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Dynamics of ballistic annihilation
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The problem of ballistically controlled annihilation is revisited for general initial velocity distributions and
an arbitrary dimension. An analytical derivation of the hierarchy equations obeyed by the reduced distributions
is given, and a scaling analysis of the corresponding spatially homogeneous system is performed. This ap-
proach points to the relevance of the nonlinear Boltzmann equation for dimensions larger than 1 and provides
expressions for the exponents describing the decay of the particle de(itst ¢ and the root-mean-square
velocityv_xt”/ in terms of a parameter related to the dissipation of kinetic energy. The Boltzmann equation is
then solved perturbatively within a systematic expansion in Sonine polynomials. Analytical expressions for the
exponents andy are obtained in arbitrary dimension as a function of the parametéraracterizing the small
velocity behavior of the initial velocity distribution. Moreover, the leading non-Gaussian corrections to the
scaled velocity distribution are computed. These expressions for the scaling exponents are in good agreement
with the values reported in the literature for continuous velocity distributions=i. For the two-dimensional
case, we implement Monte Carlo and molecular dynamics simulations that turn out to be in excellent agree-
ment with the analytical predictions.
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[. INTRODUCTION ior near the origin of the initial velocity distribution. This
problem has been revisited by Reyal. [6]. Based on the
Ballistically controlled reactions provide simple examplesexact theoretical approad¢R,3], a dynamical scaling theory
of nonequilibrium systems with complex kinetics. They con-was derived and its validity supported by numerical simula-
sist of an assembly of particles with a given velocity distri- tions for several velocity distributions. This leads to the con-
bution, moving freely between collisions indadimensional  jecture that all continuous velocity distributioh&) that are
space. In the simplest version of these models consider hersymmetric, regular, and such thig0)+ 0 are attracted in the
when two particles meet, they instantaneously annihilatéong-time regime towards the same distribution, and thus be-
each other and disappear from the system. Despite its appdong to the same universality class. This conjecture was re-
ent simplicity, this problem is highly nontrivial and has at- inforced by numerical simulations in two dimensidi®)].
tracted substantial interest during the past ygarsl(. The The case of a continuous velocity distribution has also
one-dimensional case where the particles can only have twibeen approached recently by Krapivsky and e Starting
velocities* ¢ has been studied in a pioneering work by El- from a Boltzmann equation, they investigated the decay of
skens and Frisclil]. In particular, they proved that for a the particle density(t)~t~¢ and the root-mean-square ve-
Symmetric initial VelOCity diStribUtion, the particle density is |OC|ty v_oct_V_ They derived upper and lower bounds for the
decreasing, in the long-time limit, ag(t)<t~*t™*2 The  exponents as well as their leading expansion & Alid in
case of general distributions in dimensior=1 was dis-  high dimension. The main question with such an approach
cussed by Piaseck?], who reduced exactly the annihilation concerns the validity of a Boltzmann equation. This is not
dynamics to a single closed equation for the two-particlgustified in the one-dimensiondlLD) case and remains an
conditional probability. Moreover, it was shown in the par- open problem in higher dimensions.
ticular bimodal situation of a discrete velocity distribution The purpose of this paper is to give a first-principles an-
(xc) that in one dimension, important dynamical correla-swer to this type of question. The paper is organized as fol-
tions are developing during the time evolution, invalidatinglows. In Sec. Il, an original analytical derivation of the equa-
mean-field or Boltzmann-like approaches. This exact aptions governing the dynamics of ballistic annihilation is
proach was applied to the case of a three-velocity distribugiven. The hierarchy equations obeyed by the reduced distri-
tion by Drozet al. [3], with the result that the dynamical butions are obtained. It is shown that in the Grad limit, the
exponents were strongly depending upon the details of thhierarchy formally reduces to a Boltzmann-like form fibr
initial velocity distribution. >1. If the initial reduced distributions factorize, the whole
No analytical solutions could be found for continuous ve-hierarchy reduces to one nonlinear equation. In Sec. Il, a
locity distributions. In one dimension, Ben-Naieh al.[4,5]  scaling analysis of the exact spatially homogeneous hierar-
have shown that the exponefitould depend on the behav- chy is performed. The exponengsand y are shown to de-
pend only on one parameter related to the dissipation of
energy. This scaling analysis turns out to be invalid for the
*Unite Mixte de Recherche 8627 du CNRS. cased=1 with discrete velocity distributions, but correct in
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the continuous case. Strong arguments are given in favor qfheres denotes the particle diameter; is a unit vector in
the validity of the Boltzmann approach for the casel in  the direction of the relative velocity, and denotes the
the long-time limit. The Boltzmann equation is then solvedHeaviside distribution. Indeed, moving backward in time, the
within a systematic approximation based on an expansion iarticles collide during the time interval (9,if and only if
Sonine polynomialsSec. I1). The first non-Gaussian correc- the following three conditions are simultaneously satisfied:
tions to the scaled velocity distribution are computed and(i) r.-vi;>0 (particles approach each other(i) o
predictions for the exponentsand y are explicitly worked
out as functions of the dimensioth and the parameten - > > — ) ]
characterizing the small velocity behavior of the initial ve- @), (iil) [Vij[t>Tij-v;; — Vo —[rij |2+ (rij- vij)? (the timet is
locity distribution: [ f(v,t=0)x|v|# for |[v|—0]. These pre- l0ng enough for the overlapping configuration to ogcur
dictions for ¢ and y are asymptotically exact for large di- Hence,x(rij,vi;;t)=1 if and only if no overlapping takes
mensions, and reproduce thel Torrection to the mean-field Place during the time interval (§, _
values. In 1D, they are in very good agreement with the At time t, particles 1,2. . .k occupy in{) the one-particle
exponents reported in the literatuf@] at the Boltzmann Statés

level. In 2D, we implement extensive direct simulation

Monte Carlo method¢$DSMC), where the nonlinear Boltz- (r1,va),(rz,va), - (N Vi, 4

mann equation is solved, and molecular dynarstd) with probability density(1). Using the characteristic function

simulations, where the exact equations of motion are inte o : A
' 3), truct th bability d ty for finding th
grated(Sec. IV). The agreement between the MD and DSMC( ), we can construct the probability density for finding the

routes confirms the validity of the Boltzmann approach, andS ame particles in the phase space configuration

the decay exponents measured are in exceptionally good (4 v, dt,vy),(ro+ Vo dt,vy), ... (Fe+Vviedtyv) (5
agreement with the Sonine prediction. Conclusions are

drawn in Sec. V. A preliminary account of part of the resultsat time ¢+ dt),dt>0. It reads

presented here has been published elsewHéle

|rij|?=(rij;-v;;)? (the impact parameter is smaller than

k

l;[ X (rij+vi; dt,v;; ;t+dt) LTV, PGV,
i<

A. Derivation of the hierarchy ©)

Let ) be a region of finite measure Rd. We denote by In the limit dt—>0+, the above expression takes the
asymptotic form

II. EXACT RESULTS

w1V TGV (1)

1+

1]

k
Q .

M (Mg, oo NGV t) _
i

J Jd
the probability density for findingat timet) exactlyk par- | (EH/” ' &T,J)
ticles within Q in the states 1fj,v)) e, j=12,...k,
wherer; andyv; are the position and the velocity vectors, _
respectively. The knowledge of the densitie§ for all O Xx(Tij Vi 't)dt}' (7
eR?®andk=0,1,2 . .. defines entirely the state of the sys-

tem. For a given regiof2, the normalization condition reads Using definition(3), we find

0 J J
wdt)y+ > drldvl---f dry dv, (5+Vn'm)x(fu Vij s
=) 0
X (g Ve, e MoV =1, ) =(rij-vip) &(rij| =) [1—0(rij-vi)], (8

where Fij=rij/|rij|. We denote byT(i,j) the right-hand

Where,ug(t) iS the probablllty Of f|nd|ng the I’egio@- VOid Side Of Eq(8) and rewrite |t in the form

of particles at time.

A necessary condition for the occurrence of a pair of par- o R R
ticles at the phase space points,{;),(r; ,v;) at timet>0 is TU(i ,j)=0d_lf do(o-Vv;j) 0(— V) 8(rjj—oo). (9
thatr;j=r;—r;,v;;=Vv;—V; belong to the region of the phase

space with the characteristic function Here o is the unit vector along the line passing through the

centers of the spheres at contact. The integration with respect

x(rij Vi i) = 6(]rij | = ) {1 = 6(rij-v;j) to the measurelo is thus the angular integration over the

x 6(o— |ty 2= (1 -vi)?) solid angle ind-dimensional space. Thgfunction in Eq.(9)
l CE restricts this angular integral to the hemisphere correspond-
X 0(|vij|t—ri; -V ing to precollisional configurations.
Our aim is to construct the probability densﬁ at time
+ Vo2 = [ |2+ (i - U D), (3  (t+dy for dt—0":
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wi(ritvedtvy, .. fetvedt v t+dt) P
/—Lk(l k;t)

k
. IR E T(1.)
KA VR
" Vi'ar,-)

j=1 I (WJ i,J,i<]j
j=1

:/*Lls()(rlvvla . ,rk,Vk;t)+
—f d(k-l—l)j d(k+2)TY(k+1k+2)
X (F1,Ve, « o FG VGt (10 @ @

Xul (1,2, ... k+2;t)+f d(k+1)
To this end, we have still to add to the tefi® the probabil- @

ity weights of two events. The first corresponds to the pres- 9
ence at time of (k+2) particles withinQ in the states X Vit e Mk+1( Sk k+15t). (14
(r1V1) (M2 Vo)s oo (T V) (P Vies 1) (T2 s Vier o). Finally, the evolution equation fgr§' follows from the nor-

(1) malization conditior(2). This completes the derivation of the
infinite hierarchy of equations satisfied by the probability
densitiesuy .

From Eq.(14), one can derive in a straightforward way
the hierarchy satisfied by the reduced distributions
f(1,2,...Kk;t). They are relevant for the evaluation of
physical parameters, d&g(1,2, ... k;t)d1---dk represents
the measure of the number leparticle phase space configu-
rations, with k particles occupying the one-particle states
(ri,ve),(ro,vo), ..., (rg,vy) at timet. The distributionsf,
are related to the probability densitieq? by the equation
(see Ref[11])

The state(11) is then transformed into Eq4) at time (¢
+dt) as the result of an annihilating collision between the
particles k+1) and k+2), during the time interval t(t
+dt). According to Egs(7) and(8), the rate of the occur-
rence of binary collisions between pailisj( is obtained by
applying the operatof—TV(i,j)] defined in Eq.(9) to the
corresponding distribution. Hence, wherit—0", the (K
+1k+2) annihilation process contributes to the density
(10) the term

= (ktp)!
fk(1,2,...k,t)—pZO o fﬂd(k+1)--~fﬂd(k+p)

—J d(k+1)J’ d(k+2)T?(k+1k+2)
o o Xul oL, kL, ke pit).

X (1,2, ... kk+1k+2;0)dt, (12) (15
Note thatf, (1,2, ... k;t) do not depend olf}.
where the shorthand notatialj=dr;dv; for j=1,2,... has In order to derive the evolution equation fby, one has
been used. thus to consider hierarchy equatigh¥), with k replaced by

Finally, we have to take into account the effects of the(k+ p), and use relatioiil5). One finds
free flow of particles across the boundai§) of the region
Q). Indeed, theé-particle state can be created or destroyed by
an additional particleK+ 1) leaving or entering the consid-

ered region. Denoting by the unit vector normal t@)Q
oriented outwards, we get the term

9 k 9 k k
2 Vo= 2 X T | f

=1 07I']' I<j i<]j )

-3
p=0

K t)

(k+p)!

fﬂd(k+ 1) fﬂd(k+ p)

f dvmf dS(N-vi D a(1, ... kk+1;0)dt X[ _ %p +E %p o))
a0 j=k+1 or i j=1iZk+1
J Q . k+p k+p
:J()d(k+1)vk+1.m,uk+1(1, .k k+1t)dt. +k+21<. ; TG0 s n(L - - kIO
(13

—f d(k+p+1)f d(k+p+2)T'(k+p+1,
Q Q

HeredS s the measure of the surface area, and the equality
(13) follows from Gauss’ theorem.
The enumerated events combine together to create the f
+ | d(

XK+pP+2)pyspr2(l, ... K+p+1lk+p+2;t)

complete rate of change of the probability densdftﬂ}. As
equivalent events have the same probability measure, we can
equate Eq(10) with the sum of contribution§7), (12), and

(13), thus obtaining the hierarchy equations=(1,2, . . .) X iy pra(L .. k+p+ 1;t)]. (16)
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It is then a question of inspection to see that on the right- 1 X o
hand side of Eq(16), only the term X le j dvk+1f do(o-Vjw+1))
~ I ~ .
E (k+p)f d(k‘f‘l)f d(k+p) Xﬁ(—avj(k+1))fk+1(l,,j,,k,
p=1 p| QO Q
k+p M1 =1j— 00V, 1;)/N(t), (22)

k
X T(i,j 1,... k+p;t ) o -
jzli 1 (1) A pit) and its prefactor & remains finite in the same limit. So,

formally the hierarchy equatiof18) at a given time reduces
pointwise in the Grad limit to the Boltzmann-like hierarchy,

=

<
k

=f d(k+1)>, TU(j,k+1)friq(1, ... kk+1;t)
=1

PR J
1 — 7 |8 _
17 FrRDIRY Mj)fk(l,...,k,t)

j=1

survives. All the remaining terms exactly cancel out. K
The hierarchy equations satisfied by the reduced distribu- :f d(k+1 To(i k41
tions f\ describing the annihilation dynamics thus read ( )121 U, )
P P X2 (1., kk+1t) (k=1,2,...).
E+j§lvj.&_rj_i2<j iEqT(I,]) fi(l, ... kt) 23)
k The hierarchy(23) propagates the factorization of the re-
=f d(k+ 1)2 TU(j,k+2D)f1(, ... Kk+1:t). duced distributions
=1
(18 ‘
fE(1,...,k;t):1'[l fB(j;t). (24)
j=

Consider now Egs(18), supposing that the state of the sys-

tem is spatially homogeneous. In this case the distribution jonce it the initial state is factorized, the whole hierarchy
does not depend on the particle position. Let us formally tak?23) reduces to a nonlinear equation

the Grad limit

i+v1-%)f3(l;t):f d2T°(1,2FB(1:1)F8(2;1).

oc—0, n(t)—w, n(t)e® =x"l=const, (19 e
(25

where

Equation(25) is the Boltzmann kinetic equation correspond-
ing to the annihilation dynamics. In the following section, we
shall see that the formal Grad limit taken here, whare
—o, is relevant for the description of the annihilation dy-
The fixed mean free path introduces a relevant length namics at late times, even if the densitft) decreases with
scale, so we pass to dimensionless positions, putting increase in time.

n(t)=f dvfqi(v;t).

M=AX, j=12,.... (20) B. Scaling analysis of the hierarchy

The evolution of the annihilation kinetics shares a com-
mon feature with the Grad limit: The ratio of particle diam-
eter to mean free path=1/(ng®" 1), which is related to the
1 packing fraction, vanishes in both cases. To be more specific,
To(i ,j):[n(t)gd]d—l_j d[,-([,-.vij)g(_[,-. vij) we perform a scaling analysis of the exactmogeneouki-

A erarchy equations and look for self-similar reduced distribu-
tions where the time dependence has been absorbed into the
densityn(t), with the velocitiesy and positiong renormal-
ized by the typical(root-mean-squaredvelocity v(t) and

d mean free path, respectively. We define the reduced variables

With this change of variables, the collision opera@rtakes
the form

X 8[x; —n(t)odo]. (21)

We conclude that the term on the left-hand side of @&)
involving the collision operator$21) vanishes in the Gra
limit for d>1, because the dimensionless parame(¢yo*
tends to zero. Note that this term induces dynamical correla- c=
tions, hindering the propagation of the molecular chaos fac-

torization. On the other hand, using the definitionTé{],k

+1), we find that the term on the right-hand side equals with

r
and x=—,
N

c||<
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—, 1 5 scaling form
(v) —va fi(v;t)dv. (26) s
fk(rl,Vl, C ,rk,Vk;t):(:d) fk(Xl,Cl, C ,Xk,Ck).
v
For the one-body distribution, we therefore introduce the re- (28
duced functionf,, such that The evolution equations af(t) and kinetic energy den-
sity nv?(t) follow from integrating Eq.(18) with weights
dv, andvfdvl, respectively, fok=1. We obtain
T L N( ’ ) 27 dn
T K b Sp=—en, (29
- ~ d(nv?) -
By definition, the moments of order 0 and 2 faf are con- g aw(t)nv?, (30

strained to unity. Requiring that thk-body distribution
fy factorizes intoHikzlfl(i) in the limit of infinite relative  where the collision frequency and kinetic energy dissipa-
separations between the particles, we consistently obtain th&n parametew read

w(t)= n(t)v_(t)f dc, de, dao(— - ¢10) 6(— - o) To(Cy G, 0 0), (31)

| dedesdétircu 0 -t cr.00)

a= . (32
j cZf,(c)dc J dc, dc, do( o ¢10) 0(— o ¢10) F2(Cy, G ,o&)}
|
Equation(32) is valid for general velocity rescalings. Defi- 2 1+«
nition (26) chosen here implies that the terfn?f,(c) dc in C= 1+a|” 1 2 ‘”Ot)' (35)
the denominator equals unity. The coefficientnay be seen
as the ratio of the kinetic energy dissipated in a typical col- The corresponding time evolution is
lision normalized by the average kinetic energy, and is time P 9
independent in the scaling regime. It is convenient to intro- 9
duce the internal “clock”C of the dynamics counting the n_ 1+ 1+a i et 36
number of collisions, such thaC= w dt. With this variable, No 2 “o ’ (36
Egs.(29) and(30) integrate into
= — v 1+a (1-a)/(1+a)
n(t)=ngexd —C(t)] = =[1+——wot 37
Vo

and

— Without knowing the detailed form of the one-particle distri-
204y — 72 (y—

v(t)=voex — (a—1)C(V)], (33 bution functionf,, it is thus possible to conclude about the

time decay o andv, which appear to obey algebraic laws

in the long-time limit [n(t)ct™¢ and v(t)*t™?, with &

— =2/(1+«a) and y=(a—1)/(a+1)]. The exponentst and

edge of theC dependence oft andv allows one fo relate ~y are consequently simply related to the unknown quantity

absolute timet to the number of accumulated collisions: a, for which a perturbative expansion will be put forward in

From Eq.(31), we have Sec. IIl before a numerical investigation in Sec. IV. More-
over, if the initial velocity distribution is of finite support

where the time origin with densitpy and kinetic energy
densitynogg has been chosen to coincide with- 0. Knowl-

d_C: o n 1_(9 ext —C(1+ a)/2], (34) (i.e., vanishes outside a sphere of given velogity, v ful-
dt no Vo 0 fills the boundv<v* so thaty is necessarily positiveor
a=1). In the framework of Boltzmann'’s equation, it will be
wherewy=w(t=0), so that shown in Appendix A that the quantity is necessarily larger
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than 1. For the specific initial condition where all particles [ll. BOLTZMANN KINETIC EQUATION

have the same kinetic energytat0, v*=(v?) is time inde- This section is devoted to the analysis of the decay dy-
pendent, and Eq37) implies thata=1. From Eq.(36), we  namics within the molecular chaos framewdr3] of the
therefore obtain the time evolution for this situation, homogeneous nonlinear Boltzmann equation. No exact solu-

tion could be obtained, and our goal is to derive accurate
approximate predictions for the scaling exponenéd y of

n 1 the density and root-mean-squared velocity.

n_o= 1+ wgt’ (38) Before considering the kinetic equation obeyed by the re-
scaled distribution function, it is instructive to rewrite the
original homogeneous Boltzmann equati@3) in the form

which is exact within the scaling theory. This relatiarpri-
ori holds in any dimension, except fd=1 where the cor-
responding initial velocity distribution is the symmetric dis- at
crete bimodal function=c, for which the scaling ansatz with
underlying our approach failsee the discussion at the end
of the present section o L
Inserting the scaling form$27) and (28) into the first V(Vl;t):[adlf do(o-Vi) (o Vi) de2|V12|f1(Vz;t),
equation of the hierarchy18) imposes the following con- (39)
straint on the decay exponentst y=1. This scaling rela-
tion may be simply obtained by elementary dimensionalwhere in the last equation, the term in brackets may be com-
analysis[4—6,9,1Q, and may be considered as the compat-puted explicitly as a function of dimensidit is understood
ibility condition of the hierarchy with the self-similar scaling that the unit vectow,, denotes an arbitrary directidnFor
solutions[12]. It is, moreover, identically fulfilled by expres- our purpose, it is sufficient to notice that at all times, the
sions(36) and (37). Under the constrainf+y=1, the re- collision frequencyv(v;t) of the population having velocity
maining equations of the hierarchk>*1) turn out to be Vv remains finite in the limiv —0, provided the first moment

afi(vit)

—v(v;t)f(v;1),

2 ?1((31)

1+

compatible with Eq(28) with the additional information that of f; exists. In this situation, EQ.39) implies that
the collision term on the left-hand side of E@.8) decays fi(v;t)/f1(v;0) admits a finite limit forv—0, or equiva-
like t~ ¥~ 9 whereas the remaining terms are associated wittently, it may be stated that if the initial velocity distribution
a power 1. Given thaty+dé=1+(d—1)¢=1, this colli- behaves likew* near the velocity o_rigin, this. feature is pre-
sion term is asymptotically irrelevant except in one dimen-Served by the Boltzmann dynamics. Previous works have
sion where it remains of the same order as the dominant oné&own accordingly that the scaling exponestand y de-
(11t). We therefore recover the conclusions obtained by conPend on the exponent [4,6,9,10. S
sidering the formal Grad limit, with distribution functions ~ Making use of relationg29) and (30), insertion of the
expected to obey a Boltzmann-like equation. This analysigcaling form(27) into the Boltzmann equation leads to
points to the relevance of Boltzmann equation dor1, a
point that is further corroborated by the numerical results d+cli>
given in Sec. IV. dcy

It is interesting to note that both E¢38) and the relation
§_+ y_=1 do not hold in 1[_) fo_r dis_crete initif_:ll veIocit_y d_is- :'fl(cl)f dczﬁﬂ(cz), (40)
tributions. In the symmetric situation of a bimodal distribu- (C12)
tion, the average kinetic energy per particle is consefgsed ] ) ) o
that y=0), whereas the density decays as/tlfi.e., & where~ we rlave assumed an isotropic velocity distribu-
=1/2[1]). The scaling assumptiof28) is consequently in- tion [f,(c)=fi(c)] and introduced the averagf:--))
correct in the specific situation of discrete distributions in= f(---)f;(c;) f;(c,)dc, dc,. (cqp) is therefore the res-
1D, but valid for continuous distribution®]. To be more caled collision frequency. Onge has been chosen, E@t0)
specific, the scaling formi28) implies that the collision fre- admits a solution for a unique value af We show in Ap-
quency scales with time, like=nv. On the other hand, pendix A that the inequalityr>1 necessarily holds.
from the analytical solution of the bimodalc situation[1], Irrespective ofx, the large velocity behavior c~ff1 may be
we obtainwon?v with v=c. This discrepancy is the signa- obtained following similar lines as in Ref§4,5,9,14,15: it
ture of dynamical correlations in the latter discrete casejs possible to integrate formally E¢40) and castf; into
These correlations are responsible for the breakdown of Eq.

(28), and in addition, violate molecular chaos. For continu- F.(c) c ) ~[2+d(1-a))/(1-a)

ous velocity distributions, again in 1D, molecular chaos also ==

breaks down while the scalin@®8) is correct. As a conse- fi(c’) \c

quence, the exponents obtained at the Boltzmann level differ 5 1 e e

from the exact onegsee the discussion in the last paragraph X ex f v(C )dcﬁ . @)
of Sec. lll), whereas the relatio+y=1 holds. 1-a{c))e ¢
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In this equationy is itself a functional off; ;

Ti(c)=M(c) : (48)

1+ 21 a,S,(c?)

v(cy)= | cipfi(cy)dcy, (42)
(ca) j 12fa(C2)dc; These polynomials are orthogonal with respect to the Gauss-

- ian weight,
such thatv(c)/c goes to a finite limit forc—c. We there-

fore obtain the large velocity tail d |92
? g M(c)=(z) e 9o, (49)
F,(c)xc 2HI-a-agyd 2 _C ,
1 a—1{(cyy and the first few read

for c—oo. (43 So(x)=1, (50
In one dimension, we recover the results of Rpf$.and[9]. d
In Refs. [4,5], an approximation was derived fa [or Si(X)=5(=x+1), (51
equivalently,é=2/(1+ «)] by assuming that the large veloc-
ity behavior of f, could hold for the whole velocity spec- g2 d(d+2) d(d+2)
trum. In this picture, the power af appearing on the right- S,(X)= gxz— 7 X s (52

hand side of EQ.(43) is equated to the exponent
characteristic of the small velocity behavigmposed by the

J e , The coefficientsa,, follow from the orthogonality relation
initial distribution chosen, see abgyevith the result n 9 y

1Sh(c?)Sp(c?) M(c)dex 8,m. In particular,

2d+2
a=1+—— or il

u+d = odvour1 (44)

2 2 _2 2
a1:a<Sl(C )>:a(1_<c ))=0, (53

This prediction encodes the correct dependenceuoand 54 gptained from the definition of rescaled velocitigs).
dimension € increases whep or d increasg and turns out  the first non-Gaussian correction is thus embodieduin

to have an accuracy of order 10% when compared to thgich is proportional to the fourth cumulafiturtosis of the
numerical result§10]. In the limit of large dimension, we velocity distribution:

obtain from Eq(44) é~1—(2d) !, whereas Krapivsky and
Sire have shown that~1-d~ %(1—-1/y/2), also in the d? . 5
framework of the Boltzmann equation. The remainder of this 8= [{c) = 3(ci 2=
section is devoted to the derivation of a more precise value
for @, which furthermore coincides with the exactdidor-  \yith ¢; a Cartesian component af Upon truncating Eq.
rection ford—o. (48) at a finite ordemn, we obtain a regular velocity distribu-
Invoking the identity tion nearc=0. We consequently restrict our analysis to the
caseu =0 (the dependence gm has been considered in Ref.
P
f dec It is also noteworthy that any truncation of E@8) at
arbitrary ordem leads to a Gaussian high-energy behavior,

d\.
d+ c&> fi(c)=—p(cP), (45) [10D.
the energy dissipation parametemay be given as the set of incompatible with the resul43) corresponding to an over-

d

a1 4

equivalent expressions: populated tail with respect to the Maxwellian. However, it
will be shown in Sec. IV that the difference between the

2/ (c1h) truncated expansio@8) and the numerical velocity distribu-
a= o m— , V¥V p=0. (46)  tion becomes manifest far in the tail, where the distribution

has reached very low probabilities. Consequently, when the
- moment involved in Eqs(46) and (47) are evaluated from
A particularly useful relation betweem and moments of;  the truncation of Eq(48), the accuracy of the result is ex-
follows from considering the limie;— 0 of Eq.(40); we get  pected to be better for low orders pfin Eq. (46). Hence the
privileged role is played by Ed47), which is of lower order
_ (C1) 47) than any of the identitie$46). In practice, upon truncating
(C1p))" Eq. (48) at ordern, then unknownse,a,, . .. ,a, are com-
puted evaluating the corresponding moments appearing in
The (infinite) family of relations(47) and (46) is equivalent Eq.(47) and inn—1 of the relation(46), among which it is
to the original integro-differential equatio®0), and well  convenient to retain the—1 even values op (p=0 ex-
suited to a perturbative analysis. To this end, a systematicluded. Truncation of Eq(48) at ordern=2 yields precise

approximation of the isotropic functiofy can be found by predictions fore andf,, and already at Gaussian order,
expanding it in a set of Sonine polynomidls5|: turns out to be very close to its numerical counterpart. Set-

1

a=1+——r
M
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ting n=0 (or equivalently,n=1 sincea;=0) in Eq.(48), tracted numerically from the exact dynamics (0.Z&b005

we obtain immediately the zeroth-order approximation in Ref.[6], and more recently 0.804 {i19]). The difference
between the exact exponents and those obtained assuming
\/E molecular chaos is consistent with the conclusion of Sec. Il:
a=ag=1+4g{1- 7) ' (55| one dimension, the factorization of the two-body distribu-

tion T, underlying Boltzmann ansatz is not an exact property

of the distributions obeying hierarch§i8). On the other

hand, ford>1, the molecular chaos exponents are expected

_ 2 _ 2d (56) to become exact. This property is illustrated in the following
1+ay 2(d+1)—2° section.

which corresponds to

&=¢&o

For large dimensions, this estimation goes to unity, with the

exact 1d correction computed in Ref9], IV. SIMULATION RESULTS

The numerical results presented in this section correspond
fo1- }( 1- \/_§> (’)( i) 57y the situationu=0, unless stated. We refer to RE0] for
d 2 a2/’ the case of divergingy<0) or depleted &>0) velocity
distributions neap =0.
This behavior turns out to be “universal,” in the sense that
the u dependence does not appear at this of6r.
We shall also be interested in the non-Gaussian features of ] )
the velocity distribution, which we quantify by the fourth ~ We follow two complementary numerical routes. First, we
cumulanta,. The (cumbersomecalculations at second order solve the time-dependent homogeneous Boltzmann equation

in Sonine expansion are detailed in Appendix B. We obtainby means of the direct simulation Monte Carlo method
(DSMC), originally developed to study ordinary gag&®.

A. The numerical methods

d(2y2-3) This scheme, where a suitable Markov chain is constructed,

=8 —— (58) has been extended to deal with inelastic collisip®$,22]
4d+d(6— V2) and is easily modified to describe the situation under study
here, which does not conserve the total number of particles.
. Ea (59 Restricting to a spatially homogeneous system, the algorithm
@27 *0T 7492 is especially easy to implement, and may be summarized as

follows: amongN, initial particles having a given velocity

The corresponding density exponent follows frég=2/(1  distribution, a pair {,j) is chosen at random, and removed
+a,) as before. Fod— o, a,~2(3—22)d tirrespective  from the system with a probability proportional fig;|. The
of u [10], which reinforces the universal nature of lamde  (suitably renormalizedtime variable is then incremented by
The correction toé carried bya, behaves as @f in this  the amount (\|2|vij|)*1, whereN is the number of particles
limit, and does not affect the d/terms that still coincide remaining in the system before another pair is drawn, etc.
with the exact behaviof57). Both predictiong55) and (59) This scheme provides the numerical exact solution of Eq.
are such thatr>1, which is required to obtain a normaliz- (39), and allows to test the validity of the approximations put
able distribution in Egs(41) and(43). forward in Sec. Ill[essentially, truncation at second order in

The second-order expansion considered here may be inexpansion48) supplemented with calculations performed at
proved by consideration of higher-order Sonine terms andinear order in the fourth cumulamt, (see Appendix B. A
inclusion of nonlinear terms ia,. In the related context of precise analysis of the late time dynamiasd especially the
inelastic hard spheres, the limitation of working at linearcomputation of velocity distributionssuffers from the con-
order ina, with neglect of Sonine terms of ordaE=3 may  comitant low number of particles left, and the statistical ac-
be found in Ref[17]. Alternatively, keeping nonlinear terms curacy is improved by averaging over independent realiza-
in a, and neglecting again Sonine terms of order3 leads tions.
to multiple solutions. A stability analysis is then required to  The second numerical methdaoholecular dynamic§23])
determine which one is stable, as discussed in Réj. consists of integrating the exact equations of motion for an

Here, the value obtained far, is quite small(see below. assembly of spheres confined irftyypencubic box with pe-
Our approximate expressions are accurate when compared ii@dic boundary conditions. This route assesses the validity
the full numerical solution of Boltzmann'’s equation, so thatof the approach relying on the homogeneous Boltzmann
we did not calculate any higher-order coefficients, nor did weequation, but does not offer the same accuracy as DSMC, nor
consider nonlinear terms in,. The existing literature re- the possibility to follow the evolution over comparable
ports, within the Boltzmann framework, numerical expo-times. In particular, once the mean free pathwhich grows
nents in 1D, which are in excellent agreement with our prerapidly ast?, becomes of the order of the box sike the
dictions, already at zeroth order. For the cage=0, subsequent evolution suffers from finite size effects and
expressiong56) and (59) give £,=0.773 and&,=0.769, should be discarded. Whexr>L, the algorithm used is un-
whereas the numerical result obtained in REJ] is &  able to find collision events for those particles that make
=(.769. These exponents are close to their counterparts eriore than one free flight round on the torus topologically
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FIG. 1. Inverse density,/n versusngu,/(nv), for d=2. The
dotted line has slop&€,=0.87 [see Eq.(56)]. Initial number of

particles: 5 10° (with a further average over Gndependent rep- FIG. 2. Plots of @p/n)—1 [upper curve corresponding to
licas) for DSMC and 2<10° for MD. In both cases, the initial psmC, compared to its MD counterpaftrosses and (uo/v)32
velocity distribution is Gaussianu(=0), and the initial configura- _—1 (lower dashed curve for DSMC, circles for M@s a function

tion used for MD is that of an equilibrium hard disk fluid with of time. The dotted line at short times has slope 1.

packing fractiongp= 0.1 (chosen low enough to avoid finite packing

effects. those reported in the literatur&40.89 in Ref.[4] and &
=0.87(5) using a multiparticle lattice gas metH@d]).

equivalent to the simulation box, which causes a spurious The time evolution of inverse density and inverse typical
slowing down of the dynamics. It is then tempting to reduceVelocity square is shown in Fig. 2, where considenmgn

\ by increasing the particle diametet but then finiteand ~ —1 andv3/v?—1 instead ofny/n andv3/v? allows one to
necessarily transientlensity effects—incompatible with the probe the short time behavior. Unless stated, the initial ve-
scaling assumptiof28)—may also arise if the packing frac- locity distribution is an isotropic Gaussian. From E¢29)

tion ¢, proportional tonad, is not low enough. Simulating and(30), n andv? evolve linearly witht for wt<1 [see also
explicitly the limit of point particles, the DSMC scheme con- Egs. (36) and (37)]; the same holds for inverse density and
sidered here is free of this defect. The initial number of parinverse typical velocity squared, which is indeed observed in
ticles considered in MD needs to be large to allow the systenig. 2. MD and DSMC results superimpose, except at late
to enter the scaling regime before finite size effects becomgmes where MD suffers from the slowing down discussed
dominant, we considered systems witN=(5x10% previously. For both numerical methods, the scaling relation
—(5X10°) spheres initially(compared toN=10°-1C in &+ y=1 is well obeyed, in principle at late times only, in the

DSMO). scaling regime. Special combinationsmfindv can, how-
ever, be constructed with the requirement to match the short
B. Dynamic scaling behavior time evolution with the scaling behavior. One of these quan-
The results of two-dimensional DSMC and MD simula- fiti€s is_ displayed in Fig. 3, with a resul.ting scaling.regime
tions are shown in Fig. 1, where the quantity on xreis is extending over more _than ten decade; in time. In Fig. 4, we
expected to scale like real timefrom the scaling relation not only test the v_al|d|ty of the theoretical spallng exponents,
¢+ y=1. This log-log plot is a direct probe of the exponent PUt also the full time dependence as predicted by Ezf.
¢, from the slope measured. Both MD and DSMC method<hd (37). In order to improve the agreement between theory

give compatible results, with the possibility to follow the @nd simulation(which holds over more than six orders of
dynamics over a longer time interval in DSMC. The depar_magnltude in timg the system has been left to time to enter

ture observed fom,/n=200 corresponds to the slowing 1€ scalir;g regime. The time origin=0 has been chosen
down of MD resulting from finite size effectesee Fig. 2 When 80% of the particles originally present have disap-
below). The theoretical predictions at zeroth and second orP€ared. The corresponding reference configurdtioth sub-

der are very closed,=0.872 and¢,=0.870), and in excel- scripts 0 thus differs from the ones considered previously.
lent agreement with the simulation results over several de- S . .

cades. On a similar graph as Fig. 1, the kinetic C. Velocity distribution in the scaling regime
“temperature”v~ exhibits a power law behavignot shown In order to understand the reasons for the good agreement
with an exponent-2vy, in good agreement with the theoret- between our theoretical predictions and the simulations, we
ical prediction (y=0.13 in 2D. Moreover, the exponents now consider the velocity distribution, restricting to Monte
obtained analytically and numerically are compatible toCarlo results(leading to similar conclusions, MD is much
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15.0 . 0.6 . .
100
X DSMC
04 | —-—-- Gaussian
50 r . —— Sonine
00
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=50 1
~10.0 ‘ ‘ 0 . .
-5.0 0.0 5.0 0 o5 ] 15
log,,(w 1) (o
FIG. 3. Plot of logdno/n—1]+log;d nov3/(nv?)—1] on a FIG. 5. Probability distribution functiofi,(c;) of a given Car-

logarithmic time scale d=2). DSMC results are represented by tesian component; of the rescaled two-dimensional velocity

the continuous curve, while the crosses correspond to MD. Thehe time-independent distribution obtained in DSMC simulations at
dashed line has slope 2. At late times, the quantity displayed itate times is compared to the Gaussiahand the Sonine expansion
expected to behave as 2 lg@vot) from the scaling relatiog+y  truncated an=2, with the fourth cumulant given by E¢58) (a,

=1. At short times, the same behavior is observed, for a different=0.109 ford=2 andu=0). All distributions have variance 1/2, so
reasor(see Eqs(36) and(37)]. The ultimate MD slowing down is  that(c?)=1. The results have been obtained by averaging over 50
again visible. replicas of a system with initialli)N=40x 1 particles.

more demanding on CPU time and does not allow to inves?he Sonine prediction pushed at second order. The agreement

i ) -~ is remarkable, and it is also observed that the Gaussian ap-
tigate detailed features 6{ with the same accuragyAfter a  hoyimation is already close to the asymptotic rescaled ve-

transient where the probability distribution functioh, |ocity distribution, which is quite surprising in a kinetic pro-
evolves with time, a well-defined scaling regime is reachectess extremely far from equilibrium, with furthermore no
with a time independertt;(c) shown in Fig. 5 together with conservation laws. Given that our perturbative analytical

work relies on the calculation on low order momentsf pf

this explains the accuracy of the zeroth-order predictions
and &,. From Eq.(43), we expect the differences between
the Sonine expansion and the numerical distribution to be-
come visible in the high-energy tail, which is confirmed in
Fig. 6. As predictedf, is overpopulated with respect to the
Gaussian, and displays a high velocity tail of the fo4B)
(see the inset of Fig.)6

10°

1

10

102 L

D. Evolution towards the asymptotic solutions

-3 ~
10" ¢ Before the scaling regime is attainefd, is time depen-

dent, as shown in Fig. 7, where the distributions at different
times have been renormalized By to emphasize the build-
ing up of non-Gaussianities. The evolution towards the scal-
ing solution 1+a,S, can be observed. With respect to the

Gaussian{, is at all times overpopulated both at large and

10° small velocitiegwhich may be related to the positive sign of
a, for the latter case normalization is ensured by an under-
population at intermediate velocities. Figures 5—7 show that

FIG. 4. Time dependence of (lower curvé and v2 (upper the indirect measure @&, through the non-Gaussian charac-

curve obtained in Monte Carlo, compared to the dashed curveder of f1/M agrees with the theoretical prediction, but it is
corresponding to the theoretical predictidBs) and(37), where the ~ also possible to compute directlst, in the simulations
energy dissipation coefficient is calculated at second order in through its definition as a fourth cumuldiiq. (54)]. It turns
Sonine expansiofa,=1.297 from Eq.(59)]. out that both methods are numerically fully compatible.

-5 L ! !
l 0 -2 -1 0 1

10

10° 10
0,
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10° ¢ 1.6

----- Gauss.
—-—- Sonine
DSMC ]

145

13 |
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FIG. 6. Same as Fig. 5, on a linear-log scale to probe the tails of FIG. 8. Plot Oﬁ(Ci)/M(Ci_) as a function ot;, at the particular
the distributions. In the inset showirtg*‘”fl(ci) as a function of  timety; where the density is exactly half the initial one, with the

¢;, the dashed curve corresponds to the Gaushiaﬁjj\/t(ci)] same initial distribution as in Fig. [the circles(DSMC measurg

while the straight line is a guide for the eye evidencing a puretus show the same distribution as the circles of Fig-The thick
exponential behavior. Fad=2 and x=0, the exponent+ 2/(1 curve shows *ay(ty)S,, with as(ty,) measured from its defini-
— &) appearing in Eq(43) is close to—4.7 and has been used to tion (54). The dashed curve is the Sonine prediction in the scaling

rescale the quantity plotted on tiyeaxis in the inset. regime(i.e., the thick curve of Fig.)7 Inset:« as a function of,
(see main text The DSMC measure is compared to the prediction

] ] (B10) shown by the straight line ending at the point—indicated by
Moreover, the Sonine expansit#8) truncated ah=2 holds 5 cross—of coordinate®.109,1.297 as predicted by Eq€58) and

at any time, even in the transient regime, with the time-(59). The square located &0.0207, 1.2595 corresponds to the
dependent fourth cumulamt, measured from Eq54) (see  numerical measure ot and a, made at timet,,, for which the
Fig. 8). This result is not priori expected and points to the velocity distribution is displayed in the main graph.

relevance of expansio@8). We did not try to solve analyti-

cally the homogeneous time-dependent Boltzmann equatioflence ofa, anda. However, as shown in the inset of Fig. 8,
within the same framewo_rk_ as in the sca_ling regime, so thagelation (B10) [which reads in 2D asy=(5/4)+ (7a,/16)]

we do not have any prediction for tifgansient time depen-  remarkably holds for all times. Here, the energy dissipation
parameter « has been computed through the ratio
(1D ((cra)(cT)) =(cT)ean/(c3), Where(ct)eor, the mean
energy dissipated in a collision, is computed in the simula-
tions and normalized by the time-dependent mean kinetic
energy per particle(c?).

1.45

1.3
E. A final remark: Identification of “isobestic” points

For =0, Fig. 7 indicates that during the transient evo-
lution towards scaling, the distributions of reduced velocities
have fixed pointg¢for a given initial velocity distribution, all

the curves corresponding th;, at different times pass
through common points that we called isobestic pginthis
feature has been observed for all initial distributions investi-
gated and appears to be a systematic property of the dynam-
ics, which still holds for nonvanishing values af (see Fig.

s . s . s 9). We have no analytical explanation for this observation.

1.15

i V. CONCLUSION

FIG. 7. Plots off(c;)/M(c;) versusc;, at different times cor- An analytical derivation of the equations governing the
responding to the indicated densities. The initial distribution isdynamics of an infinite system of spherical particles in a
Gaussiar(thus corresponding to the flat cupvand the thick curve  d-dimensional space, moving freely between collisions and
is Sonine solution * a,S,, with a, given by Eq.(58). annihilating in pairs when meeting, has been obtained. The
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1.5

C.

i

FIG. 9. Plots off,(c;) as a function ofc; at different times. The left graph corresponds to an initial velocity distribution with
pn=—3/2 while u= 3 for the right graph. On both graphs, the initial distribution is shown by the dashed curve, whereas the thick curves
display the asymptotic distributions approached in the scaling regime.

hierarchy equations obeyed by the reduced distributionsemarkable agreement with the results of extensive numeri-
fi(1,2, ... k;t) have been derived. In the Grad limit, this cal simulations we have performed for two-dimensional sys-
hierarchy formally reduces to a Boltzmann-like hierarchy fortems (implementing the complementary Monte Carlo and
dimensiond>1. If these reduced distributiorf§ factorize  molecular dynamics techniques$n 1D, for regular continu-
at the initial time, this factorization remains valid for all ous velocity distributions, it is noteworthy that they are in
times, and the whole hierarchy reduces to a nonlinear equ&xcellent agreement with the numerical solution of the Boltz-
tion. mann equation, and quite close to the exact values obtained
In the long-time limit, the ratio of the particle radius to the with molecular dynamicg4% difference. This last point
mean free path vanishes. A scaling analysis of the exact hovas unexpected since molecular chaos breaks in 1D. Finally,
mogeneous hierarchy equations has been performed. Sethe time dependence of the reduced velocity distribution
similar reduced distributions in which the time dependencdunction shows an unexplained and a remarkable feature,
has been absorbed into the densify) and the root-mean- With the existence of fixed‘isobestic”) points, irrespective

square velocity (t) were introduced. As a result, the expo- Of initial conditions.
nentsé and vy describing the decay with time of(t) and

v(t) depend only upon one single parameterelated to the ACKNOWLEDGMENTS

dissipation of energy. Moreover, it turns out that in dimen-

sion higher than 1, the terms responsible for the violation of We would like to thank F. Coppex for a careful reading of
molecular chaos are asymptotically irrelevant. Therefore, wéhe manuscript, and T. van Noije, A. Barrat, F. van Wijland,
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analysis is incorrect for a one-dimensional system with dis-

crete initial velocity distribution, a situation for which the

scaling assumption underlying our approach fails. APPENDIX'A

The Boltzmann equation has been solved within an ex- Wwithin Boltzmann's kinetic equation, we show in this ap-

pansion in Sonine polynomialS,. Truncation to ordem  pendix thata>1. To this end, Eq(40) is rewritten in the
=2 provides the first non-Gaussian corrections to the scaleghrm

velocity distribution, and leads to analytical predictions for

the exponentg and y as a function ofd. For large dimen-

siond, these predictions coincide with the exaall torrec- T.(co)+ 1-a div, [cF4(c)]=T4(c )f d 2? (C,)

tion to the naive mean-field value§£1 andy=0), calcu- ! 2 EERCEE N B CQ(clz) n=2h
lated in Ref.[9]. The above analytical predictions are in (A2)
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and integrated with weight/(c,)dc;, where we choose . d
¥(c)=c?1=2  Assuming that the momerntyf, exists, we an:f dc;dCer,CP o

obtain after integration by parfseglecting surface terms 5
2 d
X g dci/4-dC% 1 4 5. §(C‘1‘+c‘2‘)

0 [ deyde, e T ueoTucn. (A2
(c12) d(d+2)

4

d(d+2
(ci+ch)+ (4 :

. (B5)

The right-hand side of EQA2) is a strictly positive quantity ]

[except wherf(c) = &(c)], which leads toa contradiction. From ci+ci=2C*+2(C-cyp)2+cl/8+C%c2,, the term

We therefore conclude that the quantftyf, does not exist. (C-c,;,)? appearing under the integral sign in E&5) be-

Remembering thag(c)T,(c) ~c#*2(1-a) near the velocity comesC2c2,/d for symmetry reasons, and making use of

origin, the divergence of ¢/f, implies c2+c5=2C?+c?,/2, the variables,;, andC decouple in Eq.
(B5). The resulting integrals yield

2
—+d-1+u<-—-1. A3 ".CP
1-a # A9 M—gp=<cnlz—c>=1+2{d(n2+p2)—2d(n+p)

an <Clch>0 16d
Supplementing this condition with the normalization con- )
straint x> —d, we obtaina>1. The physical meaning of +2np(d+2)}+0(a3). (B6)
this condition is that the typical kinetic energy dissipated per ) _ ) )
particle in a collision is larger than the average kinetic endn this equation, the subscript O refers to averages with

ergy of the system at the same time. The temperaT&r'es Gaussian measuxgormally a,=0):

therefore a decreasing function of time. d+n

d+
r(_p

APPENDIX B: SECOND ORDER TRUNCATED (ch,CPYo=(d)"~P2" . (BY?)

SONINE EXPANSION I'?(d/2)

In this appendix, we calculate the dominant deviation ofwhere I is the Euler function. The moment&,,) and
F, from the Gaussian shape, and the associated energy disét;,c5) = (c15(c3+c3))/2=(c3)/4+(c,,C?) appearing in
pation parametew by settingf,(c)=M(c){1+a,S,(c?)}.  Eq.(B1) are then known:

The moments appearing in Eq4.7) and(46) with p=2 are

then computed as a function af. Upon writing (C12 =1— ia2+ O(a3), (B8)
(€120 16
2 <C1)) (c1pc)
=1+ 1- = : Bl 3
S e ey Y v ggrler g romh @9

(c1do T 2d 32 d

the last equality provides an equation &y, which is solved 5
so thata is finally explicitly known as functions of input (C12€1) 14 i+ a
parameterg. and dimensiord. As in the main text, the an- <c12>(c§> 2d 8

gular brackets denote averages with weitc,),(c,)

3 2
2+=|+0(ad). (B10

d

For an elastic hard sphere fluid at equilibriymith thusa,
~ ~ =0), this last quantity equals+1/(2d) and represents the
(- '>:f (--)fa(cpti(cr)de; dey, (B2)  ratio of the mean kinetic energy of colliding particlés/er-
aged over successive collision events the mean kinetic
energy of the population. As expected, this ratio exceeds 1,
(- ,>:f (- YM(CM(C){1+ay[Sy(c?)+S,(c2) ]} since typical colliding partners are “hotter” than the mean
background. This quantity is easily measured in molecular
dynamics or Monte Carlo simulatiorisee, e.g., Fig. )8 We
also note that the ratiB8) has been computed in R¢fL4]
) ) . at the same level of approximation in the context of rapid
In the following, nonlinear terms of ordex; will be ne-  granular flows, with the same result: van Noije and Ernst

glected. In the spirit of Refl25], it is convenient to intro- 550 reported non-Gaussian corrections to the coolingyate
duce center-of-mass and relative velocities=C+¢1J/2;  of an inelastic hard sphere flujd4],

¢,=C—c12/2 and to define the generic moments

X dc, de,+ O(a3). (B3)

y_.. 3 )
Mip=(c1LP), (B4) STl t0@), Vo d, (B11)
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wherey, denotes the cooling rate evaluated assuming Max- d+n

wellian velocity distributions. In terms of the momends, 2 nIZF(T

introduced in Eq.(B4), it can be shown thaty/y, <cg>0=(—> _—, (B13)
=M3o/M3, and it is then easily checked that expression d (9)

(B6) reduces to Eq(B11) for n=3 andp=0, for arbitrary 2

dimensionality.
The remaining unknown quantity i£,), which may be

? L ; from which we extrac{c,)=(c). As expected, the, cor-
calculated following similar lines as above: tey=(c) P 2

rection in Eq.(B13) vanishes forn=0 andn=2, which

(c a follows, respectively, from the normalization constraint and
nl =1+ Ezn(n_z)+o(a§), (B12)  the definition(26) of ¢ implying (c?)=1. Gathering results,
(1o we obtain Eqs(58) and(59) from Eq. (B1).
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