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Dynamics of ballistic annihilation
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The problem of ballistically controlled annihilation is revisited for general initial velocity distributions and
an arbitrary dimension. An analytical derivation of the hierarchy equations obeyed by the reduced distributions
is given, and a scaling analysis of the corresponding spatially homogeneous system is performed. This ap-
proach points to the relevance of the nonlinear Boltzmann equation for dimensions larger than 1 and provides
expressions for the exponents describing the decay of the particle densityn(t)}t2j and the root-mean-square

velocity v̄}t2g in terms of a parameter related to the dissipation of kinetic energy. The Boltzmann equation is
then solved perturbatively within a systematic expansion in Sonine polynomials. Analytical expressions for the
exponentsj andg are obtained in arbitrary dimension as a function of the parameterm characterizing the small
velocity behavior of the initial velocity distribution. Moreover, the leading non-Gaussian corrections to the
scaled velocity distribution are computed. These expressions for the scaling exponents are in good agreement
with the values reported in the literature for continuous velocity distributions ind51. For the two-dimensional
case, we implement Monte Carlo and molecular dynamics simulations that turn out to be in excellent agree-
ment with the analytical predictions.

DOI: 10.1103/PhysRevE.66.066111 PACS number~s!: 05.70.Ln, 05.20.Dd, 73.23.Ad, 82.20.Nk
es
n
ri-

e
la
p
t-

tw
l-

a
is

n
cl
r-

n
la
ng
ap
bu
l
th

e

-

s

la-
n-

be-
re-

lso

of
-

e

ach
ot

n

n-
fol-
a-
is
stri-
he

le
I, a
rar-

f
he
n

I. INTRODUCTION

Ballistically controlled reactions provide simple exampl
of nonequilibrium systems with complex kinetics. They co
sist of an assembly of particles with a given velocity dist
bution, moving freely between collisions in ad-dimensional
space. In the simplest version of these models consider h
when two particles meet, they instantaneously annihi
each other and disappear from the system. Despite its ap
ent simplicity, this problem is highly nontrivial and has a
tracted substantial interest during the past years@1–10#. The
one-dimensional case where the particles can only have
velocities6c has been studied in a pioneering work by E
skens and Frisch@1#. In particular, they proved that for
symmetric initial velocity distribution, the particle density
decreasing, in the long-time limit, asn(t)}t2j}t21/2. The
case of general distributions in dimensiond51 was dis-
cussed by Piasecki@2#, who reduced exactly the annihilatio
dynamics to a single closed equation for the two-parti
conditional probability. Moreover, it was shown in the pa
ticular bimodal situation of a discrete velocity distributio
(6c) that in one dimension, important dynamical corre
tions are developing during the time evolution, invalidati
mean-field or Boltzmann-like approaches. This exact
proach was applied to the case of a three-velocity distri
tion by Droz et al. @3#, with the result that the dynamica
exponents were strongly depending upon the details of
initial velocity distribution.

No analytical solutions could be found for continuous v
locity distributions. In one dimension, Ben-Naimet al. @4,5#
have shown that the exponentj could depend on the behav
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ior near the origin of the initial velocity distribution. Thi
problem has been revisited by Reyet al. @6#. Based on the
exact theoretical approach@2,3#, a dynamical scaling theory
was derived and its validity supported by numerical simu
tions for several velocity distributions. This leads to the co
jecture that all continuous velocity distributionsf (v) that are
symmetric, regular, and such thatf (0)Þ0 are attracted in the
long-time regime towards the same distribution, and thus
long to the same universality class. This conjecture was
inforced by numerical simulations in two dimensions@10#.

The case of a continuous velocity distribution has a
been approached recently by Krapivsky and Sire@9#. Starting
from a Boltzmann equation, they investigated the decay
the particle densityn(t);t2j and the root-mean-square ve

locity v̄}t2g. They derived upper and lower bounds for th
exponents as well as their leading expansion in 1/d, valid in
high dimension. The main question with such an appro
concerns the validity of a Boltzmann equation. This is n
justified in the one-dimensional~1D! case and remains a
open problem in higher dimensions.

The purpose of this paper is to give a first-principles a
swer to this type of question. The paper is organized as
lows. In Sec. II, an original analytical derivation of the equ
tions governing the dynamics of ballistic annihilation
given. The hierarchy equations obeyed by the reduced di
butions are obtained. It is shown that in the Grad limit, t
hierarchy formally reduces to a Boltzmann-like form ford
.1. If the initial reduced distributions factorize, the who
hierarchy reduces to one nonlinear equation. In Sec. I
scaling analysis of the exact spatially homogeneous hie
chy is performed. The exponentsj andg are shown to de-
pend only on one parametera related to the dissipation o
energy. This scaling analysis turns out to be invalid for t
cased51 with discrete velocity distributions, but correct i
©2002 The American Physical Society11-1
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the continuous case. Strong arguments are given in favo
the validity of the Boltzmann approach for the cased.1 in
the long-time limit. The Boltzmann equation is then solv
within a systematic approximation based on an expansio
Sonine polynomials~Sec. III!. The first non-Gaussian correc
tions to the scaled velocity distribution are computed a
predictions for the exponentsj andg are explicitly worked
out as functions of the dimensiond and the parameterm
characterizing the small velocity behavior of the initial v
locity distribution: @ f (v,t50)}uvum for uvu→0]. These pre-
dictions for j and g are asymptotically exact for large d
mensions, and reproduce the 1/d correction to the mean-field
values. In 1D, they are in very good agreement with
exponents reported in the literature@9# at the Boltzmann
level. In 2D, we implement extensive direct simulatio
Monte Carlo methods~DSMC!, where the nonlinear Boltz
mann equation is solved, and molecular dynamics~MD!
simulations, where the exact equations of motion are in
grated~Sec. IV!. The agreement between the MD and DSM
routes confirms the validity of the Boltzmann approach, a
the decay exponents measured are in exceptionally g
agreement with the Sonine prediction. Conclusions
drawn in Sec. V. A preliminary account of part of the resu
presented here has been published elsewhere@10#.

II. EXACT RESULTS

A. Derivation of the hierarchy

Let V be a region of finite measure inR2d. We denote by

mk
V~r1 ,v1 , . . . ,r k ,vk ;t ! ~1!

the probability density for finding~at time t) exactlyk par-
ticles within V in the states (r j ,vj )PV, j 51,2, . . . ,k,
where r j and vj are the position and the velocity vector
respectively. The knowledge of the densitiesmk

V for all V
PR2d andk50,1,2, . . . defines entirely the state of the sy
tem. For a given regionV, the normalization condition read

m0
V~ t !1 (

k51

` E
V

dr1 dv1•••E
V

dr k dvk

3mk
V~r1 ,v1 , . . . ,r k ,vk ;t !51, ~2!

wherem0
V(t) is the probability of finding the region-V void

of particles at timet.
A necessary condition for the occurrence of a pair of p

ticles at the phase space points (r j ,vj ),(r i ,vi) at timet.0 is
that r i j 5r i2r j ,vi j 5vi2vj belong to the region of the phas
space with the characteristic function

x~r i j ,vi j ;t !5u~ ur i j u2s!$12u~r i j •vi j !

3u~s2Aur i j u22~r i j • v̂i j !
2!

3u~ uvi j ut2r i j • v̂i j

1As22ur i j u21~r i j • v̂i j !
2!%, ~3!
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wheres denotes the particle diameter,v̂i j is a unit vector in
the direction of the relative velocity, andu denotes the
Heaviside distribution. Indeed, moving backward in time, t
particles collide during the time interval (0,t) if and only if
the following three conditions are simultaneously satisfi
~i! r i j •vi j .0 ~particles approach each other!, ~ii ! s

.Aur i j u22(r i j • v̂i j )
2 ~the impact parameter is smaller tha

s), ~iii ! uvi j ut.r i j • v̂i j 2As22ur i j u21(r i j • v̂i j )
2 ~the timet is

long enough for the overlapping configuration to occu!.
Hence,x(r i j ,vi j ;t)51 if and only if no overlapping takes
place during the time interval (0,t).

At time t, particles 1,2, . . .k occupy inV the one-particle
states

~r1 ,v1!,~r2 ,v2!, . . . ,~r k ,vk!, ~4!

with probability density~1!. Using the characteristic function
~3!, we can construct the probability density for finding th
same particles in the phase space configuration

~r11v1 dt,v1!,~r21v2 dt,v2!, . . . ,~r k1vk dt,vk! ~5!

at time (t1dt),dt.0. It reads

F)
i , j

k

x~r i j 1vi j dt,vi j ;t1dt!Gmk
V~r1 ,v1 , . . . ,r k ,vk ;t !.

~6!

In the limit dt→01, the above expression takes th
asymptotic form

mk
V~r1 ,v1 , . . . ,r k ,vk ;t !F11 (

i , j ,i , j

k S ]

]t
1vi j •

]

]r i j
D

3x~r i j ,vi j ;t !dtG . ~7!

Using definition~3!, we find

S ]

]t
1vi j •

]

]r i j
Dx~r i j ,vi j ;t !

5~ r̂ i j •vi j !d~ ur i j u2s!@12u~r i j •vi j !#, ~8!

where r̂ i j 5r i j /ur i j u. We denote byTv( i , j ) the right-hand
side of Eq.~8! and rewrite it in the form

Tv~ i , j !5sd21E dŝ~ŝ•vi j !u~2ŝ•vi j !d~r i j 2sŝ!. ~9!

Here ŝ is the unit vector along the line passing through t
centers of the spheres at contact. The integration with res
to the measuredŝ is thus the angular integration over th
solid angle ind-dimensional space. Theu function in Eq.~9!
restricts this angular integral to the hemisphere correspo
ing to precollisional configurations.

Our aim is to construct the probability densitymk
V at time

(t1dt) for dt→01:
1-2
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mk
V~r11v1 dt,v1 , . . . ,r k1vk dt,vk ;t1dt!

5mk
V~r1 ,v1 , . . . ,r k ,vk ;t !1S ]

]t
1(

j 51

k

vj•
]

]r j
D

3mk
V~r1 ,v1 , . . . ,r k ,vk ;t !dt. ~10!

To this end, we have still to add to the term~7! the probabil-
ity weights of two events. The first corresponds to the pr
ence at timet of (k12) particles withinV in the states

~r1 ,v1!,~r2 ,v2!, . . . ,~r k ,vk!,~r11 ,vk11!,~r k12 ,vk12!.
~11!

The state~11! is then transformed into Eq.~4! at time (t
1dt) as the result of an annihilating collision between t
particles (k11) and (k12), during the time interval (t,t
1dt). According to Eqs.~7! and ~8!, the rate of the occur-
rence of binary collisions between pairs (i , j ) is obtained by
applying the operator@2Tv( i , j )# defined in Eq.~9! to the
corresponding distribution. Hence, whendt→01, the (k
11,k12) annihilation process contributes to the dens
~10! the term

2E
V

d~k11!E
V

d~k12!Tv~k11,k12!

3mk12
V ~1,2, . . . ,k,k11,k12;t !dt, ~12!

where the shorthand notationd j[dr jdvj for j 51,2, . . . has
been used.

Finally, we have to take into account the effects of t
free flow of particles across the boundary]V of the region
V. Indeed, thek-particle state can be created or destroyed
an additional particle (k11) leaving or entering the consid
ered region. Denoting byn̂ the unit vector normal to]V
oriented outwards, we get the term

E dvk11E
]V

dS~ n̂•vk11!mk11
V ~1, . . . ,k,k11;t !dt

5E
V

d~k11!vk11•
]

]r k11
mk11

V ~1, . . . ,k,k11;t !dt.

~13!

HeredS is the measure of the surface area, and the equ
~13! follows from Gauss’ theorem.

The enumerated events combine together to create
complete rate of change of the probability densitymk

V . As
equivalent events have the same probability measure, we
equate Eq.~10! with the sum of contributions~7!, ~12!, and
~13!, thus obtaining the hierarchy equations (k51,2, . . . )
06611
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S ]

]t
1(

j 51

k

vj•
]

]r j
2 (

i , j ,i , j

k

Tv~ i , j !Dmk
V~1, . . . ,k;t !

52E
V

d~k11!E
V

d~k12!Tv~k11,k12!

3mk12
V ~1,2, . . . ,k12;t !1E

V
d~k11!

3vk11•
]

]r k11
mk11

V ~1, . . . ,k,k11;t !. ~14!

Finally, the evolution equation form0
V follows from the nor-

malization condition~2!. This completes the derivation of th
infinite hierarchy of equations satisfied by the probabil
densitiesmk

V .
From Eq.~14!, one can derive in a straightforward wa

the hierarchy satisfied by the reduced distributio
f k(1,2, . . . ,k;t). They are relevant for the evaluation o
physical parameters, asf k(1,2, . . . ,k;t)d1•••dk represents
the measure of the number ofk-particle phase space configu
rations, with k particles occupying the one-particle stat
(r1 ,v1),(r2 ,v2), . . . ,(r k ,vk) at time t. The distributionsf k

are related to the probability densitiesmk
V by the equation

~see Ref.@11#!

f k~1,2, . . . ,k;t !5 (
p50

`
~k1p!!

p! E
V

d~k11!•••E
V

d~k1p!

3mk1p
V ~1, . . . ,k,k11, . . . ,k1p;t !.

~15!

Note thatf k(1,2, . . . ,k;t) do not depend onV.
In order to derive the evolution equation forf k , one has

thus to consider hierarchy equation~14!, with k replaced by
(k1p), and use relation~15!. One finds

S ]

]t
1(

j 51

k

vj•
]

]r j
2(

i , j

k

(
i , j

k

Tv~ i , j !D f k~1, . . . ,k;t !

5 (
p50

`
~k1p!!

p! E
V

d~k11!•••E
V

d~k1p!

3H F2 (
j 5k11

k1p

vj•
]

]r j
1(

j 51

k

(
i 5k11

k1p

Tv~ i , j !

1 (
k11< i

k1p

(
, j

k1p

Tv~ i , j !Gmk1p~1, . . . ,k1p;t !

2E
V

d~k1p11!E
V

d~k1p12!Tv~k1p11,

3k1p12!mk1p12~1, . . . ,k1p11,k1p12;t !

1E
V

d~k1p11!S vk1p11•
]

]r k1p11
D

3mk1p11
V ~1, . . .k1p11;t !J . ~16!
1-3
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It is then a question of inspection to see that on the rig
hand side of Eq.~16!, only the term

(
p51

`
~k1p!!

p! E
V

d~k11!•••E
V

d~k1p!

3 (
j 51

k

(
i 5k11

k1p

Tv~ i , j !mk1p~1, . . . ,k1p;t !

5E d~k11!(
j 51

k

Tv~ j ,k11! f k11~1, . . . ,k,k11;t !

~17!

survives. All the remaining terms exactly cancel out.
The hierarchy equations satisfied by the reduced distr

tions f k describing the annihilation dynamics thus read

S ]

]t
1(

j 51

k

vj•
]

]r j
2(

i , j

k

(
i , j

k

Tv~ i , j !D f k~1, . . . ,k;t !

5E d~k11!(
j 51

k

Tv~ j ,k11! f k11~1, . . . ,k,k11;t !.

~18!

Consider now Eqs.~18!, supposing that the state of the sy
tem is spatially homogeneous. In this case the distributionf 1
does not depend on the particle position. Let us formally t
the Grad limit

s→0, n~ t !→`, n~ t !sd215l215const, ~19!

where

n~ t !5E dv f 1~v;t !.

The fixed mean free pathl introduces a relevant lengt
scale, so we pass to dimensionless positions, putting

r j5lxj , j 51,2, . . . . ~20!

With this change of variables, the collision operator~9! takes
the form

Tv~ i , j !5@n~ t !sd#d21
1

lE dŝ~ŝ•vi j !u~2ŝ•vi j !

3d@xi j 2n~ t !sdŝ#. ~21!

We conclude that the term on the left-hand side of Eq.~18!
involving the collision operators~21! vanishes in the Grad
limit for d.1, because the dimensionless parametern(t)sd

tends to zero. Note that this term induces dynamical corr
tions, hindering the propagation of the molecular chaos f
torization. On the other hand, using the definition ofTv( j ,k
11), we find that the term on the right-hand side equals
06611
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1

l (
j 51

k E dvk11E dŝ~ŝ•vj (k11)!

3u~2ŝ•vj (k11)! f k11~1, . . . ,j , . . . ,k,

r k115r j2sŝ,vk11 ;t)/n~ t !, ~22!

and its prefactor 1/l remains finite in the same limit. So
formally the hierarchy equation~18! at a given timet reduces
pointwise in the Grad limit to the Boltzmann-like hierarch

S ]

]t
1(

j 51

k

vj•
]

]r j
D f k

B~1, . . . ,k;t !

5E d~k11!(
j 51

k

Tv~ j ,k11!

3 f k11
B ~1, . . . ,k,k11;t ! ~k51,2, . . .!.

~23!

The hierarchy~23! propagates the factorization of the r
duced distributions

f k
B~1, . . . ,k;t !5)

j 51

k

f k
B~ j ;t !. ~24!

Hence, if the initial state is factorized, the whole hierarc
~23! reduces to a nonlinear equation

S ]

]t
1v1•

]

]r1
D f B~1;t !5E d2Tv~1,2! f B~1;t ! f B~2;t !.

~25!

Equation~25! is the Boltzmann kinetic equation correspon
ing to the annihilation dynamics. In the following section, w
shall see that the formal Grad limit taken here, wheren
→`, is relevant for the description of the annihilation d
namics at late times, even if the densityn(t) decreases with
increase in time.

B. Scaling analysis of the hierarchy

The evolution of the annihilation kinetics shares a co
mon feature with the Grad limit: The ratio of particle diam
eter to mean free pathl51/(nsd21), which is related to the
packing fraction, vanishes in both cases. To be more spec
we perform a scaling analysis of the exacthomogeneoushi-
erarchy equations and look for self-similar reduced distrib
tions where the time dependence has been absorbed int
densityn(t), with the velocitiesv and positionsr renormal-
ized by the typical~root-mean-squared! velocity v̄(t) and
mean free path, respectively. We define the reduced varia

c5
v

v̄
and x5

r

l
,

with
1-4
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~ v̄ !25
1

n~ t !E v2f 1~v;t !dv. ~26!

For the one-body distribution, we therefore introduce the
duced functionf̃ 1, such that

f 1~v;t !5
n~ t !

v̄~ t !d
f̃ 1~c!5

n~ t !

v̄~ t !d
f̃ 1S v

v̄~ t !
D . ~27!

By definition, the moments of order 0 and 2 off̃ 1 are con-
strained to unity. Requiring that thek-body distribution
f k factorizes into) i 51

k f 1( i ) in the limit of infinite relative
separations between the particles, we consistently obtain
-

o
m
ro

s:

06611
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f k~r1 ,v1 , . . . ,r k ,vk ;t !5S n

v̄dD k

f̃ k~x1 ,c1 , . . . ,xk ,ck!.

~28!

The evolution equations ofn(t) and kinetic energy den
sity nv̄2(t) follow from integrating Eq.~18! with weights
dv1 andv1

2 dv1, respectively, fork51. We obtain

dn

dt
52v~ t !n, ~29!

d~nv̄2!

dt
52av~ t !nv̄2, ~30!

where the collision frequencyv and kinetic energy dissipa
tion parametera read
v~ t !5n~ t !v̄~ t !E dc1 dc2 dŝ~2ŝ•c12!u~2ŝ•c12! f̃ 2~c1 ,c2 ,sŝ!, ~31!

a5

E dc1 dc2 dŝ~ŝ•c12!u~2ŝ•c12!c1
2 f̃ 2~c1 ,c2 ,sŝ!

F E c2 f̃ 1~c!dcGF E dc1 dc2 dŝ~ŝ•c12!u~2ŝ•c12! f̃ 2~c1 ,c2 ,sŝ!G . ~32!
ri-
e
s

tity
in
e-
t

e

Equation~32! is valid for general velocity rescalings. Defi
nition ~26! chosen here implies that the term*c2 f̃ 1(c) dc in
the denominator equals unity. The coefficienta may be seen
as the ratio of the kinetic energy dissipated in a typical c
lision normalized by the average kinetic energy, and is ti
independent in the scaling regime. It is convenient to int
duce the internal ‘‘clock’’C of the dynamics counting the
number of collisions, such thatdC5v dt. With this variable,
Eqs.~29! and ~30! integrate into

n~ t !5n0 exp@2C~ t !#

and

v̄2~ t !5 v̄0
2exp@2~a21!C~ t !#, ~33!

where the time origin with densityn0 and kinetic energy
densityn0v̄0

2 has been chosen to coincide withC50. Knowl-

edge of theC dependence ofn and v̄ allows one to relate
absolute timet to the number of accumulated collision
From Eq.~31!, we have

dC
dt

5v0

n

n0

v̄

v̄0

5v0 exp@2C~11a!/2#, ~34!

wherev0[v(t50), so that
l-
e
-

C5
2

11a
lnS 11

11a

2
v0t D . ~35!

The corresponding time evolution is

n

n0
5F11

11a

2
v0t G22/~11a!

, ~36!

v̄

v̄0

5F11
11a

2
v0t G (12a)/(11a)

. ~37!

Without knowing the detailed form of the one-particle dist
bution functionf 1, it is thus possible to conclude about th
time decay ofn and v̄, which appear to obey algebraic law
in the long-time limit @n(t)}t2j and v̄(t)}t2g, with j
52/(11a) and g5(a21)/(a11)]. The exponentsj and
g are consequently simply related to the unknown quan
a, for which a perturbative expansion will be put forward
Sec. III before a numerical investigation in Sec. IV. Mor
over, if the initial velocity distribution is of finite suppor
~i.e., vanishes outside a sphere of given velocityv* ), v̄ ful-
fills the boundv̄<v* so thatg is necessarily positive~or
a>1). In the framework of Boltzmann’s equation, it will b
shown in Appendix A that the quantitya is necessarily larger
1-5
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than 1. For the specific initial condition where all particl

have the same kinetic energy att50, v̄25^v2& is time inde-
pendent, and Eq.~37! implies thata51. From Eq.~36!, we
therefore obtain the time evolution for this situation,

n

n0
5

1

11v0t
, ~38!

which is exact within the scaling theory. This relationa pri-
ori holds in any dimension, except ford51 where the cor-
responding initial velocity distribution is the symmetric di
crete bimodal function6c, for which the scaling ansat
underlying our approach fails~see the discussion at the en
of the present section!.

Inserting the scaling forms~27! and ~28! into the first
equation of the hierarchy~18! imposes the following con-
straint on the decay exponents:j1g51. This scaling rela-
tion may be simply obtained by elementary dimensio
analysis@4–6,9,10#, and may be considered as the comp
ibility condition of the hierarchy with the self-similar scalin
solutions@12#. It is, moreover, identically fulfilled by expres
sions ~36! and ~37!. Under the constraintj1g51, the re-
maining equations of the hierarchy (k.1) turn out to be
compatible with Eq.~28! with the additional information tha
the collision term on the left-hand side of Eq.~18! decays
like t2g2dj, whereas the remaining terms are associated w
a power 1/t. Given thatg1dj511(d21)j>1, this colli-
sion term is asymptotically irrelevant except in one dime
sion where it remains of the same order as the dominant o
(1/t). We therefore recover the conclusions obtained by c
sidering the formal Grad limit, with distribution function
expected to obey a Boltzmann-like equation. This analy
points to the relevance of Boltzmann equation ford.1, a
point that is further corroborated by the numerical resu
given in Sec. IV.

It is interesting to note that both Eq.~38! and the relation
j1g51 do not hold in 1D for discrete initial velocity dis
tributions. In the symmetric situation of a bimodal distrib
tion, the average kinetic energy per particle is conserved~so
that g50), whereas the density decays as 1/At ~i.e., j
51/2 @1#!. The scaling assumption~28! is consequently in-
correct in the specific situation of discrete distributions
1D, but valid for continuous distributions@6#. To be more
specific, the scaling form~28! implies that the collision fre-
quency scales with time, likev}nv̄. On the other hand
from the analytical solution of the bimodal6c situation@1#,
we obtainv}n2v̄ with v̄5c. This discrepancy is the signa
ture of dynamical correlations in the latter discrete ca
These correlations are responsible for the breakdown of
~28!, and in addition, violate molecular chaos. For contin
ous velocity distributions, again in 1D, molecular chaos a
breaks down while the scaling~28! is correct. As a conse
quence, the exponents obtained at the Boltzmann level d
from the exact ones~see the discussion in the last paragra
of Sec. III!, whereas the relationj1g51 holds.
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III. BOLTZMANN KINETIC EQUATION

This section is devoted to the analysis of the decay
namics within the molecular chaos framework@13# of the
homogeneous nonlinear Boltzmann equation. No exact s
tion could be obtained, and our goal is to derive accur
approximate predictions for the scaling exponentsj andg of
the density and root-mean-squared velocity.

Before considering the kinetic equation obeyed by the
scaled distribution function, it is instructive to rewrite th
original homogeneous Boltzmann equation~25! in the form

] f 1~v;t !

]t
52n~v;t ! f 1~v;t !,

with

n~v1;t !5Fsd21E dŝ~ŝ• v̂12!u~ŝ• v̂12!G E dv2uv12u f 1~v2 ;t !,

~39!

where in the last equation, the term in brackets may be c
puted explicitly as a function of dimension~it is understood
that the unit vectorv̂12 denotes an arbitrary direction!. For
our purpose, it is sufficient to notice that at all times, t
collision frequencyn(v;t) of the population having velocity
v remains finite in the limitv→0, provided the first momen
of f 1 exists. In this situation, Eq.~39! implies that
f 1(v;t)/ f 1(v;0) admits a finite limit forv→0, or equiva-
lently, it may be stated that if the initial velocity distributio
behaves likevm near the velocity origin, this feature is pre
served by the Boltzmann dynamics. Previous works h
shown accordingly that the scaling exponentsj and g de-
pend on the exponentm @4,6,9,10#.

Making use of relations~29! and ~30!, insertion of the
scaling form~27! into the Boltzmann equation leads to

F11S 12a

2 D S d1c1

d

dc1
D G f̃ 1~c1!

5 f̃ 1~c1!E dc2

c12

^c12&
f̃ 1~c2!, ~40!

where we have assumed an isotropic velocity distrib
tion @ f̃ 1(c)5 f̃ 1(c)# and introduced the averagê(•••)&
5*(•••) f̃ 1(c1) f̃ 1(c2)dc1 dc2 . ^c12& is therefore the res-
caled collision frequency. Oncem has been chosen, Eq.~40!
admits a solution for a unique value ofa. We show in Ap-
pendix A that the inequalitya.1 necessarily holds.

Irrespective ofa, the large velocity behavior off̃ 1 may be
obtained following similar lines as in Refs.@4,5,9,14,15#: it
is possible to integrate formally Eq.~40! and castf̃ 1 into

f̃ 1~c!

f̃ 1~c8!
5S c

c8
D 2[21d(12a)]/(12a)

3expF 2

12a

1

^c12&
E

c8

c ñ~c9!

c9
dc9G . ~41!
1-6
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In this equation,ñ is itself a functional off̃ 1 ;

ñ~c1!5E c12 f̃ 1~c2!dc2 , ~42!

such thatñ(c)/c goes to a finite limit forc→`. We there-
fore obtain the large velocity tail

f̃ 1~c!}c2[21d(12a)]/(12a)expS 2
2

a21

c

^c12&
D

for c→`. ~43!

In one dimension, we recover the results of Refs.@4# and@9#.
In Refs. @4,5#, an approximation was derived fora @or
equivalently,j52/(11a)] by assuming that the large veloc
ity behavior of f̃ 1 could hold for the whole velocity spec
trum. In this picture, the power ofc appearing on the right
hand side of Eq.~43! is equated to the exponentm
characteristic of the small velocity behavior~imposed by the
initial distribution chosen, see above!, with the result

a511
2

m1d
or j5

2d12m

2d12m11
. ~44!

This prediction encodes the correct dependence onm and
dimension (j increases whenm or d increase!, and turns out
to have an accuracy of order 10% when compared to
numerical results@10#. In the limit of large dimension, we
obtain from Eq.~44! j;12(2d)21, whereas Krapivsky and
Sire have shown thatj;12d21(121/A2), also in the
framework of the Boltzmann equation. The remainder of t
section is devoted to the derivation of a more precise va
for a, which furthermore coincides with the exact 1/d cor-
rection ford→`.

Invoking the identity

E dccpS d1c
d

dcD f̃ 1~c!52p^cp&, ~45!

the energy dissipation parametera may be given as the set o
equivalent expressions:

a511
2

p S ^c12c1
p&

^c12&^c1
p&

21D , ; p>0. ~46!

A particularly useful relation betweena and moments off̃ 1
follows from considering the limitc1→0 of Eq.~40!; we get

a511
2

m1d S 12
^c1&

^c12&
D . ~47!

The ~infinite! family of relations~47! and ~46! is equivalent
to the original integro-differential equation~40!, and well
suited to a perturbative analysis. To this end, a system
approximation of the isotropic functionf̃ 1 can be found by
expanding it in a set of Sonine polynomials@16#:
06611
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f̃ 1~c!5M~c!F11 (
n51

`

anSn~c2!G . ~48!

These polynomials are orthogonal with respect to the Ga
ian weight,

M~c!5S d

2p D d/2

e2dc2/2, ~49!

and the first few read

S0~x!51, ~50!

S1~x!5
d

2
~2x11!, ~51!

S2~x!5
d2

8
x22

d~d12!

4
x1

d~d12!

8
. ~52!

The coefficientsan follow from the orthogonality relation
*Sn(c2)Sm(c2)M(c)dc}dnm . In particular,

a15
2

d
^S1~c2!&5

2

d
~12^c2&!50, ~53!

as obtained from the definition of rescaled velocities~26!.
The first non-Gaussian correction is thus embodied ina2,
which is proportional to the fourth cumulant~kurtosis! of the
velocity distribution:

a25
d2

3
@^ci

4&23^ci
2&2#5

d

d12
^c4&21, ~54!

with ci a Cartesian component ofc. Upon truncating Eq.
~48! at a finite ordern, we obtain a regular velocity distribu
tion nearc50. We consequently restrict our analysis to t
casem50 ~the dependence onm has been considered in Re
@10#!.

It is also noteworthy that any truncation of Eq.~48! at
arbitrary ordern leads to a Gaussian high-energy behavi
incompatible with the result~43! corresponding to an over
populated tail with respect to the Maxwellian. However,
will be shown in Sec. IV that the difference between t
truncated expansion~48! and the numerical velocity distribu
tion becomes manifest far in the tail, where the distributi
has reached very low probabilities. Consequently, when
moment involved in Eqs.~46! and ~47! are evaluated from
the truncation of Eq.~48!, the accuracy of the result is ex
pected to be better for low orders ofp in Eq. ~46!. Hence the
privileged role is played by Eq.~47!, which is of lower order
than any of the identities~46!. In practice, upon truncating
Eq. ~48! at ordern, the n unknownsa,a2, . . . ,an are com-
puted evaluating the corresponding moments appearin
Eq. ~47! and inn21 of the relation~46!, among which it is
convenient to retain then21 even values ofp (p50 ex-
cluded!. Truncation of Eq.~48! at ordern52 yields precise
predictions fora and f̃ 1, and already at Gaussian order,a
turns out to be very close to its numerical counterpart. S
1-7
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ting n50 ~or equivalently,n51 sincea1[0) in Eq. ~48!,
we obtain immediately the zeroth-order approximation

a5a0511
2

d S 12
A2

2 D , ~55!

which corresponds to

j5j05
2

11a0
5

2d

2~d11!2A2
. ~56!

For large dimensions, this estimation goes to unity, with
exact 1/d correction computed in Ref.@9#,

j512
1

d S 12
A2

2 D 1OS 1

d2D . ~57!

This behavior turns out to be ‘‘universal,’’ in the sense th
the m dependence does not appear at this order@10#.

We shall also be interested in the non-Gaussian feature
the velocity distribution, which we quantify by the fourt
cumulanta2. The~cumbersome! calculations at second orde
in Sonine expansion are detailed in Appendix B. We obta

a258
d~2A223!

4d21d~62A2!
, ~58!

a25a01
A2

16d
a2 . ~59!

The corresponding density exponent follows fromj252/(1
1a2) as before. Ford→`, a2;2(322A2)d21 irrespective
of m @10#, which reinforces the universal nature of larged.
The correction toj carried bya2 behaves as 1/d2 in this
limit, and does not affect the 1/d terms that still coincide
with the exact behavior~57!. Both predictions~55! and~59!
are such thata.1, which is required to obtain a normaliz
able distribution in Eqs.~41! and ~43!.

The second-order expansion considered here may be
proved by consideration of higher-order Sonine terms
inclusion of nonlinear terms ina2. In the related context o
inelastic hard spheres, the limitation of working at line
order ina2 with neglect of Sonine terms of ordern>3 may
be found in Ref.@17#. Alternatively, keeping nonlinear term
in a2 and neglecting again Sonine terms of ordern>3 leads
to multiple solutions. A stability analysis is then required
determine which one is stable, as discussed in Ref.@18#.

Here, the value obtained fora2 is quite small~see below!.
Our approximate expressions are accurate when compar
the full numerical solution of Boltzmann’s equation, so th
we did not calculate any higher-order coefficients, nor did
consider nonlinear terms ina2. The existing literature re-
ports, within the Boltzmann framework, numerical exp
nents in 1D, which are in excellent agreement with our p
dictions, already at zeroth order. For the casem50,
expressions~56! and ~59! give j0.0.773 andj2.0.769,
whereas the numerical result obtained in Ref.@9# is j
.0.769. These exponents are close to their counterparts
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tracted numerically from the exact dynamics (0.78560.005
in Ref. @6#, and more recently 0.804 in@19#!. The difference
between the exact exponents and those obtained assu
molecular chaos is consistent with the conclusion of Sec
In one dimension, the factorization of the two-body distrib
tion f̃ 2 underlying Boltzmann ansatz is not an exact prope
of the distributions obeying hierarchy~18!. On the other
hand, ford.1, the molecular chaos exponents are expec
to become exact. This property is illustrated in the followi
section.

IV. SIMULATION RESULTS

The numerical results presented in this section corresp
to the situationm50, unless stated. We refer to Ref.@10# for
the case of diverging (m,0) or depleted (m.0) velocity
distributions nearv50.

A. The numerical methods

We follow two complementary numerical routes. First, w
solve the time-dependent homogeneous Boltzmann equa
by means of the direct simulation Monte Carlo meth
~DSMC!, originally developed to study ordinary gases@20#.
This scheme, where a suitable Markov chain is construc
has been extended to deal with inelastic collisions@21,22#
and is easily modified to describe the situation under st
here, which does not conserve the total number of partic
Restricting to a spatially homogeneous system, the algori
is especially easy to implement, and may be summarize
follows: amongN0 initial particles having a given velocity
distribution, a pair (i , j ) is chosen at random, and remove
from the system with a probability proportional touvi j u. The
~suitably renormalized! time variable is then incremented b
the amount (N2uvi j u)21, whereN is the number of particles
remaining in the system before another pair is drawn,
This scheme provides the numerical exact solution of
~39!, and allows to test the validity of the approximations p
forward in Sec. III@essentially, truncation at second order
expansion~48! supplemented with calculations performed
linear order in the fourth cumulanta2 ~see Appendix B!#. A
precise analysis of the late time dynamics~and especially the
computation of velocity distributions! suffers from the con-
comitant low number of particles left, and the statistical a
curacy is improved by averaging over independent real
tions.

The second numerical method~molecular dynamics@23#!
consists of integrating the exact equations of motion for
assembly of spheres confined in a~hyper!cubic box with pe-
riodic boundary conditions. This route assesses the vali
of the approach relying on the homogeneous Boltzma
equation, but does not offer the same accuracy as DSMC,
the possibility to follow the evolution over comparab
times. In particular, once the mean free pathl, which grows
rapidly as tj, becomes of the order of the box sizeL, the
subsequent evolution suffers from finite size effects a
should be discarded. Whenl.L, the algorithm used is un
able to find collision events for those particles that ma
more than one free flight round on the torus topologica
1-8
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DYNAMICS OF BALLISTIC ANNIHILATION PHYSICAL REVIEW E 66, 066111 ~2002!
equivalent to the simulation box, which causes a spuri
slowing down of the dynamics. It is then tempting to redu
l by increasing the particle diameters, but then finite~and
necessarily transient! density effects—incompatible with th
scaling assumption~28!—may also arise if the packing frac
tion f, proportional tonsd, is not low enough. Simulating
explicitly the limit of point particles, the DSMC scheme co
sidered here is free of this defect. The initial number of p
ticles considered in MD needs to be large to allow the sys
to enter the scaling regime before finite size effects beco
dominant, we considered systems withN5(53104)
– (53105) spheres initially~compared toN5106–108 in
DSMC!.

B. Dynamic scaling behavior

The results of two-dimensional DSMC and MD simul
tions are shown in Fig. 1, where the quantity on thex axis is
expected to scale like real timet from the scaling relation
j1g51. This log-log plot is a direct probe of the expone
j, from the slope measured. Both MD and DSMC metho
give compatible results, with the possibility to follow th
dynamics over a longer time interval in DSMC. The dep
ture observed forn0 /n.200 corresponds to the slowin
down of MD resulting from finite size effects~see Fig. 2
below!. The theoretical predictions at zeroth and second
der are very close (j050.872 andj250.870), and in excel-
lent agreement with the simulation results over several
cades. On a similar graph as Fig. 1, the kine
‘‘temperature’’v̄2 exhibits a power law behavior~not shown!
with an exponent22g, in good agreement with the theore
ical prediction (g.0.13 in 2D!. Moreover, the exponent
obtained analytically and numerically are compatible

FIG. 1. Inverse densityn0 /n versusn0v̄0 /(nv̄), for d52. The
dotted line has slopej250.87 @see Eq.~56!#. Initial number of
particles: 53106 ~with a further average over 103 independent rep-
licas! for DSMC and 23105 for MD. In both cases, the initia
velocity distribution is Gaussian (m50), and the initial configura-
tion used for MD is that of an equilibrium hard disk fluid wit
packing fractionf50.1 ~chosen low enough to avoid finite packin
effects!.
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those reported in the literature (j.0.89 in Ref.@4# and j
.0.87(5) using a multiparticle lattice gas method@24#!.

The time evolution of inverse density and inverse typic
velocity square is shown in Fig. 2, where consideringn0 /n
21 andv̄0

2/ v̄221 instead ofn0 /n and v̄0
2/ v̄2 allows one to

probe the short time behavior. Unless stated, the initial
locity distribution is an isotropic Gaussian. From Eqs.~29!

and~30!, n andv̄2 evolve linearly witht for v0t!1 @see also
Eqs. ~36! and ~37!#; the same holds for inverse density an
inverse typical velocity squared, which is indeed observed
Fig. 2. MD and DSMC results superimpose, except at l
times where MD suffers from the slowing down discuss
previously. For both numerical methods, the scaling relat
j1g51 is well obeyed, in principle at late times only, in th
scaling regime. Special combinations ofn and v̄ can, how-
ever, be constructed with the requirement to match the s
time evolution with the scaling behavior. One of these qu
tities is displayed in Fig. 3, with a resulting scaling regim
extending over more than ten decades in time. In Fig. 4,
not only test the validity of the theoretical scaling exponen
but also the full time dependence as predicted by Eqs.~36!
and~37!. In order to improve the agreement between the
and simulation~which holds over more than six orders o
magnitude in time!, the system has been left to time to ent
the scaling regime. The time origint50 has been chose
when 80% of the particles originally present have disa
peared. The corresponding reference configuration~with sub-
scripts 0! thus differs from the ones considered previously

C. Velocity distribution in the scaling regime

In order to understand the reasons for the good agreem
between our theoretical predictions and the simulations,
now consider the velocity distribution, restricting to Mon
Carlo results~leading to similar conclusions, MD is muc

FIG. 2. Plots of (n0 /n)21 @upper curve corresponding t

DSMC, compared to its MD counterpart~crosses!# and (v̄0 / v̄)2

21 ~lower dashed curve for DSMC, circles for MD! as a function
of time. The dotted line at short times has slope 1.
1-9
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PIASECKI, TRIZAC, AND DROZ PHYSICAL REVIEW E66, 066111 ~2002!
more demanding on CPU time and does not allow to inv
tigate detailed features off̃ 1 with the same accuracy!. After a
transient where the probability distribution functionf̃ 1
evolves with time, a well-defined scaling regime is reach
with a time independentf̃ 1(c) shown in Fig. 5 together with

FIG. 3. Plot of log10@n0 /n21#1 log10@n0v̄0
2/(nv̄2)21# on a

logarithmic time scale (d52). DSMC results are represented b
the continuous curve, while the crosses correspond to MD.
dashed line has slope 2. At late times, the quantity displaye
expected to behave as 2 log10(v0t) from the scaling relationj1g
51. At short times, the same behavior is observed, for a differ
reason@see Eqs.~36! and~37!#. The ultimate MD slowing down is
again visible.

FIG. 4. Time dependence ofn ~lower curve! and v̄2 ~upper
curve! obtained in Monte Carlo, compared to the dashed cur
corresponding to the theoretical predictions~36! and~37!, where the
energy dissipation coefficienta is calculated at second order i
Sonine expansion@a2.1.297 from Eq.~59!#.
06611
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the Sonine prediction pushed at second order. The agree
is remarkable, and it is also observed that the Gaussian
proximation is already close to the asymptotic rescaled
locity distribution, which is quite surprising in a kinetic pro
cess extremely far from equilibrium, with furthermore n
conservation laws. Given that our perturbative analyti
work relies on the calculation on low order moments off̃ 1,
this explains the accuracy of the zeroth-order predictionsa0
and j0. From Eq.~43!, we expect the differences betwee
the Sonine expansion and the numerical distribution to
come visible in the high-energy tail, which is confirmed
Fig. 6. As predicted,f̃ 1 is overpopulated with respect to th
Gaussian, and displays a high velocity tail of the form~43!
~see the inset of Fig. 6!.

D. Evolution towards the asymptotic solutions

Before the scaling regime is attained,f̃ 1 is time depen-
dent, as shown in Fig. 7, where the distributions at differ
times have been renormalized byM to emphasize the build
ing up of non-Gaussianities. The evolution towards the sc
ing solution 11a2S2 can be observed. With respect to th
Gaussian,f̃ 1 is at all times overpopulated both at large a
small velocities~which may be related to the positive sign
a2 for the latter case!; normalization is ensured by an unde
population at intermediate velocities. Figures 5–7 show t
the indirect measure ofa2 through the non-Gaussian chara
ter of f̃ 1 /M agrees with the theoretical prediction, but it
also possible to compute directlya2 in the simulations
through its definition as a fourth cumulant@Eq. ~54!#. It turns
out that both methods are numerically fully compatib

e
is

t

s

FIG. 5. Probability distribution functionf̃ 1(ci) of a given Car-
tesian componentci of the rescaled two-dimensional velocityc.
The time-independent distribution obtained in DSMC simulations
late times is compared to the GaussianM and the Sonine expansio
truncated atn52, with the fourth cumulant given by Eq.~58! (a2

.0.109 ford52 andm50). All distributions have variance 1/2, s
that ^c2&51. The results have been obtained by averaging ove
replicas of a system with initiallyN5403106 particles.
1-10
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Moreover, the Sonine expansion~48! truncated atn52 holds
at any time, even in the transient regime, with the tim
dependent fourth cumulanta2 measured from Eq.~54! ~see
Fig. 8!. This result is nota priori expected and points to th
relevance of expansion~48!. We did not try to solve analyti-
cally the homogeneous time-dependent Boltzmann equa
within the same framework as in the scaling regime, so t
we do not have any prediction for the~transient! time depen-

FIG. 6. Same as Fig. 5, on a linear-log scale to probe the tail

the distributions. In the inset showingci
24.7f̃ 1(ci) as a function of

ci , the dashed curve corresponds to the Gaussian@ci
24.7M(ci)#

while the straight line is a guide for the eye evidencing a p
exponential behavior. Ford52 andm50, the exponentd12/(1
2a) appearing in Eq.~43! is close to24.7 and has been used t
rescale the quantity plotted on they axis in the inset.

FIG. 7. Plots off̃ (ci)/M(ci) versusci , at different times cor-
responding to the indicated densities. The initial distribution
Gaussian~thus corresponding to the flat curve! and the thick curve
is Sonine solution 11a2S2, with a2 given by Eq.~58!.
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dence ofa2 anda. However, as shown in the inset of Fig.
relation ~B10! @which reads in 2D asa5(5/4)1(7a2/16)]
remarkably holds for all times. Here, the energy dissipat
parameter a has been computed through the ra
^c12c1

2&/(^c12&^c1
2&)5^c1

2&coll /^c1
2&, where^c1

2&coll , the mean
energy dissipated in a collision, is computed in the simu
tions and normalized by the time-dependent mean kin
energy per particle,̂c1

2&.

E. A final remark: Identification of ‘‘isobestic’’ points

For m50, Fig. 7 indicates that during the transient ev
lution towards scaling, the distributions of reduced velocit
have fixed points~for a given initial velocity distribution, all
the curves corresponding tof̃ 1 at different times pass
through common points that we called isobestic points!. This
feature has been observed for all initial distributions inve
gated and appears to be a systematic property of the dyn
ics, which still holds for nonvanishing values ofm ~see Fig.
9!. We have no analytical explanation for this observation

V. CONCLUSION

An analytical derivation of the equations governing t
dynamics of an infinite system of spherical particles in
d-dimensional space, moving freely between collisions a
annihilating in pairs when meeting, has been obtained.

of

e

FIG. 8. Plot off̃ (ci)/M(ci) as a function ofci , at the particular
time t1/2 where the density is exactly half the initial one, with th
same initial distribution as in Fig. 7@the circles~DSMC measure!
thus show the same distribution as the circles of Fig. 7#. The thick
curve shows 11a2(t1/2)S2, with a2(t1/2) measured from its defini-
tion ~54!. The dashed curve is the Sonine prediction in the sca
regime~i.e., the thick curve of Fig. 7!. Inset:a as a function ofa2

~see main text!. The DSMC measure is compared to the predicti
~B10! shown by the straight line ending at the point—indicated
a cross—of coordinates~0.109,1.297! as predicted by Eqs.~58! and
~59!. The square located at~0.0207, 1.2595! corresponds to the
numerical measure ofa and a2 made at timet1/2 for which the
velocity distribution is displayed in the main graph.
1-11
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FIG. 9. Plots of f̃ 1(ci) as a function ofci at different times. The left graph corresponds to an initial velocity distribution w
m523/2 while m53 for the right graph. On both graphs, the initial distribution is shown by the dashed curve, whereas the thick
display the asymptotic distributions approached in the scaling regime.
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hierarchy equations obeyed by the reduced distributi
f k(1,2, . . . ,k;t) have been derived. In the Grad limit, th
hierarchy formally reduces to a Boltzmann-like hierarchy
dimensionsd.1. If these reduced distributionsf k

B factorize
at the initial time, this factorization remains valid for a
times, and the whole hierarchy reduces to a nonlinear eq
tion.

In the long-time limit, the ratio of the particle radius to th
mean free path vanishes. A scaling analysis of the exact
mogeneous hierarchy equations has been performed.
similar reduced distributions in which the time dependen
has been absorbed into the densityn(t) and the root-mean
square velocityv̄(t) were introduced. As a result, the exp
nentsj and g describing the decay with time ofn(t) and

v̄(t) depend only upon one single parametera, related to the
dissipation of energy. Moreover, it turns out that in dime
sion higher than 1, the terms responsible for the violation
molecular chaos are asymptotically irrelevant. Therefore,
recover the conclusions reached in the formal Grad limit, a
thus, the Boltzmann equation becomes exact in the long-t
limit in dimensions higher than 1. The above arguments g
a first-principles justification for the use of the Boltzma
equation approach ford.1, as well as its limitations, in
ballistic annihilation problems, an issue that has been o
looked so far. However, as discussed above, this sca
analysis is incorrect for a one-dimensional system with d
crete initial velocity distribution, a situation for which th
scaling assumption underlying our approach fails.

The Boltzmann equation has been solved within an
pansion in Sonine polynomialsSn . Truncation to ordern
52 provides the first non-Gaussian corrections to the sc
velocity distribution, and leads to analytical predictions f
the exponentsj andg as a function ofd. For large dimen-
sion d, these predictions coincide with the exact 1/d correc-
tion to the naive mean-field values (j51 andg50), calcu-
lated in Ref. @9#. The above analytical predictions are
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remarkable agreement with the results of extensive num
cal simulations we have performed for two-dimensional s
tems ~implementing the complementary Monte Carlo a
molecular dynamics techniques!. In 1D, for regular continu-
ous velocity distributions, it is noteworthy that they are
excellent agreement with the numerical solution of the Bo
mann equation, and quite close to the exact values obta
with molecular dynamics~4% difference!. This last point
was unexpected since molecular chaos breaks in 1D. Fin
the time dependence of the reduced velocity distribut
function shows an unexplained and a remarkable feat
with the existence of fixed~‘‘isobestic’’! points, irrespective
of initial conditions.
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APPENDIX A

Within Boltzmann’s kinetic equation, we show in this a
pendix thata.1. To this end, Eq.~40! is rewritten in the
form

f̃ 1~c1!1S 12a

2 Ddivc1
@c1 f̃ 1~c1!#5 f̃ 1~c1!E dc2

c12

^c12&
f̃ 1~c2!,

~A1!
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and integrated with weightc(c1)dc1, where we choose
c(c)5c2/(12a). Assuming that the moment*c f̃ 1 exists, we
obtain after integration by parts~neglecting surface terms!,

05E dc1 dc2 c~c1!
c12

^c12&
f̃ 1~c1! f̃ 1~c2!. ~A2!

The right-hand side of Eq.~A2! is a strictly positive quantity
@except whenf̃ 1(c)5d(c)], which leads to a contradiction
We therefore conclude that the quantity*c f̃ 1 does not exist.
Remembering thatc(c) f̃ 1(c);cm12/(12a) near the velocity
origin, the divergence of*c f̃ 1 implies

2

12a
1d211m,21. ~A3!

Supplementing this condition with the normalization co
straint m.2d, we obtaina.1. The physical meaning o
this condition is that the typical kinetic energy dissipated
particle in a collision is larger than the average kinetic e
ergy of the system at the same time. The temperaturev̄2 is
therefore a decreasing function of time.

APPENDIX B: SECOND ORDER TRUNCATED
SONINE EXPANSION

In this appendix, we calculate the dominant deviation
f̃ 1 from the Gaussian shape, and the associated energy d
pation parametera by setting f̃ 1(c)5M(c)$11a2S2(c2)%.
The moments appearing in Eqs.~47! and~46! with p52 are
then computed as a function ofa2. Upon writing

a511
2

m1d S 12
^c1&

^c12&
D5

^c12c1
2&

^c12&^c1
2&

, ~B1!

the last equality provides an equation fora2, which is solved
so thata is finally explicitly known as functions of inpu
parametersm and dimensiond. As in the main text, the an
gular brackets denote averages with weightf̃ 1(c1) f̃ 1(c2)

^•••&5E ~••• ! f̃ 1~c1! f̃ 1~c2!dc1 dc2 , ~B2!

^•••&5E ~••• !M~c1!M~c2!$11a2@S2~c1
2!1S2~c2

2!#%

3dc1 dc21O~a2
2!. ~B3!

In the following, nonlinear terms of ordera2
2 will be ne-

glected. In the spirit of Ref.@25#, it is convenient to intro-
duce center-of-mass and relative velocitiesc15C1c12/2;
c25C2c12/2 and to define the generic moments

Mnp5^c12
n Cp&, ~B4!
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Mnp5E dc12dCc12
n CpS d

2p D d

3e2dc12
2 /42dC2H 11a2Fd2

8
~c1

41c2
4!

2
d~d12!

4
~c1

21c2
2!1

d~d12!

4 G J . ~B5!

From c1
41c2

452C412(C•c12)
21c12

4 /81C2c12
2 , the term

(C•c12)
2 appearing under the integral sign in Eq.~B5! be-

comesC2c12
2 /d for symmetry reasons, and making use

c1
21c2

252C21c12
2 /2, the variablesc12 andC decouple in Eq.

~B5!. The resulting integrals yield

Mnp

Mnp
0

5
^c12

n Cp&

^c12
n Cp&0

511
a2

16d
$d~n21p2!22d~n1p!

12np~d12!%1O~a2
2!. ~B6!

In this equation, the subscript 0 refers to averages w
Gaussian measure~formally a250):

^c12
n Cp&05~Ad!2n2p2n

GS d1n

2 DGS d1p

2 D
G2~d/2!

, ~B7!

where G is the Euler function. The momentŝc12& and
^c12c1

2&5^c12(c1
21c2

2)&/25^c12
3 &/41^c12C

2& appearing in
Eq. ~B1! are then known:

^c12&

^c12&0
512

1

16
a21O~a2

2!, ~B8!

^c12c1
2&

^c12&0
511

1

2d
1

a2

32S 61
11

d D1O~a2
2! ~B9!

^c12c1
2&

^c12&^c1
2&

511
1

2d
1

a2

8 S 21
3

dD1O~a2
2!. ~B10!

For an elastic hard sphere fluid at equilibrium~with thusa2
50), this last quantity equals 111/(2d) and represents the
ratio of the mean kinetic energy of colliding particles~aver-
aged over successive collision events! to the mean kinetic
energy of the population. As expected, this ratio exceed
since typical colliding partners are ‘‘hotter’’ than the mea
background. This quantity is easily measured in molecu
dynamics or Monte Carlo simulations~see, e.g., Fig. 8!. We
also note that the ratio~B8! has been computed in Ref.@14#
at the same level of approximation in the context of rap
granular flows, with the same result: van Noije and Er
also reported non-Gaussian corrections to the cooling rag
of an inelastic hard sphere fluid@14#,

g

g0
511

3

16
a21O~a2

2!, ; d, ~B11!
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whereg0 denotes the cooling rate evaluated assuming M
wellian velocity distributions. In terms of the momentsMnp
introduced in Eq. ~B4!, it can be shown thatg/g0

5M30/M30
0 , and it is then easily checked that express

~B6! reduces to Eq.~B11! for n53 andp50, for arbitrary
dimensionality.

The remaining unknown quantity iŝc1&, which may be
calculated following similar lines as above:

^c1
n&

^c1
n&0

511
a2

8
n~n22!1O~a2

2!, ~B12!
e

J

06611
-

n
^c1

n&05S 2

dD n/2GS d1n

2 D
GS d

2D , ~B13!

from which we extract̂ c1&5^c&. As expected, thea2 cor-
rection in Eq. ~B13! vanishes forn50 and n52, which
follows, respectively, from the normalization constraint a
the definition~26! of c implying ^c2&51. Gathering results
we obtain Eqs.~58! and ~59! from Eq. ~B1!.
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