makes the model considerably easier tocrossover time* ~V?4, Instead, ifV— from the outset,
solve. The spherical model was originally introduced by Ber-then(5W?2) stays negligible for any finite time sind& di-
lin and Kac as an exactly soluble model displaying criticalverges. In any case, in the scaling regimet*, the time
phenomena. Subsequently, the enforcement of a sphericdépendent evolution is identical in the two models, as usu-
constraint(in either form, microcanonical or canonitan  ally assumed.
the free part of nonlinear problems has become an extremely Although reassuring, this conclusion opens an unexpected
useful and practical way to generate mean-field approximaand interesting problem when it comes to testing the connec-
tions. tion between static and dynamic properties introduced by
However, despite the great popularity of the method, it isCugliandolo and Kurchaf6] for mean-field spin glasses and
usually overlooked that the equilibrium properties of the twothen established in general by Fraatzal. [7] for slowly
models, as was recognized early on, coincide above but notlaxing systems. The dynamic quantities are the autocorre-
below the critical point. The origin of the discrepancy waslation function C(t,t,) and the integrated linear response
clarified first by Lax[3] and further investigated by Yan and function y(t,t,), while equilibrium properties are encoded
Wannier[4]. Finally, Kac and Thompsofb] showed how to into the overlap-probability functioR(q) [8]. The statement
connect the averages in the two models. It is easy to undefs that, if x(t,t,,) depends on time through the autocorrela-
stand that the microcanonical and canonical constraints amgon function y(C(t,t,,)), then one has
equivalent as long as the fluctuatiofgW?)=(W?2)—(W¥)?

wherer=0. The spherical model of Berlin and Kat] is
obtained by considering the extensive random variable

d2x(C) -
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whereP(q) is the overlap-probability function in the equi- and taking averages over the initial state and thermal noise,
librium state obtained when the perturbation giving rise tofrom Eqg. (7) follows <<p(k t))=0, <<p(k t)o(k', t))
x(t,ty) is switched off. Therefore, the unperturbed overlap=cC(k,t)Vé;, i o, where the equal time structure factor is
probability P(q) can be recovered from the dynamics if given by
P(q) coincides with or is simply related ®©(q). This hap-

pens for stochastically stable systefii$ Formulated origi-

nally in the context of glassy systems, this connection be-

tween statics and dynamics applies also to phase ordering
processes in nondisordered systd@k A detailed account With the initial condition(8) and the linear equatiofb), the

of the latter case can be found in REE0]. Now, the inter-  configuration[ ¢(k,t)] executes a zero average Gaussian
esting point is that the spherical and mean-spherical modelsrocess whose probability distribution is given by

do share the same relaxation properties, and therefore the
samey(C) and the sam&(q), while the corresponding un-
perturbed overlap probabilities are profoundly different. In

particular,P(q) can be recovered frof(q) in the spherical ~ B N

model, but not in the mean-spherical one. whereZ(t) = [ d[ ¢(K) Je” ¥2)Zke(C kD= From Eq,
The paper is organized as follows. In Secs. Il and Il the(10) one can compute the one-time properties of the Gauss-

relevant properties of the spherical and mean-spherical modan model, including those at equilibrium obtained by letting

els are presented. The relation between the two models— .

is discussed in Sec. IV and comments on the connection Let us next define the joint probability of a configuration

between statics and dynamics are made in the concluding,(k)] and a random variabl@ by

Sec. V.

o T
CkD=Ry(K DA+ -[1-Ry(KD)]. (9)

poLe(R)1,0= —e “w2 2 e kDo, (10

. . 1 .
IIl. SPHERICAL MODEL pg([w(k)],‘P,t)=pg([¢(k)],t)5( W— v > |<P(k)|2) :
k
The dynamical evolution is described by the Langevin (11
equation i
) Clearly, py([ ¢(K)],t) is recovered by integrating over,
de(X,t) OH[ ¢] - while the probability of¥ is given by
=-—=__+tnxt), 4
ot Sp(x,) N i
pg(‘lf,t)=f dle(K) 1pg([@(K)], W t). (12

Wheren(i,t) is a Gaussian white noise. Taking faf ¢] the
Gaussian modell) and Fourier transforming with respect to

space, we have Introducing the probability of ¢(k)] conditioned to a given

value of ¥,

dp(K,t)
ot

= — oK) + (k) (5) _ - pgle(K)], W)
v K]t)y=———— 13
with w,=k?+r and .
we may also write
(n(K,1))=0, . .
pole(RLO= | OV pg¥.0pgPlp(R1D. (19
(n(KO) (K" 1)) =2TV& ko8t —t"), (6)

_ ) Notice that conditioning with respect @ is tantamount to
whereT is the temperature of the quench. Integrating®.  imposing the spherical constraint. Hence, the probability dis-
we obtain tribution for the Berlin-Kac spherical modEgl] can be writ-

t ten as
ek =RyK Do (K0)+ [ dUR(K -t m(K.), ) ]
’ o ° . (K] ta)=pg(¥=alle(K]D). (15

where Rg(IZ,t)=e“"k‘. Considering an infinite temperature Ml MEAN-SPHERICAL MODEL

initial state with As stated in the Introduction, the mean-spherical model is
. obtained by imposing the constraint in the mean
(¢(k,0))=0, (IN?) 2| o(K)|?)=a. This can be done by the Lagrange
R R multiplier method or, which is the same, by modifying Eq.
(@(k,00¢(k",00)=AV5i ¢ o, (80  (b), letting the parametar be a function of time,
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de(K,t) R 9 . A 2 2
———=—[K2+r(t)]e(k,t)+ n(k,t), 16 C(k,t)= e 2k ity — 1 g 2(k"+12nt
g [ (O ]e(k,t)+ n(k,t) (16) (k=5 k2+1/27[ ]
24
wherer (t) is to be determined self-consistently through the 24
constraint, which can be rewritten as and forT<T,
1 _
v > Ckb=a. 17 LA (ttr)ee A
k C(k,t)=

B 1+ (ttr)@e’7]
The structure of the solution of the equation of motion re-

mains the same: 1+ (t'/tr )t

t !
+2Tfﬁ dt’e 2Kt jpy e
t

¢ 1+ (t/t*)wel'
ek =Rk LO@(K O+ [ Rof KLt n(K),
0 (25
(18) )
wheret is the microscopic time necessary to elapse for Eq.
where now (22) to apply. Notice that from EqA9) and from Eq.(A16)
Y(t) it follows thatt* and r are bothO(V?9) for T=Tc, while
RodK,t,t))= e K-t (199 for T<Tc andd>2 the two time scales are separated with
Y(t) t* ~ V<V,

) Q) t et erer . In any casey is the equilibration time. Taking> 7 from
with Y(t)=e and Q(t)=[qdt'r(t"). The equal time Egs.(24) and (25) it follows that
structure factor is given by

C(lz,t)=ans(lz,t,O)AwL2Tftdt’R§15(I2,t,t’), (20) C(K,1)=Ceq(k)= (26)
0

k2+¢ 2

where, clearly, the initial value A must also where the equilibrium correlation lengthis related tor by

be consistent with Eq.(17). This requires V''SgA  £2=27 Hence, using EGA9) T may be identified with the

= [[d%/(2)%]exp(~k¥A?)A=a where, as we shall always static transition temperature separating the high-temperature
do in the following, in transforming the sum ovkrinto an ~ phase wheré is independent of the volume from the low-
integral we make explicit the existence of a high-momentuntemperature phase whefediverges with the volume:

cutoff A. Hence, eventuallA = (47)¥?A ~%. Finally, the

probability distribution keeps the Gaussian fofh®) T-Tc| Y@=2) T-Tc
for 0< <1
. 1 . R Tc c 5
prdle(K)1.0= 7 e“l’z\”zg #(C khe(=k), ) VI for T=T, @
m:
(21) VY2 for T<T..
where nowC(k,t) is given by Eq.(20). Finally, let us comment on the nature of the equilibrium

In order to have an explicit solution the functiof(t)  giate As Eq(21) shows, eactk mode is Gaussianly distrib-
must be determined. This is done in Appendix A where, for o1 with zero average, at any time including at equilibrium.

simplicity, the computation has been limited to the case 2Hence, in the low-temperature phase the system does not

<d<4. i i . o L 2
d=4. For large time one finds order. The static transition consists in tke 0 mode devel-
Bel/" for T>Te oping a macroscopic variance as the temperature is lowered

Y2(t)= from above to belovf - [11]:
® BleV ™+ (t/t*)" @] for T<T., (22 c [11]
where VvV for T>T¢
(p2)~4 VU2 for T=T¢ (28)
20972 V2 for T<Te.

Te (4m P2 (d—2) a (23
For the sake of illustration let us conside+ 0, where from
and the expressions f@, r, w, andt* are listed in Appen- Ceq(R)ZaV&Zo it follows that:
dix A. Here we point out thaB and = are independent of the ’
volume for T>T., while B vanishes and- diverges asv 1 .
—o for T<Tc. Inserting Eq.(22) in Eq. (20), for T>T¢ )= —— @ ¢gl2aV <
ol pnd¢(k)]=——=e I1 s(e(k). (29

k#0
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IV. THE CONNECTION BETWEEN THE TWO MODELS which gives

In order to explore how the spherical and the mean- ST =2l a(1—T/To) 12 36
spherical models are connected, let us rewrite (B4, fol- { )=2La )]’ (36

lowing the same steps which led to E34) and obtaining Hence, we have that in going from the high-temperature

to the low-temperature phase the fluctuationaofrom mi-
Pms([‘P(E)]vt):f AV prd ¥, 1) pmd¥|[@(K)],t) (30)  croscopic become macroscopic and, as anticipated above,
significant differences must be expected in the equilibrium

which yields the relation between the two models since thetates of the two models. In order to see this explicitly, let us

condional probabity ([ ¢(0]) enforces the con- Conoee G where he equibrian s e, mean
straint of Berlin and Kac. Actually, to be precise, this quan-_" - o

tity is not exactly the same as the spherical model distribul #(K)] and¥ is given by

tion, since in Eq.(15 the constraint is imposed on the .

Gaussian model, while here it is imposed on the mean- > _ — 0220V >
spherical model. In the following we will ignore the differ- Pl e(k)]. W)= 2maV e kL;[O 3(e(k))

ence.

Looking at Eq.(30) the state in the mean-spherical model
can be regarded as a mixture of states in the spherical model
with constraint values weighted by, (W ,t). The properties
of the two models are the same if this weight is narrowlyyhich, due to the presence of tidefunctions fork# 0, can
peaked about the mean valg#)=«, while discrepancies pe rewritten as
are to be expected if the weight spreads over significantly
different values off’. Therefore, the key quantity controlling
the connection between the two modelspis{¥,t). The  p [ ¢(K)],¥)=

X Ol (37)

W 1fd929
v Xe“(X)

e V2] a(p(k))

corresponding characteristic function is V2maW k=0
O (x)=(e*7) =g~ WA M1-@VIXCKO] (31) XL[5(¢O—VN)+ 8o+ VAT
k 2w
where (-) stands for the average computed with E21). (38)
The moments of ¥ are then given by (V")
=[d"®(x)/d(ix)"])x=o and, in particular, Identifying the first factor in the right hand side with the

. —0 limit of Eq. (35), we find the conditional probability

(W()=3 2 Ckb=a, (32) .
. .

P ¥|[@(K)])= 5[ 8(¢o— V)

<6\P2<t)>=<*lf2(t>>—<*1'<t)>2=i2 C¥(k,t). (33 .
V25 ’ +8(@o+ VNI [T 8(e(k)), (39

k#0
Let us first consider what happens at equilibrium by letting ) , ) ,
t—o and inverting Eq(31). Following Kac and Thompson which gives theT=0 state in the spherical model with a

[5] and using Eqs(26) and (27) for T>T one finds valueW of the constraint. Comparing Eq29) and(39), the
difference in the low-temperature equilibrium states of the

two models is quite evident. While in the mean-spherical
e (V-2 (34 model ¢, is Gaussianly distributed, in the spherical model
o the probability ofeg is bimodal. The large fluctuation86)

, ) 9 o ] around the average o¥ do appear belowl since it is
with o= (1) Z(Ce(k). For large vgluzme this can be re- necessary to spread out the weightdfin order to recon-
written as o= (2N) [[d%/(27)%e ¥/A/(k2+£72)2 and  struct a Gaussian distribution by mixing bimodal distribu-
since the integral is finite we hay@¥?2)~O(1/). Instead, tions.

P V)=

for T<T. one finds This difference in the structure of the low-temperature
equilibrium states shows up quite clearly in the correspond-
pmd V) ing overlap-probability function§s]
0 for ¥V<aTl/Tc
_ e~ (¥ —aT/To)2a(1-T/Tg) P(Cl)=f dieldlelp[¢lpl¢'16(Qle.¢"]1—q),
for ¥>aT/Te, (40)

V2 (¥ —aT/To)a(1-TITe)
(35  where
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2

C(IZ t A(t/to)d/ZG—Zkzt
—P @ . =
~ [1+(t/t%)92]

(46)

wherety,=(2A2%) 1. Inserting this into Eq(33) we find for
| t/tg>1 andt*/tp>1,

Z . [1+(t*/2t)9]
K SV2(1))=2a(t/t* ) 4
_ (SWA(t))=2a"(t/t*) (1 ()] (47)
051 - which gives
. 1 , 2a2(t/2t*)9?  for t<t*
=1 . | . ) — (oW(t)= 2a[1—(2—2"92)(t*/1)9?] for t>t*.
2 1 0 1 2 (48)

Therefore,t* is the crossover time separating the time re-

FIG. 1. TheT=0 overlap probability function for the spherical gime t<<t* with <5\I;2(t)>~0(1/\/) from the time regime

and the mean-spherical models witt+ 1. t>t* with (5\1'2(t)>~0((t*)‘d/2)~0(1).

We may now comment on the noncommutativity of the

1 . . N 1 . _ limits. If V is kept finite and the limit— oo is taken first, the
Qle,¢']= \—/J' dxe(X) e’ (x)= V2 > e(K)e'(—K). system equilibrates and the two models at equilibrium are

K (41) equivalent abové  but not below. This conclusion remains
valid if, after having reached equilibrium, the limit— o is

. - . . 2
Keeping on considering, for simplicity, tHE=0 states and t@ken. If, instead, the limiV— is taken first, ther{ oW*)
looking at the characteristic functio® (\)=fdqP(q)e'* ~ 1N for quenches both above and beldw, since in the

from Eqgs.(29) and(39) with ¥ = a it follows that(Appendix !at_te_r case the crossover tiné divergeg. Hence, 'the two
B): infinite volume models are always equivalent during relax-

ation. Therefore, as stated in the Introduction, all dynamical
quantities are the same in the two models if Yhe oo limit

Omd\) = ; (42) s taken from the outset.
1+(\a)?
g V. CONCLUDING REMARKS

an

We have analyzed the relationship between the spherical

O(N)=cog\a). (43) and the mean-spherical models, at equilibrium and during

relaxation from an initial high-temperature state to a lower-

Inverting, we have temperature state. By monitoring the behavior of the fluctua-

tions of ¥ we have found that the two models are equivalent
1 in a quench abové., while discrepancies arise in a quench
Pmd @)= ——Ko(|ql/a), (44 below T¢ if the volume is kept finite and the time is larger
than the crossover tim& ~ V24, In the infinite volume limit
t* diverges and the relaxation dynamics is the same in the
two models for all times. In particular, the integrated autore-
sponse function

whereKj is a Bessel function of imaginary argument and

1
P(a)= 5[~ a)+8(a+a)]. (45)

t di% . 2 2
X(t,tw)=f dt’f SR(Kk,t,t)e AT (49)
The plots of these two functions in Fig. 1 illustrate the great tw (2m)

difference in the ground states. is expected to have the same form in both models. As antici-

stalt_|easwlnegt Sgilg\fvedotgicpkr?g%gej Lnamﬁaﬁ'n?gégml'%g?g ated in the Introduction, this poses an interesting problem
' _ 90 y _ P : hen considering the connection between statics and dynam-
that att=0, with C(k,0)=A, from Eq.(31) it follows that  jcg.
Pms(‘léytd: 0) Js  gven by Eq. 34 with o In order to explain this it is necessary to expand some-
=2A°A%/(4m)"V. Hence, in a quench t>Tc fluctua-  \hat on the behavior of the autocorrelation and response
tions of ¥ remain microscopic throughout the time evolu- fynctions in a phase ordering procg€s10,13. The basic

tion, while in a quench tar <T¢ at some poin{S¥*(t))  feature is the split of both these quantities into the sum of a
must cross over fror®(1/V) to O(1). Again, for simplicity,  stationary and an aging contribution:

we show this in the case of tile=0 quench. From Eq25)
in the limit T—0 we have C(t,ty) =Cglt—ty) + Caqt/ty,), (50
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x(tty) = xs(t—tw) + Xadtitw), (51)  the unperturbed system, up to the effects of global symme-
tries which might be removed by the perturbation. This is

respectively, due to thermal fluctuations and defect dynamwhat usually happens in a phase ordering system, like the
ics. The time scales of these contributions are widely sepasing model, where the perturbation breaks the up-down
rated. In particulaC(t—t,,) decays rapidly fromMZ—M?  symmetry and one has
to zero (where M is the spontaneous magnetization at the _
temperature of the quench ahdi, is the zero temperatgre P(q)=26(q)P(q). (58
spontaneous magnetizatjomhile C,(t/t,,) decays fromv _ _
to zero on a much longer time scagi(e The stationary terms iffVen if only one-half of the states are kept in the order pa-
Egs.(50) and (51) are related by the equilibrium fluctuation rameter functiorP(q) obtained from dynamics, by using the

dissipation theorem symmetryP(q) =P(—q) it is obviously possible to recover
the full unperturbed overlap function. Indeed, this is what
Txs(t—ty) =Cg(t,t) = Cy(t—t,). (52)  takes place in the spherical model, where the unperturbed

overlap function45) is given by the sum of tw@ functions
andP(q)=26(q) P<(q) holds. Not so in the mean-spherical
case, where the unperturbed overlap functidd) is non-
M%—C(t,tw) for M2$C$M(2) trivial and P(q)# 26(q)P,,{q) as can be seen at a glance
M2-M2  for C<M?2 (53)  from Fig. 1. Clearly, in the latter casB{(q) cannot be

0 S reconstructed from knowledge &(q). Therefore, stochas-
. . tic stability does not hold in the mean-spherical model. It
which yields might be interesting to investigate this point in other models

5 treated with the spherical constraint.
T I°xs(C)

dC?

Rewriting the right hand side in terms of the full autocorre-
lation function one find$9,10]

Txs(t—ty)=

=8(q—M?3). (54)
C=q

ACKNOWLEDGMENTS

The next statement is that the aging contribution of theNe:[rVC(I)Srkvz Olzrra\(,;\{[?speggﬁ![l?/aztu F,)\Ipé) rt§&g§?$9§g;%%eagnEMb§

response function obeys the scaling form MURST through PRIN-2000
Xadttw) =ty X (t/t,) (59 APPENDIX A
and therefore vanishes fof— if a>0. As of yet knowl- In order to determinef(t) explicitly, let us rewrite Eq.

edge of the exponemtremains limited. According to heuris-
tic argument$9,12] a ought to coincide with the expone#it
controlling the defect density(t)~t~?, namely,§=1/2 for

a scalar order parameter afie- 1 for a vector order param-
eter [13], independent of dimensionality. However, exact
analytical results for the one-dimensional Ising model C(k=00) - L E C(k,t)= (A1)
[14,15, careful numerical computatiod0] for the Ising Vv V k=0

model in dimensiongl=2,3,4, and exact analytical results

for the largeN model[16] (which is equivalent to the mean- For large volume the sum may be approximated by an inte-

(17) by separating out of the sum tte=0 term, as we ex-
pect it to become macroscopically occupied at low tempera-
ture:

spherical modglgive the nontrivial behavior gral and using Eqg(19) and(20) we find
d_dL ) 2 2Tft 2 ! 1 2
9 for d<d aY3(t)— — | dtY3(t)—2T [ dt'f{ t—t'+ — | Y4(t)
a= (dU_dL v (56) Vo 0 272
6 for d>dy 1 1
. o . =Al o+l t+—] |, (A2)
with logarithmic corrections al=d,,. Hered, =1 andd \Y 2A?
=3 for the Ising model, whilel, =2 anddy=4 in the large
N case. What happens @t=d, , wherea=0, has been ana- Where
lyzed in detail in[15,10,14. Let us here consided>d, , g
wherea>0 and the aging contribution of the response func- + i :J' d’k e 2K%(t-1/2A%)
tion does asymptotically vanish. Then, putting together Eqs. 2A2 (27)¢
(3) and(54) one findg[16,17 4
1
”ﬁ(q):b\(q_MZ) (57) = 87T(t+ W) (A3)

Now, as stated in the Introduction, if stochastic stabilityThe above equation can be solved by Laplace transforma-
holds P(q) equals the overlap probability functidh(q) of  tion, obtaining
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A[IN+2zh(2)]

L= T oTINT D]

(Ad)

where £(z) andh(z) are the Laplace transforms af(t)
and f(t+ 1/2A?), respectively. The large time behavior of
Y2(t) is controlled by the smalt behavior of£(z). For 2
<d<4 we have

h(z)=K+ yz%?"1+0(z2), (A5)
where K= (47) " %2A9-2/(d—2) and y=—(87) %2 (1

—d/2) are positive constants. Inserting them in E&4) we
have

A[IN+Kz+ yz9?]
a(1-T/Te)z—2Tyz%%—2T/V'

L(z)= (AB)

where Te=al2K=(4m)"a(d—2)/2A972,
Laplace transform we have

Inverting the

Y2(t)=Be'"+1(1), (A7)

where the first contribution comes from the residue at th

single pole atky= 1/7 on the positive real axis and

I(t)= Ziwifowdx[ﬁ(xe‘i”)—E(xe‘“)]e"“ (A8)

is the contribution from the cut along the negative real axis.

Looking for the zero of the denominator of E@\4) we find

2/(2—d) T-T

for 0< C<1

(1-TITe)

2TC
T= (’}’V)ZM

C
for T=T¢ (A9)

o
E(l—T/TC)V for T<Tc,

and computing the residue

B=Aa{2T a(d2—1)(T/Tc—1)+dTr/V]} L.
(A10)

For T>T¢ the exponential dominates and the contribution

from the cut can be neglected in E¢\7), since to leading
orderB and 7 are independent of the volume. Not so fbr

<Tc, where taking into account the contribution from the

cut we have
Y2(t)=B{eV T+ (t/t*) " “[ 1= (t/1)?]} (A11)
with
2—d/2 for T=T¢
“Tldrz for T<Te, (AL2)
d2 for T=T¢
=11 for T<Tc, (AL3)
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and where in Eq(Al1l) the +
=T and T<T., respectively. Notice that in all cas¢s

<7 andt=t*; therefore the dominant contribution is given

Pmdd )_

O \)= ———
md(N) o a
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AV1_4/d
—2T2 7 for T=T¢

B= A (A14)
—(1-TITe) 2 for T<Tc,
aV

(d2—1)T'?(2—d/2)V

2/d
} for T=T¢

_ | 87|2cogdm/2)T(2—d/2)
t:
a(1-TITo)I(d/2)
ATr(d—1nv | o T=Te.
(A15)
[(d_2)2A72(8,n_)d72,y8/d]1/(d74)v2/d for T:Tc
tr ={ y2d
ﬁ for T<TC,
(A16)

and — signs apply toT

te fort<t*

e7  for t>t*. (AL7)

Yz(t)~|

APPENDIX B

Inserting Eq.(29) into the definition(40) we obtain for
the overlap function in the mean-spherical modeT &t0,

€00<Pc')
2]

2
f d‘PodfP e ((p0+<p02)/2aV F) V2

(B1)

The corresponding characteristic function is given by

1
sz deodeg eXP{ -

—2ia)\<Po<P6)] (82

and, going over to polar integration variables, one finds

®ms()\):

2w
do
2)o

r2
xXexp —
2aV?

- 1 (2= dd
__f 2—are'V+arne B3)

o0
drr
0

(1-2ia\ sinf}cosﬁ)}

This mtegral can be rewritten in the form (4)¢$,dz/(2z
—aNZ?>+ a\) wherey is a circle of radius 1 W|th center at
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the origin of the complex plane. Since there is a simple polélaking into account that there are branch pointstatand

at zo=(1— 1+ a®\?)/a\ inside y we obtain that the integration contour is closed in the negative imagi-
nary half plane fog>0 and vice versa fog<<0, eventually
0. (\) 1 B4) we obtain
md JI+(ha)?
: . . . 1 (= e Uiy g I
and inverting the Fourier transform we find Pnd Q)= %L dyﬁz EKo(z) (B6)
w  grilala)x
Pmd(@) 2ma _wdx J1+x2° (5 whereK, is a Bessel function of imaginary argument.
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