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Theory of domain patterns in systems with long-range interactions of Coulomb type

C. B. Muratov*
Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey 07102

~Received 27 March 2002; published 10 December 2002!

We develop a theory of the domain patterns in systems with competing short-range attractive interactions
and long-range repulsive Coulomb interactions. We take an energetic approach, in which patterns are consid-
ered as critical points of a mean-field free energy functional. Close to the microphase separation transition, this
functional takes on a universal form, allowing us to treat a number of diverse physical situations within a
unified framework. We use asymptotic analysis to study domain patterns with sharp interfaces. We derive an
interfacial representation of the pattern’s free energy which remains valid in the fluctuating system, with a
suitable renormalization of the Coulomb interaction’s coupling constant. We also derive integro-differential
equations describing stationary domain patterns of arbitrary shapes and their thermodynamic stability, coming
from the first and second variations of the interfacial free energy. We show that the length scale of a stable
domain pattern must obey a certain scaling law with the strength of the Coulomb interaction. We analyzed the
existence and stability of localized~spots, stripes, annuli! and periodic~lamellar, hexagonal! patterns in two
dimensions. We show that these patterns are metastable in certain ranges of the parameters and that they can
undergo morphological instabilities leading to the formation of more complex patterns. We discuss nucleation
of the domain patterns by thermal fluctuations and pattern formation scenarios for various thermal quenches.
We argue that self-induced disorder is an intrinsic property of the domain patterns in the systems under
consideration.

DOI: 10.1103/PhysRevE.66.066108 PACS number~s!: 05.70.Np, 64.60.My, 82.35.Jk, 47.54.1r
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I. INTRODUCTION

Pattern formation is a beautiful example of cooperat
behavior in complex systems. It is most pronounced in o
dissipative systems maintained away from thermal equi
rium by external fluxes of energy or matter@1–6#. At the
same time, there exist a great number of systems interac
with the outside world only through contact with a heat ba
which are also capable of pattern formation and s
organization. Typically, these systems are characterized
the presence of coexisting phases, or a phase transition th
the driving force for the cooperative behavior. Examples
such classical systems include ferroelectric and ferrom
netic films, ferrofluids, Langmuir monolayers, various po
mer systems, etc.~see, for example,@7–12#!. Among such
quantum systems are type-I superconductors in the inter
diate state, high-temperature superconductors, degen
ferromagnetic semiconductors, etc.~see, for example,@13–
16#!.

In systems not far from thermal equilibrium, patterns m
form as a result of the competition of interactions operat
on different length scales@7#. Typically, a short-range attrac
tive interaction in the system would favor macroscopic ph
separation. The latter, however, is counteracted by a lo
range repulsive interaction. This is often accompanied b
microphase separation transition, which leads to spontan
formation of patterns in ideally homogeneous systems u
variation of the control parameters.

An important class of systems with competing intera
tions are systems in which the long-range interaction is C
lombic. The fundamental nature of the Coulomb interact
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makes this class of systems extremely diverse. These
tems include a variety of polymer systems, such as bl
copolymers@10,12,17–19#, weakly charged polyelectrolyte
solutions@20–22#, cross-linked polymer mixtures@23#, am-
phiphile solutions@24#, phase-separating ceramic compoun
@25#, systems undergoing reaction-controlled spinodal
composition @26#; photostimulated phase transition
@2,14,27#, etc. Some aspects of systems with competing
teractions are shared by systems far from thermal equ
rium, such as heated electron-hole and gas plasmas, s
conductor devices@2,5#, crystal surfaces undergoing lase
induced melting@28#, autocatalytic chemical reactions, an
surface catalytic reactions@4,29#. Furthermore, a number o
quantum systems, such as degenerate magnetic semico
tors and high-temperature superconductors, which exh
electronic phase separation, can be considered as sys
with competing Coulomb interactions@15,30#. In addition,
the general problem of Wigner crystallization@13,31#, as
well as the thermodynamic and glassy properties of spin s
tems frustrated by Coulomb interaction@30,32–36#, can be
considered from this point of view.

Here we develop a theory of patterns with sharp interfa
~domains! in systems with short-range attractive interactio
and long-range repulsive Coulomb interactions. Our start
point is a mean-field free energy functional, which has
nonlocal term associated with the Coulomb interaction. S
cifically, we are interested in the case of a weak Coulo
interaction, when domain patterns with sharp interfaces
realized. We view patterns as critical points of the free e
ergy functional. Our main tool in the analysis is singul
perturbation theory based on the strong separation of len
scales in the systems under consideration. We use the re
of our analysis of the domain patterns to study the nuclea
and formation of complex patterns. We also discuss the ef
©2002 The American Physical Society08-1
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C. B. MURATOV PHYSICAL REVIEW E66, 066108 ~2002!
of thermal fluctuations and the thermodynamic properties
these systems.

Our paper is organized as follows. In Sec. II, we introdu
the general free energy functional and its reduction nea
‘‘local’’ critical point, derive the interfacial representation o
the free energy, and develop a renormalization schem
account for the effect of thermal fluctuations. In Sec. III w
derive the asymptotic equations for the stationary patte
and their stability. In Sec. IV we perform a detailed analy
of localized and periodic patterns in two dimensions. In S
V we discuss the nucleation and growth of complex patte
as a result of instabilities of simple patterns, and in Sec.
we draw conclusions. This paper is partially based the
thor’s Ph.D. thesis.

II. SYSTEMS WITH COMPETING INTERACTIONS
OF COULOMB TYPE

A. Free energy functional

We start by considering the following general mean-fie
free energy functional:

F5E ddxS u¹fu2

2
1 f ~f!1

a

2E ddx8g@f~x!#

3G~x2x8!g@f~x8!# D . ~1!

Heref(x) is a scalar order parameter,f (f) is a double-well
potential,G(x2x8) is a positive-definite long-range kerne
a is a ~positive! coupling constant,g(f) is a monotonic
function that is equal to zero at somef5f̄, and d is the
dimensionality of space. Here and henceforth we use dim
sionless units.

The functional in Eq.~1! may be applicable to a variety o
systems. Generally,f may stand for magnetization, densi
of the charged polymer in a polyelectrolyte solution, volum
fraction of a block copolymer in a diblock copolymer me
density of electrons or holes in a charge density wave, st
tural state of a catalytic surface, concentration of a chem
species, etc.@15,17,18,21,27,29,30,38#. The kernel G(x
2x8) we are interested in is theCoulombpotential, i.e., it
satisfies

2¹2G~x2x8!5d (d)~x2x8!, ~2!

whered (d)(x) is thed-dimensional Dirac delta function. Th
physical nature of the Coulomb interaction may also sign
cantly vary from system to system: it may arise as a resu
the actual electrostatic repulsion due to charges assoc
with the order parameter, it may have an entropic origin,
in block copolymers, or it can come from the diffusion
chemically reacting species ~see, for example
@2,17,18,21,25–30,38#!. Note that in quantum systems E
~1! arises within the framework of density functional theo
@31,39,40#.

The long-ranged nature ofG(x2x8) from Eq. ~2! is ex-
pressed in the fact that its Fourier transform has a singula
at wave vectork50. At the same time, this Fourier tran
06610
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form is bounded at largek vectors. Let us emphasize tha
G(x2x8) represents arepulsive long-range interaction.
Therefore, the Coulomb long-range interaction represen
by G(x2x8) is competingwith the short-range interaction
represented by the first two terms in Eq.~1!. It is also clear
that since the Fourier transform ofG(x2x8) is positive for
all wave vectors, the functional in Eq.~1! is bounded from
below on any finite domain.

If we formally put a50 in Eq. ~1!, we will recover the
standard free energy functional that is used in the studie
phase separation~see, for example,@41#!. On the other hand
no matter how small the value ofa is, because of the singu
larity of the Fourier transform ofG(x2x8) at k50 the effect
of the long-range interaction will remain significant on su
ficiently large length scales. Indeed, if the system has a fi
size L, from dimensional considerations the contribution
the Coulomb interaction to the free energy will scale
aLd12. If the value ofa is decreased whileL remains fixed,
the contribution of the Coulomb interaction goes away. T
means that whena!1 the system behaves locally as if it d
not have the long-range interaction. On the other hand, fo
infinite system this interaction is always relevant since
contribution scales asLd12.Ld. Therefore, for

a!1 ~3!

the long-range interaction will be asingular perturbation,
globally affecting the behavior of the system. It is in this ca
that domain patterns form in systems with a free energy
the form of Eq.~1!. Since we are interested in the doma
patterns here, Eq.~3! will be assumed from now on. Note
that this condition is satisfied in many systems with lon
range interactions of Coulomb type@15,17,18,21,23,24,30#.

The singularity ofG(x2x8) on the large length scale
implies that the Fourier component ofg(f) at k50 must
vanish in order for the last integral in Eq.~1! to remain finite.
This corresponds to overall electroneutrality for systems
which the order parameter is associated with the elec
charge. The only possiblehomogeneousphase of the system
is, therefore,f5f̄. Thus, due to the long-range interactio
global phase separation in the system becomes imposs
On the other hand, as we will see below, the system
scribed by the free energy functional from Eq.~1! may be in
a patternedstate. By patterned states~more precisely, by
stationary patterns!, we mean the inhomogeneous distrib
tions of the order parameter that are critical points of
functionalF.

B. The microphase separation transition

Let us assume that in the absence of the long-range in
action the system would possess a critical point at temp
tureT5Tc . Then, in the vicinity ofTc the functionf (f) can
be expanded as

f .
atf2

2
1

bf4

4
, ~4!

wheret5(T2Tc)/Tc is the reduced temperature, anda and
b are positive constants@42#. In the following, we will talk
8-2
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THEORY OF DOMAIN PATTERNS IN SYSTEMS WITH . . . PHYSICAL REVIEW E66, 066108 ~2002!
about Tc as the ‘‘local’’ critical temperature. NearTc , the
value of ufu;f05(autu/b)1/2!1 @42#. If also uf̄u!1, we
can expand the functiong(f) in a Taylor series and retai
only the first term, sog(f).const3(f2f̄). Then, rescal-
ing the order parameter and length with the values off0 and
the short-range correlation lengthj5uatu21/2 @42#, we can
write the free energy from Eq.~1! belowTc in the following
universalform:

F5E ddxS u¹fu2

2
2

f2

2
1

f4

4
1

e2

2 E ddx8@f~x!2f̄#

3G~x2x8!@f~x8!2f̄# D , ~5!

where we absorbed a constant factor into the definition oF.
Here the parametere, which plays the role of the effective
coupling constant of the long-range interaction, is given

e5a1/2Ug8~0!

at U;a1/2utu21. ~6!

Notice that in Eq.~5! the value off̄ has been rescaled a
well, so it now depends on temperature:

f̄}utu21/2. ~7!

Also, as was discussed above, for Eq.~5! the singularity of
G(x2x8) at small wave vectors implies that the total amou
of the order parameter must be conserved~the ‘‘electroneu-
trality’’ condition!:

1

VE f ddx5f̄, ~8!

whereV is the system’s volume.
Let us consider small fluctuations of the order parame

df5f2f̄ away from the homogeneous phase forT,Tc .
From the second variation ofF from Eq. ~5!, the Fourier
transform of the pair correlation function of such fluctuatio
is

^udfku2&}
V

uku213f̄2211e2uku22
. ~9!

This correlation function has a maximum at nonzerok vec-
tors with uku5kc , where

kc5e1/2. ~10!

The fluctuations atkc diverge whenf̄56uf̄cu, where

uf̄cu5
1

A3
S 12

e

ec
D 1/2

, ec5
1

2
. ~11!

The divergence of the fluctuations atuku5kc signifies an
instability of the homogeneous phase and leads tomi-
crophase separation@7#. Note that the instability can only b
06610
t

r

realized if e is small enough; in terms of temperature,
occurs atT slightly below Tc when Eq.~3! holds @see Eq.
~6!#.

As the temperature is decreased, the value ofe gets
smaller. Note that for smalla one can still be close toTc and
yet havee!1. In this situation the long-range interactio
can be a singular perturbation~in the sense discussed earlie!
even in the vicinity of the transition. As was already me
tioned, this is a necessary condition for the existence of
domain patterns, so below we will concentrate on the c
e!1. For e!1 the instability of the homogeneous pha
occurs close to the classical spinodal of the Ginzburg-Lan
free energy:uf̄cu.1/A3 @see Eq.~11!#. In this case, accord
ing to Eq.~10!, the instability occurs atkc!1.

There are two regions in thek space in which the fluctua
tions of the order parameter around the homogeneous ph
with uf̄u.uf̄cu, behave differently whene!1. According to
Eq. ~9!, for uku;1 one could neglect the long-range cont
bution, so the fluctuationŝudfku2&}V/(uku21m2), where
m253f̄221, are those of the~mean-field! critical phenom-
ena@42#, with the length scale independent ofe:

l;1. ~12!

On the other hand, foruku!1 one can neglect theuku2 term,
so the fluctuations behave likêudfuk

2&}V/(m21e2uku22)
5(V/m2)@12e2/(e21m2uku2)#. The first term in this ex-
pression represents local order parameter fluctuations, w
the second is the familiar Debye-Hu¨ckel correlation function
@42#. The length scale associated with the latter is thescreen-
ing length

L;e21. ~13!

For e!1 the ~generally, metastable! equilibrium state of
the system should be adomain patternmade up of domains
of large size;R separated by narrow domain walls of wid
; l . Clearly, the long-range interaction cannot significan
affect the local profiles of the order parameter; however
can affect thelocationsof the domain walls. The size of th
domains will be determined by the competition between
surface energy of the domain walls;Rd21 per droplet and
the energy of the long-range interaction;e2Rd12, so the
characteristic size of the equilibrium domain pattern will
of order ~in the context of block copolymers, see also@18#!

R;e22/3. ~14!

Note that this result for the global minimizers of the sha
interface limit of Eq.~5! was recently proved by Choksi@43#.
Choksi also obtained rigorous upper and lower bounds on
energy of global minimizers of Eq.~5! in the situation when
the screening effects are negligible.

According to Eq.~10!, the wavelength of the fluctuation
with respect to which the instability of the homogeneo
phase is realized is

l52p/kc;e21/2. ~15!
8-3
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C. B. MURATOV PHYSICAL REVIEW E66, 066108 ~2002!
Comparing all these length scales, one can see that fe
!1 the following hierarchy holds:

l !l!R!L. ~16!

This is a crucial property of systems with weak long-ran
Coulomb interaction.

C. Interfacial representation of the free energy

The solutions of the Euler-Lagrange equation obtain
from Eq. ~5! may be analyzed by singular perturbatio
theory in the asymptotic limite→0. We perform this analy-
sis in Sec. III A. Now, however, we use a different meth
which gives the free energy of the domain pattern in terms
the locations of the domain interfaces@37#. This method was
used by Goldstein, Muraki, and Petrich for a reactio
diffusion system with a weak activator-inhibitor couplin
@44,45#. Here we develop a procedure allowing one to cal
late the free energy of a domain pattern that takes into
count the screening effects.

Because of the strong separation of length scales we
introduce the following ansatz for the distribution of the o
der parameter:

f~x!5fsh~x!1fsm~x!, ~17!

wherefsh represents the sharp distributions, whose cha
teristic length of variation is of the order of the domain w
width ~which in our units is of order 1!, andfsm represents
the smooth distributions, whose characteristic length
variation is comparable to the domain sizeR. The distribu-
tion fsh is chosen in such a way that it is equal to11 inside
the positive domains and21 outside, whereas at the inte
faces it is close to the one-dimensional domain wall
Ginzburg-Landau theory@46#:

fsh5tanh
r

A2
, ~18!

wherer is the distance from a given point to the interfac
which is positive~negative! in the positive~negative! do-
mains. Thus, the location of the interface is built into t
definition of fsh. The contribution fromfsh to the free en-
ergy, coming from the integration in Eq.~5! in the vicinity
~of order 1! of the interfaces, gives the surface energy

Fsurf5s0 R dS, s052
2A2

3
. ~19!

Here the surface integral gives the total surface area of
domain interfaces ands0 is the surface tension coefficient o
the domain wall in Ginzburg-Landau theory@46#.

To find the smooth distributionsfsm away from the inter-
faces, we minimize the free energy in these regions. Tak
into account thatfsm varies slowly on a length scale of orde
1, we can neglect the¹2f term arising in the Euler-
Lagrange equation and obtain
06610
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m1f2f32e2E ddx8G~x2x8!@f~x8!2f̄#50, ~20!

wherem is the chemical potential~a constant! coming from
the constraint given by Eq.~8!. On the scale of the domains
fsh561 away from the interfaces. We will assume that i
side the domainsufsmu!1, which is justified forR!e21

~see below!. This allows us to linearize Eq.~20! aroundfsh

away from the interfaces. Using Eq.~17! with fsh
2 51, Eq.

~20! is written as

fsm52k2c, k25
1

2
, ~21!

where we introduced an effective field

c52m1e2E ddx8G~x2x8!@fsh~x8!1fsm~x8!2f̄#.

~22!

Note that the constantk2 is basically the coefficient of linea
response for the local theory.

Applying ¹2 to Eq. ~22! and using Eqs.~2! and ~21!, we
obtain

2¹2c1e2k2c5e2~fsh2f̄ !. ~23!

Note that our definition ofc, together with Eq.~21!, implies
that Eq.~8! is automatically satisfied to leading order ine.
This can be seen by integrating Eq.~23! over the volume of
the system and taking into account that for no-flux or pe
odic boundary conditions the surface integral in the obtain
expression vanishes. Also note that for the same reasom
drops out of this equation.

The solution of Eq.~23! is

c5e2E ddx8Ge~x2x8!@fsh~x8!2f̄#, ~24!

whereGe is the screened Coulomb interaction which sat
fies

2¹2Ge1e2k2Ge5d (d)~x2x8!. ~25!

It is explicitly given as

Ge~x2x8!55
1

2ek
exp~2ekux2x8u! in d51,

1

2p
K0~ekux2x8u! in d52,

exp~2ekux2x8u!

4pux2x8u
in d53,

~26!

whereK0(x) is the modified Bessel function. Thus, the flu
tuations of the order parameter in the bulk indeed screen
interaction on the length scaleL;e21. This means that the
finite size effects will become unimportant if the system s
is much greater thanL. Notice that the value ofc is esti-
mated asc;e2R2!1 for R!e21, justifying the lineariza-
8-4
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THEORY OF DOMAIN PATTERNS IN SYSTEMS WITH . . . PHYSICAL REVIEW E66, 066108 ~2002!
tion used in the derivation. Also, according to Eqs.~21! and
~17!, in this situation the deviation off from 61 is small
away from the interfaces.

Let us now calculate the contribution from the long-ran
interaction to the free energy. Once again, neglecting
u¹fu2 term, expanding the nonlinearity in Eq.~5! aroundfsh
up to second order infsm, and taking into account tha
fsh

2 51 away from the interfaces, to leading order ine we
can write the contribution of the long-range interaction~up to
an overall constant! as follows:

F long range5E ddxS 1

2k2fsm
2 1

1

2
~fsh2f̄ !~c1m!

1
1

2
fsm~c1m! D

5
e2

2 E ddxddx8@fsh~x!2f̄#Ge~x2x8!

3@fsh~x8!2f̄#, ~27!

where we used Eqs.~8!, ~21!, ~22!, and ~24!. One can see
from this equation that the screening represented byfsm en-
ters the free energy only viaGe(x2x8). The integral in Eq.
~27! can be transformed to an integral over the domain in
faces by using Eq.~25! and the fact thatfsh561 in the
positive ~negative! domains@45#. After calculating the re-
spective integrals and collecting all the terms in the free
ergy ~see Appendix A!, we obtain

F5s0 R dS2
2~11f̄ !

k2 E
V1

ddx

12e2E
V1

E
V1

ddxddx8Ge~x2x8! ~28!

5s0 R dS2
2f̄

k2d
R dS~xW•n̂!

2
2

k2 R dS R dS8~ n̂•n̂8!Ge~x2x8!, ~29!

where V1 denotes the positive domains,n̂ is the outward
normal to the interface ofV1 , and the surface integrals ar
over the interface. The first integral in Eq.~29! is the overall
surface area of the interfaces, the second gives the total
ume of the positive domains, and the third is the nonlo
contribution of the screened long-range interaction~note the
distinction with the results of@45#!. Thus, Eq.~29! gives the
free energy of the domain pattern in terms of the locations
the interfaces only. Note that the unscreened version of
~28! was recently derived rigorously by Ren and Wei in t
context ofG convergence@47#.
06610
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D. Renormalization

The treatment above is based on the mean-field free
ergy functional from Eq.~5! and therefore neglects the e
fects of thermal fluctuations. In a fluctuating theory, th
functional will become an effective Hamiltonian, in gener
requiring an appropriate field-theoretic treatment. Nevert
less, we propose that the effect of the critical phenom
fluctuations can be taken into account by an appropr
renormalization of the main parameters of the free energ
the interfacial regime@48#.

Indeed, if one looks at the singularly perturbed@Eq. ~3!#
fluctuating system nearTc , on small length scales one wi
see critical phenomena fluctuations of a second-order ph
transitionwithout the long-range interaction. This will hap
pen as long as the characteristic screening lengthL of the
long-range interaction is much greater than the correla
length j of the critical phenomena fluctuations. The critic
exponents associated with the local critical phenomena fl
tuations must be those of thed-dimensional Ising mode
@42#. So the local average of the order parameter will
close to a constant,f56f0utub, wheret5(T2Tc)/Tc is
the reduced temperature andb is the corresponding critica
exponent. Also, the surface tension coefficient of an interf
in which the order parameter changes sign iss
5s0utun(d21), wheren is another critical exponent, and it
width is roughly the correlation lengthj5j0utu2n @42#.

Observe that the long-range coupling involves integrat
over regions of size;R which for the domain patterns mus
be much greater than the correlation length. Therefore,
theaveragevalue of the order parameter that gives the m
contribution to the long-range interaction energy forR@j.
This energy has to be compared with the surface energy
in equilibrium we obtain

s0utun(d21)Rd21;af0
2utu2bRd12. ~30!

Rescaling the order parameter and length appropriately
introducing therenormalizedcoupling constant

e25af0
2j0

3utu2b2n(d12), ~31!

we can still write down the interfacial free energy of th
system in the form of Eq.~29!, where, as usual, we droppe
the primes and neglected an overall constant factor. Cau
however, is necessary here in considering the screening
fects. As was noted earlier, the constantk appearing in the
mean-field definition of the screened long-range interact
Ge(x2x8) is related to the coefficient of linear response f
the local theory. When the critical phenomena fluctuatio
are taken into account, the value ofk can be calculated via
the linear response functionx5x0utu2g that relates the un-
scaled values offsm and c ~below Tc) @see Eqs.~21! and
~22!#. After an appropriate rescaling and using the definiti
of e from Eq. ~31!, we obtain that

k25
x0

f0
2j0

, ~32!
8-5
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C. B. MURATOV PHYSICAL REVIEW E66, 066108 ~2002!
which is a constant of order 1, independent of temperat
In writing Eq. ~32! we used the scaling relation 2b1g
2dn50 between the critical exponents@42#.

Thus, we can renormalize the parametere and redefine
the parameterk to obtain once again the free energy of
domain pattern in the form of Eq.~29! even in the case of a
system locally experiencing critical phenomena fluctuatio
Let us point out that the free energy of a domain pattern
size of orderR@j will be much greater thankBTc ~in the
unscaled units! @see Eq.~29!#, sincesjd21/kBTc;1 @42#.
This leads us to the conclusion that in a strongly fluctuat
system the domain patterns should be essentially descr
by the interfacial mean-field theory, and all the properties
the domains in the fluctuating system will be equivalent
those of the domains in the mean-field systems describe
Eq. ~5!, provided that one uses the renormalization given
Eqs. ~31! and ~32!. Thus, the universality discussed earli
for the mean-field model should in fact extend to all syste
near the local critical temperature as long as the coup
constanta of the long-range interaction is small enoug
Note that in this situation Eq.~5! may be used as a phas
field model representation for the free energy of the dom
patterns@48#.

In the renormalization of the main parameters of the s
tem we made the assumption that the size of the dom
must be much greater than the correlation lengthj. Accord-
ing to Eq.~14!, this condition is satisfied as long ase!1. In
view of Eq. ~31!, this is the case when the reduced tempe
ture t is much lower thant52tc , where

tc;a1/[n(d12)22b] , ~33!

at which e;1. When the temperature is decreased belo
2tc , the long-range interaction becomes progressively m
and more relevant at long distances, until fort!2tc ~what
meanse!1) long-lived domain structures with the free e
ergy cost of each domainDF/kBTc@1 will start to form. On
the other hand, fort@1tc the long-range coupling, which
scales asaj2, will be much smaller than the effective loca
coupling, which is of orderx21;utug, so one will observe
only the critical phenomena fluctuations abovetc . It is a
question whether there is a microphase separation trans
from the homogeneous to the patterned phase~which is
analogous to the freezing transition in liquids! or a smooth
crossover from one to another in a strongly fluctuating s
tem. It is clear, however, that the uniform phase must
thermodynamically unstable whent&2tc . At the same
time, att;2tc the fluctuations are strong, so one can e
visage the system as a collection of domains that rando
appear and disappear in different locations and move a
like particles in a dense liquid. In any case, there must e
a narrow transition region2tc&t&tc , upon going through
which the phase should change from uniform to patterne

III. PROPERTIES OF THE DOMAIN PATTERNS

A. Equations for stationary patterns

The stationary patterns in the mean-field model int
duced in Sec. II B must satisfy the Euler-Lagrange equa
obtained from Eq.~5!:
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¹2f1f2f31m2e2E ddx8G~x2x8!@f~x8!2f̄#50,

~34!

where m is the chemical potential. Formally, this integro
differential equation can be rewritten as a pair of station
reaction-diffusion equations of activator-inhibitor typ
@44,45,48,49#. Indeed, if the last term in Eq.~34! is denoted
by c, this equation can be rewritten as

¹2f1f2f32c50, ~35!

¹2c1e2~f2f̄ !50, ^c&52m, ~36!

where^•& denotes averaging over the system’s volume.
Reaction-diffusion equations of the type of Eqs.~35! and

~36! have been studied by many authors~see, for example,
@2,45,50–53#!. In the limit e→0 their solutions can be
treated by the methods of singular perturbation the
~matched asymptotics! @2,50,54,55#. According to singular
perturbation theory, the solutionf of Eq. ~35! can be broken
up into inner and outer solutions. The inner solution var
on a length scale of order 1 and describes the variation of
order parameter in the vicinity of the domain interface
while the outer solution varies on a length scaleR of the
order of the characteristic size of the domains and descr
the variation of the order parameter away from the interfac
Similarly, the solutionc of Eq. ~36! will vary on the length
scaleR.

Since the variablec varies slowly on the inner scale,
can be considered as constant in the interface. Since the
vature of the domain wall is also much smaller than t
domain wall width, to the leading order we can write E
~35! in the vicinity of the interface as

]2f

]r2 22H
]f

]r
1f2f32c i50, ~37!

wherer is the distance from a given point to the interfac
which is positive if the point is inside the positive doma
and negative otherwise,H5 1

2 (k11k2) is the mean curvature
of the interface~positive if the positive domain is convex;k1
andk2 are the principal curvatures!, andc i is the value ofc
on the interface. In the following, we will write all the for
mulas in the three-dimensional case; in two or one dim
sions one has to set one or two principal curvatures of
interface, respectively, to zero.

Equation~37! can be solved exactly; its solution has th
form f(r)5atanh(br1c), wherea, b, andc are certain con-
stants. This solution exists only when 2H2 16

9 H3

523c i /A2. Since in the domain patternH!1, it is suffi-
cient to linearize this equation with respect toH, so we ob-
tain ~see also@56#!

s0H52c i , ~38!

wheres0 is given by Eq.~19!. This, in turn, implies thatc
!1 in order for a pattern to be stationary. Note that to lea
ing orderf(r) in the interface is given by Eq.~18!.
8-6
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THEORY OF DOMAIN PATTERNS IN SYSTEMS WITH . . . PHYSICAL REVIEW E66, 066108 ~2002!
Away from the interfaces~on the outer scale! f varies
slowly, so one can neglect the gradient square term in
~35!. Then, according to Eq.~35!, we havef2f35c. Since
we must havec!1, this equation can be linearized wit
respect tof around f561 in the positive and negativ
domains, respectively. So, one obtains that to leading o
f5612k2c in the outer regions. Here, as in Sec. II C, w
havek25 1

2 . If we substitute this expression into Eq.~36!,
we will obtain precisely the same equation forc as Eq.~23!,
with fsh561.

The solution of Eq.~23! can be written as an integral ove
the domain interfaces~Appendix A; see also@45,56#!:

c52
11f̄

k2
1

2

k2 R dS8$n̂8•¹W 8~Ge2G!%, ~39!

where¹W 8 is the gradient with respect tox8. Combining this
equation with Eq.~38!, we obtain the following equation fo
the locations of the interfaces:

s0H5
11f̄

k2
2

2

k2 R dS8$n̂8•¹W 8~Ge2G!%. ~40!

This equation can be further simplified if the distance b
tween the points on the interface is much smaller thane21.
In this case one can expandGe in Eq. ~40! in ekux2x8u and
retain the terms up to second order. It is easy to see that
the terms of second and higher orders of the expansion oGe
in e will give nontrivial contributions to the right-hand sid
of Eq. ~40!. Also, in view of the approximations used t
derive Eq.~40!, this equation is valid when the characteris
sizeR of the domains satisfies 1!R!e21.

Equation ~40! describes the pressure balance across
interface. Indeed, the term in the left-hand side of this eq
tion is the Laplace law, the first term in the right-hand si
gives the bulk pressure, and the second one gives the no
cal contribution to pressure due to the interaction of the
main walls with each other.

Let us emphasize that Eq.~40! can also be straightfor
wardly obtained by computing the first variation of the inte
facial free energy given by Eq.~29! ~see Appendix A!.
Therefore, this equation also remains valid in the fluctuat
system considered in Sec. II D. Also, note that since the
lutions of Eq.~34! in the form of stationary domain pattern
can be written in the form of Eq.~17! for e!1, Eq. ~29!
gives the asymptotic expression for the free energy of th
patterns.

B. Deformations of the domain interfaces

The solutions of the Euler-Lagrange equation given
Eq. ~34! are critical points of the free energy functional fro
Eq. ~5!. Similarly, the solutions of Eq.~40! are critical points
of the interfacial free energy from Eq.~29! and correspond to
solutions of Eq.~34! in the limit e→0. Both these solutions
define ~generally metastable! stationary patterns. The que
tion, however, arises as to when these patterns are the
dynamically stable. Since, apart from the nucleation ph
nomena discussed in Sec. V A, the effect of therm
06610
q.

er

-

ly

e
a-

lo-
-

g
o-

se

y

o-

l

fluctuations is small in both cases, the thermodynamic sta
ity of the patterns is determined by the second variation
the free energy functional. Thus, the thermodynamica
stable stationary patterns will be local minimizers of the fr
energy.

The problem of finding the second variation of the fun
tional in Eq.~5! reduces to the calculation of the spectrum
linearization of Eq.~34!. It is not difficult to see that it is
equivalent to the problem of linear stability of stationa
patterns in systems obeying gradient descent dynamics. S
a stability analysis in the context of general reactio
diffusion systems of activator-inhibitor type was perform
in @50#. Here, instead of analyzing the second variation oF
from Eq.~5!, we will use the interfacial free energy from Eq
~29! for finding the spectrum of the fluctuations of the pa
tern’s interfaces. These are, in turn, the lowest-lying mo
of the spectrum and, therefore, cost the least free energ
Eq. ~5!. Both these approaches give the same results in
limit of small e.

Let us now proceed with the calculation of the seco
variation of the interfacial free energy from Eq.~29!. A small
perturbation of the domain shape means a slight shift of
interface in the normal direction byr(x), wherex denotes a
point on the interface. In terms ofr(x), the second variation
of the free energy from Eq.~29! is ~see Appendix A!

d2F5s0 R dS$u¹'ru212Kr224H2r2%

1
4

k2 R dSr2~ n̂•¹W ! R dS8$n̂8•¹W 8~Ge2G!%

14e2 R dS R dS8Ge~x2x8!r~x!r~x8!, ~41!

where ¹8 is the gradient inx8, K5k1k2 is the Gaussian
curvature at a given point on the unperturbed interface,¹' is
the gradient along the interface, and the integration is o
the unperturbed interfaces.

Different terms in the integrand of Eq.~41! represent
competing tendencies that stabilize or destabilize the
terns. Thes0u¹'ru2 term coming from the surface tensio
penalizes distortions of the interfaces; the term involving
curvatures 2s0(K22H2)r252s0(k1

21k2
2)r2<0 is a de-

stabilizing term coming from the curvature of the interfac
the term from the second line in Eq.~41! can be rewritten as

2(n̂•¹W c)r2, wherec is given by Eq.~39! ~see Appendix A!,
and represents the change in the free energy due to the
tion of the interface in the fixed effective fieldc ~this term
should be destabilizing also since we would generally exp
the gradient ofc to be directed inward at the interface!; and
the last term is the stabilizing action of the long-range int
action.

To gauge the relative strengths of these terms and de
mine whether a pattern is stable, we need to solve the
lowing eigenvalue problem obtained from Eq.~41!:
8-7
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C. B. MURATOV PHYSICAL REVIEW E66, 066108 ~2002!
Lr5lr,where

Lr52s0¹'
2 r12s0Kr24s0H2r12~ n̂•¹W c!r

14e2 R dS8Ge~x2x8!r~x8!. ~42!

The spectrum of the operatorL for a stable pattern should no
contain any negative eigenvalues. We will analyze the sp
trum of L for simple geometries below~see also
@28,45,48,50,51,57#!. Now, however, let us discuss som
general properties ofd2F in Eq. ~41!. It is easy to see from
Eq. ~41! that a typical sizeR in a stablestationary pattern
must have the same scaling as that in Eq.~14! ~this point was
first argued in@48,50,57# based on a stability analysis of th
localized and periodic patterns!. Indeed, suppose a pattern
made of a collection of droplets of size and distance betw
each other of orderR ~here for definiteness we will conside
three-dimensional patterns!. Let us first assume that the drop
lets are too small, soR!e22/3. Consider a fluctuation tha
uniformly increases the volume of one droplet while decre
ing the volume of another next to it, so that the net volu
change is zero~repumping, see@2,48#!. Then, if R!e22/3,
the stabilizing contribution;e2R3 from the last term in Eq.
~41! is negligible compared to the destabilizing contributi
from the curvature terms;1, while theu¹'ru2 term is iden-
tically zero. Therefore, such a fluctuation will lead to a fr
energy decrease.

Now, suppose that the droplets are too big, soR@e22/3.
Let us now perturb the interface of one droplet in a localiz
fashion in a region of size,!R, once again maintaining th
overall volume the same~distortion@2,48,50#!. Then the last
term in Eq.~41!, which is ;e2 ,3, will once again be neg-
ligibly small compared to the term from the second line
Eq. ~41!, which is;e2 ,2R. On the other hand, the gradie
square term in Eq.~41!, which is of order;1, will not be
able to compensate that contribution, ife21R21/2!,!R.
Such, can always be found whenR@e22/3, so this kind of
a fluctuation will lower the free energy, too. Note that f
R;e21 this instability result was also obtained by Nishiu
and Suzuki@52#.

The arguments above lead to the important conclus
that ~perhaps apart from some logarithmic factors; see
low! the stable stationary patterns must obey the equilibr
scaling from Eq.~14!, which was obtained on global ene
getic grounds. In other words, not only the global minimize
of the free energy@43# but all local minimizers must gener
ally obey this scaling. Note, however, that these argume
do not apply in one dimension~see also@2,50,51,58#!. Simi-
larly, the equilibrium scaling from Eq.~14! is not necessarily
obeyed by all stationary patterns~see for example, Secs
IV A and IV B!, contrary to the statement of@59#.

IV. EQUILIBRIUM PATTERNS AND MORPHOLOGICAL
INSTABILITIES

Let us now use the tools developed in the preceding s
tions to analyze stationary domain patterns with simple
ometries, such as localized and periodic patterns. In this
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per, we will limit ourselves to studying two-dimension
patterns. Qualitatively the same results are expected for
more experimentally relevant three-dimensional patter
Note, however, that the one-dimensional case is qualitativ
different from those of two and three dimensions~see
@2,50,58,60#!.

Since our system possesses a symmetryf→2f, we can
only consider the properties of positive domains immersed
a negative background. This means that we only need
study the region of the system’s parameters in whichf̄
,0.

A. Solitary patterns

We begin with the study of the simplest possible dom
patterns: solitary patterns. In two dimensions we will co
sider spots, stripes, and annuli.

1. Spot

Let us first look at spots: small positive circular domai
in a negative background. If the radius of the spot is mu
smaller than the screening lengthe21, the interaction poten-
tial Ge(x2x8) in Eq. ~29! can be expanded ine. Retaining
the terms up toe2, after a straightforward calculation w
obtain that the free energy of a spot of radiusR is asymp-
totically

F~R!52ps0R2
2pR 2d

k2 2pe2R 4F lnS 1

2
ekRD1g2

1

4G ,
~43!

whereg.0.5772 is the Euler constant and

d511f̄ ~44!

measures the degree of metastability of the homogene
phase. The free energy of the spot given by Eq.~43! for a
particular set of parameters is shown in Fig. 1.

Let us now analyze Eq.~43!. First of all, whend,0, the
free energy is a monotonically increasing function ofR.

FIG. 1. The free energy of a spot for different values off̄. A
plot of F(R) from Eq. ~43! with e50.001, s052A2/3, andk
51/A2. For these values of the parametersdb50.0088 anddm

50.0186.
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THEORY OF DOMAIN PATTERNS IN SYSTEMS WITH . . . PHYSICAL REVIEW E66, 066108 ~2002!
When the value ofd is increased, atd5db!1 a minimum
and a maximum of the free energy appear~see Fig. 1!. These
correspond to radially stable and unstable spot solutio
with radii R5Rs and R5Rn , respectively. Atd5db we
haveRs5Rn5Rmin . Asymptotically

db5S 3

4
ek3s0ln1/2e21D 2/3

;e2/3ln1/3e21, ~45!

Rmin5S 3s0

4e2lne21D 1/3

;e22/3ln21/3e21. ~46!

This formula agrees up to the logarithmic factor with E
~14!. These logarithmic factors are a specific feature of
two-dimensional patterns; they are absent in three dim
sions@50#.

When the value ofd is increased beyonddb , the radius
Rs grows, while the radiusRn shrinks. At some value ofd
5dm!1 at whichRs5Rm , the free energy of the spot be
comes negative, making the spot thermodynamically m
favorable than the homogeneous phase. Once again, as
totically,

dm5
1

2
~3ek3s0ln1/2e21!2/3;e2/3ln1/3e21, ~47!

Rm5S 3s0

e2lne21D 1/3

;e22/3ln21/3e21. ~48!

Comparing Eqs.~45!–~48!, we see thatdm521/3db andRm
522/3Rmin .

For d@db the radiiRs andRn become asymptotically

Rs5S 3d

e2k2lne21D 1/2

, Rn5
sk2

2d
. ~49!

This means that, ford@e2/3ln e21, the radiusRs goes be-
yond the equilibrium scaling of Eq.~14!. This is an indica-
tion of the morphological instability studied in Sec. IV C.

2. Annulus

Let us now analyze a pattern in the form of a thin annul
which has radiusR and thicknessL!R. Calculating the
free energy of such a pattern from Eq.~28!, we obtain

F~R,L!54ps0R2
4pd

k2 RL

14pe2R 2L 2I 0~ekR!K0~ekR!, ~50!

whereI 0(x) is the modified Bessel function. Minimizing thi
expression with respect toL, we obtain that the value ofL
5La in equilibrium is related toR as follows:

La5
d

2e2k2RI 0~ekR!K0~ekR!
. ~51!
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Substituting this expression into Eq.~50!, we then study the
critical points ofF with respect toR.

The analysis of Eqs.~50! and ~51! shows that ford
!e1/2 there exists a single minimum of the free energy, c
responding to an annulus solution, whose radius and w
are asymptotically

Ra5
d2

4s0e2k4ln2~ed22!
, La5

2s0k2

d
ln~ed22!. ~52!

One can see that the conditionLa!Ra used in the derivation
of Eq. ~52! is satisfied as long asd@e2/3ln e21.

According to Eq. ~52!, when d;e1/2, we have R a
;e21, so screening effects become important. The anal
of Eq. ~50! shows that at some critical value ofd;e1/2 a new
minimum and maximum ofF(R) appear (d50.0255 in Fig.
2!. At a slightly higher value ofd;e1/2, the second mini-
mum of the free energy disappears (d50.0258 in Fig. 2!.
The value ofd5d' at which this happens can be eas
calculated; see Eq.~54!.

3. Stripe

Let us now determine the equilibrium parameters o
quasi-one-dimensional domain pattern—a stripe. A stripe
width Ls can be considered as the limit of an annulus
Ra→`. Using Eq.~50!, we obtain that the free energy of
stripe of lengthL is

F5S 2s02
d2

ek3DL. ~53!

The term in the parentheses characterizes the rigidity of
stripe. As can be seen from Eq.~53!, this rigidity becomes
negative at a critical value ofd5d' , where

d'5~2s0k3e!1/2. ~54!

At d.d' the stripe becomes unstable with respect to wr
gling ~see Sec. IV C!.

Taking the limitRa→` in Eq. ~51!, we obtain

FIG. 2. The free energy of an annulus as a function ofR for
L5La given by Eq.~51!, obtained from Eq.~50! with e50.001,
s052A2/3, andk51/A2.
8-9
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C. B. MURATOV PHYSICAL REVIEW E66, 066108 ~2002!
Ls5
d

ek
. ~55!

Note that the stripe solutions of Eq.~34! exist only when
Ls* ln e21, so to have a solution we must haved*e ln e21

@2,50#. Also, the width of a stripe is limited byL s;e21, in
which case our linearization approximation to Eq.~20!
breaks down~see also@2#!. According to Eq.~55!, the region
of existence of stripes is wider than that of spots. Also, n
that for d;db ~when the spot is stable!, the width of the
stationary stripeL s;e21/3!Rs . This deviation from the
equilibrium length scale given by Eq.~14! is essentially re-
lated to the one-dimensional nature of the stripe, for wh
curvature effects are absent.

B. Hexagonal and lamellar patterns

When spots or stripes are introduced into the system,
basic interaction between them is repulsion@see Eq.~28!#. In
an equilibrium configuration, the domains will therefore
as far apart from each other as possible. If in the end
distance between them is greater than the screening le
e21, essentially they will not interact, so their behavior w
be that of the solitary patterns discussed in Sec. IV A. T
situation changes, however, when there are so many dom
in the system that even in the close-packed arrangemen
distance between them becomes less than the scree
length. This is in fact a generic situation that is realiz
whenever the value off̄ is not close to21 ~or d;1). In
this case the domains will strongly interact with each oth
arranging themselves into amultidomainpattern, so in order
to decrease the energy of the long-range repulsion, the
mains not only adjust their positions, but also their geome
characteristics.

Let us consider the simplest of the multidomain patte
in two dimensions, namely, periodic hexagonal and lame
patterns. The equilibrium characteristics for several ma
types of periodic pattern described by Eq.~5! in the limit e
→0 were found by Ohta and Kawasaki@18#. They carried
out a rather involved calculation of the free energy using
Ewald summation method. Their results can be obtained
the simpler, although approximate, Wigner-Seitz meth
@61#. Consider a hexagonal pattern made up of circular
mains, for example. In such a patternc will satisfy Eq. ~23!
with no-flux boundary conditions on the boundaries of t
hexagonal Wigner-Seitz cell. Instead of solving this proble
let us consider a single domain inside a circular cell wh
area is equal to the area of the Wigner-Seitz cell~a similar
approach was used in@60#!. Then Eq. ~23! with no-flux
boundary conditions can be easily solved. Furthermore
leading order ine the screening terme2k2c in Eq. ~23! can
be neglected, if the period of the patternL p!e21. This so-
lution can be used to calculate the contribution from
long-range interaction to the free energy by substituting i
Eq. ~27!. Note that the one-dimensional analog of th
method is exact, so it can also be used to calculate the
energy of the lamellar pattern.

Let the positive domains in a hexagonal pattern have
dius Rs and periodL p!e21. It is convenient to introduce
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the fraction f of the total area of the system occupied
positive domains. The condition of Eq.~8! implies that this
fraction is related tof̄ as

f 5
11f̄

2
, ~56!

since inside the domains~away from the interfaces! f.
61 @see the discussion after Eq.~25!#. In the hexagonal pat-
tern Rs andLp are related via

Rs531/4LpS 11f̄

4p
D 1/2

. ~57!

From this equation one can see that, whenf̄ is not close to
21, the values ofRs andLp are comparable. Note that i
reality Eq.~57! is approximate, since generally the domai
forming a hexagonal pattern are not ideally round. Howev
according to the numerical simulations, the deviations fr
the circular shape are very small whenf̄,0, so one can
safely assume the domains to be ideally circular all the w
up to f̄50.

In Eq. ~57! the period of the pattern has not been spe
fied. In fact, an infinite set of solutions in the form of he
agonal patterns with different periods exists for21,f̄,0
~asymptotically!. All these solutions locally minimize the
free energy of the system. However, among all the hexago
patterns there is a pattern with a particular periodLp* for
which the value of the free energy is lowest. It is clear th
if the asymmetry between the positive and negative doma
is strong, the domains will tend to form a close-packed str
ture, so ford!1 in d52 this pattern is expected to be th
global minimizer of the free energy.

Using the Wigner-Seitz method, we find that the peri
Lp* of the hexagonal pattern with the lowest free energy
~Appendix B!

Lp* 5e22/3S 2p

fA3
D 1/2S 2s0

f 212 ln f D
1/3

. ~58!

As ought to be expected,Rs;Lp* ;e22/3. It is interesting to
note that this result agrees with the exact calculation of O
and Kawasaki in@18# to within 0.1% for all f ,0.5.

Similarly, in the case of a lamellar pattern the periodLp
and widthLs of the stripe are related as

Ls5
11f̄

2
Lp . ~59!

A calculation analogous to the case of the hexagonal pat
shows that the period of the lamellar pattern that has
lowest free energy is given by~Appendix B!

Lp* 5e22/3S 6s0

f 2~12 f !2D 1/3

. ~60!
8-10
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THEORY OF DOMAIN PATTERNS IN SYSTEMS WITH . . . PHYSICAL REVIEW E66, 066108 ~2002!
This result agrees with that of@18,28,47,58,62#. Let us point
out that in one dimension Ren and Wei proved that the lam
lar patterns of arbitrary periods are the only local minimiz
of the free energy@47#.

A comparison of the free energies per unit area of
lowest free energy hexagonal and lamellar patterns sh
that the lamellar pattern has lower free energy whenf
.0.35 @18#. For 0, f ,0.35 the hexagonal pattern has t
lower free energy in two dimensions.

C. Morphological instabilities of solitary patterns

An important feature of patterns in systems with comp
ing interactions is the fact that under certain conditions th
can undergomorphological instabilitieswhich lead to the
distortions of their shapes and transitions between them@7#.
In reaction-diffusion systems these instabilities have b
analyzed in@2,45,48,50,51,53,57,63#.

Apart from the arguments of Sec. III B, the physical re
son for the existence of morphological instabilities is the f
that the energy of the long-range interaction increases fa
than the area of the domain as its size gets bigger. There
at some critical size it may become energetically favora
for the domain to split into two domains of smaller size
significantly change its shape. It is interesting to note t
such an instability was first analyzed by Lord Rayleigh ba
in 1882 @64#.

To investigate the morphological instabilities of the d
main patterns in systems with long-range Coulomb inter
tion, we start by looking at the simplest possible patter
spots and stripes. This analysis was performed in@50# in the
context of reaction-diffusion equations of activator-inhibit
type. Here we will rederive these results using the interfa
approach@Eq. ~42!#.

1. Spot

Let us consider a single localized spot first. The fluctu
tions of the spot’s shape are azimuthal distortions of its w
characterized by the azimuthal numberm ~Fig. 3!. Because
of the radial symmetry, the operatorL in Eq. ~42! is diagonal
in the basis formed by the functionseimw, wherew is the
polar angle that represents a point on the interface. For a

FIG. 3. Morphological instabilities of spots and stripes.
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of radiusR s!e21 one can neglect screening and useG in
the integral form.0, since these fluctuations do not chan
the overall area of the spot. Assumingr5eimw and calculat-
ing the corresponding integrals, we obtain

l5l01
s0m2

R s
2 1

2e2Rs

m
, ~61!

wherel0 is a constant that comes from the curvature and
2(n̂•¹W c) term. In fact, we do not need to calculate th
constant from the definition. Instead, we can use the tran
tional symmetry of the problem and note thatl50 for m
51 to find that

l052
s0

R s
2 22e2Rs . ~62!

Note thatl0,0 and is responsible for the instability of th
spot for large enoughRs ~see also@2,51#!.

According to Eq.~61!, a single localized spot become
unstable (l,0) with respect to themth mode whenRs
.Rcm , where

Rcm5S s0m~m11!

2e2 D 1/3

. ~63!

The instability is realized first with respect to the fluctuati
with m52, so the spot is always unstable whenRs.Rc2,
where

Rc25~3s0!1/3e22/3. ~64!

The m50 case can be treated analogously; this leads o
again to Eqs.~46! and ~45!. Therefore, comparing Eq.~64!
with Eq. ~49!, we see that the spot can be stable only wh

db,d,dc2 , dc25321/3k2s0
2/3e2/3ln e21, ~65!

so the spots are stable only in the limited range ofd;e2/3

!1 ~apart from the logarithmic terms!.
A similar analysis shows that the thin annulus of rad

R a!e21 considered in Sec. IV A is always unstable wi
respect to them52 wriggling mode, so we do not presen
this analysis in detail here.

2. Stripe

Let us now turn to the solitary stripe. Let us choose t
reference frame in such a way that the stripe is orien
along they axis in thezy plane. Because of the mirror sym
metry of the stripe in thez direction, there are two basi
types of fluctuation: the symmetric and the antisymme
distortions of the stripe walls, both characterized by t
transverse wave vectork' ~Fig. 3!. Because of the transla
tional symmetry in they direction the operator in Eq.~42! is
diagonal ink' . Assuming thatr15eik'y and r256r1,
wherer6 are the positions of the right and left boundaries
the stripe, respectively, we can calculate the integral in
~42! at the location of the right wall:
8-11
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4e2 R dS8Ge~x2x8!r~x8!

5
2e2@16exp~2L sAe2k21k'

2 !#

Ae2k21k'
2

eik'y, ~66!

where ‘‘1 ’’ corresponds to the symmetric and ‘‘2 ’’ to the
antisymmetric fluctuations;Ls is the width of the stripe.

For the stripe, the curvature terms in Eq.~42! are zero,
and the 2(n̂•¹W c) term reduces to a constantl0,0. The
case of the symmetric and antisymmetric fluctuations m
be treated separately. Fork'@e the expression forl5l1

for the symmetric fluctuation is~to leading order ine)

l15l01s0k'
2 1

2e2@11exp~2k'Ls!#

k'

. ~67!

On the other hand, whenL s!e21 andk'Ls!1, to leading
order in e the expression forl5l2 for the antisymmetric
fluctuation becomes

l25l01s0k'
2 12e2Ls2e2L s

2Ae2k21k'
2 . ~68!

Once again, we can use translational symmetry in thez di-
rection to calculatel0, sincel250 whenk'50. We get

l0522e2Ls1e3kL s
21O~e4L 3!. ~69!

The analysis of the transcendent Eq.~67! with l0 given
by the first term in Eq.~69! shows that the instability of the
stripe with respect to symmetric distortions of its walls~cor-
rugation! with k'5kc occurs atLs.Lc1, where@50#

kc51.13s0
21/3e2/3, Lc151.66s0

1/3e22/3. ~70!

According to Eq.~68!, the stripe becomes unstable wi
respect to antisymmetric distortions of its walls~wriggling!
at k→0 andLs.Lc2, where

Lc25~2s0k!1/2e21/2. ~71!

This is also clear from Eq.~53!. Comparing Eqs.~71! and
~70!, one can see that the instability with respect to wriggli
is realized before the instability with respect to corrugatio
In view of Eq. ~55!, the stripe is stable only when

e ln e21&d,d' , ~72!

whered' is defined in Eq.~54!. Thus, the region of existenc
of stable stripes is wider than that for spots@see Eq.~65!#.

D. Morphological instabilities of hexagonal and lamellar
patterns

The solution of Eq.~42! in the case of an arbitrary mul
tidomain pattern is a formidable task. However, a simplific
tion of this problem is possible in the case of periodic p
terns. Then, by Bloch theorem, the operatorL can be
partially diagonalized by considering the fluctuations mod
lated by the wave vectork which lies in the first Brillouin
zone of the underlying domain lattice. The situation here
06610
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not unlike the problem of finding the band structure of
crystal @61#. Below, we consider the stability of hexagon
and lamellar patterns in two dimensions.

1. Hexagonal pattern

Let us consider a hexagonal pattern of periodLp made of
circular domains of radiusRs . For each domain centered a
Rn let us write the displacementrn as

rn~w!5(
m

ameik•Rn2 imw, ~73!

where the anglew represents a point on the interface of ea
domain. Equation~42! for fluctuations with a givenk in the
first Brillouin zone then reduces to

S s0m2

R s
2 1l02l Dam52(

m8
Rmm8~k!am8 , ~74!

wherem andm’ are the azimuthal numbers,l0 is a constant
independent ofm andk ~assuming that with good accurac
n̂•¹W c is radially symmetric in the interface!, andRmm8(k)
are thek-dependent matrix elements of 4e2Ge(x2x8). The
calculation in Appendix C 1 shows that@48#

Rmm8~k!5
16pe2Rs

L p
2A3

(
n

ei (m2m8)(qk1kn
1p/2)

uk1knu21e2k2

3Jm~ uk1knuRs!Jm8~ uk1knuRs!, ~75!

where kn run over the reciprocal lattice,Jm(x) are Bessel
functions of the first kind, andqk1kn

is the angle between

the vectork1kn and thex axis.
The value ofl0 can be calculated by noting that the tran

lational invariance of the system requires thatl50 for k
50 andm51, so~Appendix C 1!

l052
s0

R s
2 22e2RsS 12

2pR s
2

A3L p
2 D . ~76!

In writing the above equations we assumed thatRs;L p
!e21.

As was shown qualitatively by Kerner and Osipov, for t
most dangerous fluctuations the wave vectork will lie close
to the edge of the Brillouin zone@2#. There are two basic
types of fluctuations we need to consider: fluctuations t
lead to repumping of the order parameter between neigh
ing domains@Fig. 4~a!# and fluctuations that lead to asym
metric distortions of the domains@Fig. 4~b!# ~ @2#; see also
Sec. III B!. Analysis of Eq.~74! shows that the most dange
ous fluctuations leading to repumping havek5 1

3 (b12b2),
whereb1 and b2 are reciprocal lattice vectors that make
120o angle ~see Appendix C 1!, while the most dangerou
fluctuations leading to distortions havek5 1

2 (b11b2) @48#.
The instabilityl,0 occurs with respect to repumping whe
Lp,Lp0 or with respect to the asymmetric distortion whe
Lp.Lp2, whereLp0,2 depend one andRs /Lp . The result-
ing stability diagram obtained by numerical solution of E
8-12



ec
ha

rg
s

la

go
re

rn
th
s

der

to

of

ng

ys-

n.
e of
uld
aly-
ion

the

n
all

nd
y
-

al

ith
ter

THEORY OF DOMAIN PATTERNS IN SYSTEMS WITH . . . PHYSICAL REVIEW E66, 066108 ~2002!
~74! with the parameters of the mean-field model from S
II B is presented in Fig. 5. From this figure one can see t
only the patterns with periodLp0,Lp,Lp2 are stable.

Figure 5 also shows the period of the lowest free ene
hexagonal pattern given by Eq.~58!. One can see that thi
pattern is stable for all values ofRs /Lp ~except, possibly, for
Rs /Lp close to 0.5 where the assumption about the circu
shape of the domains ceases to be valid!. As was noted in
Sec. IV B, in two dimensions the lowest free energy hexa
nal pattern is expected to be the global minimizer of the f
energy if f ,0.35, or, equivalently, ifRs /Lp,0.31, whereas
for 0.31,Rs /Lp,0.37 ~the second condition means thatf̄
,0) the global minimizer should be the lamellar patte
Figure 5, however, does not show the transition from
hexagonal to the lamellar pattern, so in fact the lowe
energy hexagonal pattern is at leastmetastablefor all values
of f̄ at which it exists.

FIG. 4. Two major types of instabilities of the hexagon
pattern.

FIG. 5. The stability diagram for the hexagonal pattern w
s052A2/3. Thedashed line corresponds to the hexagonal pat
with the lowest free energy given by Eq.~58!.
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2. Lamellar pattern

In the case of the lamellar pattern one should consi
fluctuations that are modulated by the wave vectorki from
the first Brillouin zone in the direction along the normal
the stripes and an arbitrary wave vectork' in the transverse
direction:

rn
65r0

6eik'y1 ik inLp, ~77!

wherern
6 are the displacements of the right and left walls

the stripe in thenth period of the lamellar pattern aty50.
Because of the translational symmetry in the direction alo
the stripes, these fluctuations are eigenfunction ofL in Eq.
~42!. One can then reduce the operatorL to a 232 matrix, so
after a tedious calculation~Appendix C 2; see also@2,63#!

l65l01s0k'
2 1R6~ki ,k'!, ~78!

whereR6(ki ,k') are given by

R6~ki ,k'!5
4e2ekLp

k~122ekLpcoskiLp1e2kLp!

3†sinhkLp6„$sinh@k~Lp2Ls!#

1coskiLpsinhkL s%
21sin2kiL psinh2kLs…

1/2
‡,

~79!

wherek5Ae2k21k'
2 . As before, the value ofl0 is deter-

mined with the aid of the translational invariance of the s
tem, which requires thatl50 for ki5k'50 for the anti-
symmetric fluctuation. This gives the following value ofl0
~to leading order ine):

l0522e2LsS 12
Ls

Lp
D . ~80!

The analysis of Eq.~78! shows that@in the validity range
of Eq. ~79!, that is, whenLp@ ln e21; see also@2## the re-
pumping instability is not realized for the lamellar patter
This can be explained by a simple argument: the curvatur
the stripes is equal to zero, so there is no force that wo
lead to domain collapse as in the case of the spot. The an
sis of Eq.~78! also shows that the most dangerous fluctuat
leads to antisymmetric distortions of the stripe and haski
50 andk'→0 ~see also@63,65#!. All other instabilities, such
as the corrugation instability, occur at higher values ofL p
;e22/3 ~compare with@66,67#!. Also notice that whenk'

50, which corresponds to the one-dimensional situation,
lamellar pattern is always stable when lne21!L p!e21 ~see
Appendix C 2!. This is in agreement with the result of Re
and Wei that in this situation the lamellar patterns are
local minimizers of Eq.~29! @47#.

Solving Eq.~78! with ki50, we obtain that the instability
is realized whenLp5Lp* , where Lp* is the period of the
lowest-free-energy lamellar pattern given by Eq.~60! ~see
Appendix C 2!. This result was also obtained by Yeung a
Desai in the casef 50.5 @28#. Thus, the lowest-free-energ
lamellar pattern ismarginallystable with respect to the wrig
n

8-13
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C. B. MURATOV PHYSICAL REVIEW E66, 066108 ~2002!
gling instability. This fact has a simple geometric interpre
tion, and should in fact be true for any system with lon
range competing interactions. Indeed, consider a sm
wriggling modulation of the lamellar pattern~Fig. 6!. Inside
the dashed rectangle the stripes can be considered as str
but rotated by a small angleq. This pattern can be agai
considered as a lamella, but with a smaller periodLp8
5Lpcosq. The free energy of the system in this case w
increase ifLp,Lp* , since the free energy is a decreasi
function of Lp for these values ofLp , or decrease ifLp

.Lp* , since there the free energy is an increasing function
Lp . The caseLp5Lp* is marginal. Therefore, the lamella
pattern will be unstable with respect to wriggling ifLp

.Lp* , or stable otherwise.
It is interesting to note the analogy between the lame

patterns and smectic-A phases. In smectics the long-w
modulations of the layered structure cost free energyDF

}(B̄ki
21K1k'

4 )uuz(ki ,k')u2, whereuz(ki ,k') is the ampli-
tude of the layer displacements modulated by wave vec
ki andk' along and perpendicular to the layers, respectiv
@42,68#. This is precisely what we get for the pattern wi
Lp5Lp* in the limit of smallki ,k' ~see Appendix C 2!. Fur-
thermore, in view of this analogy the long-wave instability
lamellar patterns withLp.Lp* is equivalent to the Helfrich-
Hurault instability of smectics under stretching deformatio
Also note that under the influence of thermal fluctuations
lamellar pattern withLp5Lp* is subject to the Landau
Peierls instability@42,68#. We would like to point out, how-
ever, that all this does not apply to metastable lamellar p
terns with Lp,Lp* , which, according to our calculations
have finite shear modulus.

V. SCENARIOS OF DOMAIN PATTERN FORMATION

The analysis in the preceding sections shows that patt
in systems with long-range Coulomb interactions are v
sensitive to the parametersf̄ ande and can undergo variou
instabilities. As the temperature is lowered, bothe and uf̄u
rapidly decrease; see, for example, Eqs.~7! and ~6!. In this
situation a small variation of the temperature may trigg
complex spatiotemporal behavior in the system. Now
would like to ask the following questions: How do patter
form in an initially homogeneous system and how do

FIG. 6. Wriggled lamellar pattern.
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patterns already present in the system react to changes i
external parameters? In principle, to answer these quest
we need to specify the dynamics of patterns. This questio
quite complicated and significantly depends on the particu
system, despite the universality possessed by the free en
~for various examples, see@2,28,37,69#!. However, if the dy-
namics of the system isdissipative, it will result in a de-
crease of the free energy of the patterns with time. Note
since the free energy functionals in Eqs.~5! and ~29! are
bounded from below in systems of finite volume, in the a
sence of noise the patterns must evolve to local minimiz
of the free energy. To mimic this behavior, we will use t
simple gradient descent dynamics defined by

]f

]t
52

dF

df
, ~81!

whereF is given by Eq.~5!. This evolution equation is, in
fact, applicable to a number of systems with nonconser
order parameter@1,2,4,27,34#. However, our conclusions
should not qualitatively depend on this particular choic
since the evolution of patterns will generally be guided
the free energy landscape and the morphological instabil
of the patterns. Note that Eq.~81! is equivalent to a reaction
diffusion system with a fast inhibitor and can be reduced t
free boundary problem in the limite→0 @56#, which, in turn,
is the gradient descent dynamics for the interfacial free
ergy @45#.

A. Nucleation

The first question is how the domain patterns form in t
system in the first place. As was discussed in Sec. II B
sufficiently high temperatures aboveTc the homogeneous
phase is the only equilibrium state. In the mean-field mo
of Sec. II B the homogeneous phase becomes unstable a
temperature of the system is lowered. Atf̄50 this happens
when e(t)5ec;1. On the other hand, when the origin
~unscaled! value of f̄ is different from 0, the homogeneou
state will remain stable even for lower temperatures. T
greater the~unscaled! value ofuf̄u, the lower the temperature
at which the homogeneous phase will lose its stability. T
means that fora!1 the homogeneous phase will typical
remain stable in a range oft for which e!1.

On the other hand, as was shown in Sec. IV A, when
scaled value ofuf̄u is less thanuf̄bu512db , in addition to
the stable homogeneous phase the system can support s
domain patterns~spots!. In a narrow range ofuf̄mu,uf̄u
,uf̄bu, whereuf̄mu512dm , the spots will be energetically
unfavorable. On the other hand, in a wide range ofuf̄u
,uf̄mu the domain patterns will have lower free energy th
the homogeneous phase. In the mean-field model of Sec.
the homogeneous phase remains stable as long asuf̄u
.uf̄cu.1/A3 for e!1. Therefore, atuf̄cu,uf̄u,uf̄mu the
homogeneous phase ismetastable.

The metastability of the homogeneous phase implies
possibility ofnucleationof the domain patterns as a result
8-14
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THEORY OF DOMAIN PATTERNS IN SYSTEMS WITH . . . PHYSICAL REVIEW E66, 066108 ~2002!
thermal fluctuations. It is natural to assume that the nucl
ing droplet in two dimensions is a spot~it is localized in
space and radially symmetric!. Let us consider the nucleatio
of positive domains from a negative homogeneous phase
this case the value off̄ is negative, so, as the temperature
the system decreases, the value off̄, as well asd @recall Eq.
~44!#, increases. As was shown in Sec. IV A, atd.db there
are two spot solutions. The spot with radiusR5Rn is in
unstable equilibrium with the homogeneous phase~see Fig.
1!. Therefore, it is this solution that should play the role
the nucleation droplet in our system. Note that the radius
the nucleation dropletRn,Rmin and is bounded for alld, in
contrast to systems with first-order phase transitions. Thi
a distinctive property of systems with long-range Coulom
interactions.

According to Eq.~43!, for d close todb the free energy
cost of the nucleation droplet is~apart from a weak logarith
mic dependence!

DFdrop}e22/3@1. ~82!

Note that in three dimensions the same arguments
DFdrop}e24/3@1 also. Since this free energy barrier is hig
the arguments of nucleation theory apply here.

In the narrow range ofdb,d,dm , a nucleation even
will result in the formation of a stable spot whose free ene
is higher than that of the homogeneous phase. Therefor
this situation the spot itself will be metastable and will dec
back into the homogeneous phase. However, whend is not in
the immediate vicinity ofdb , the free energy barrier the spo
has to overcome to decay will also scale as in Eq.~82!, so
such spots will be long-lived metastable states that can
excited by thermal fluctuations. Therefore, the thermo
namic equilibrium state of the system for these paramete
a rarefied gas of noninteracting spots. In this situation
spots will play the role ofquasiparticles.

When d exceedsdm , the spot becomes thermodynam
cally more favorable than the homogeneous phase. Fordm
,d,dc2 the spots with radiusRs are stable, so a nucleatio
event will result in the formation of a single stable spot. Th
is another distinctive feature of nucleation in our syste
sufficiently close todb a single nucleation event will result i
the formation of only one spot. However, in order for t
system to come to the equilibrium, it has to become fil
with spots, so the transition from the metastable homo
neous phase to the equilibrium multidomain pattern requ
many nucleation events. These events will occur on an
tremely long time scaletnucl;ecDFdrop@t rel , wherec*1 is a
constant andt rel is the characteristic system relaxation tim
Dynamically, this phenomenon can be identified asaging
@70#.

According to Eq.~49!, as the temperature decreases, a
thereforef̄ andd increase, the radius of the nucleation dro
let gets smaller~in scaled units!, while the radius of the
stable spot becomes larger, so atd5dc2 the spot with radius
Rs will become unstable with respect to the morphologi
instability ~see Sec. IV C!. In this case the nucleation sce
nario will change. Instead of a single spot, a more comp
06610
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pattern will form as a result of a single nucleation event~see
Sec. V B!. At the same time, the nucleation barrier decrea
with temperature. Atd;1 the free energy barrier become
DFdrop;1 @see Eqs.~43! and ~49!#. So in the renormalized
model of Sec. II D nucleation becomes meaningless for th
values ofd, and one can talk about theinstability of the
homogeneous phase. Let us point out that ford*dc2 the
annulus should also be considered as a potential cand
for the nucleation droplet. Comparison of the free energie
an annulus and a spot of radiusRn shows, however, that the
spot always has lower free energy.

Let us consider nucleation in the renormalized model
Sec. II D in more detail. Depending on the cooling rate, s
eral situations are possible. When the cooling rate is v
small ~with the characteristic time scale much longer th
tnucl), the system will have enough time to equilibrate a
will get filled with spots. If the cooling rate is such that i
characteristic time scale is comparable totnucl, the system
will enter into the aging regime. Notice that these pheno
ena will occur only in a narrow range of temperatures
which d;db .

The situation will change qualitatively whend.dc2,
when the temperature falls below the value at which the s
becomes unstable with respect to a morphological instabi
In this case a single nucleation event will produce a s
which will further develop into a more complex extende
pattern, filling up the whole system~see Sec. V B!. The time
scale of this process ist rel and is much shorter thantnucl, so,
if the cooling rate is sufficiently fast, only a single nucleatio
event is enough to create a pattern that will fill the ent
system. This will also be the case in the mean-field mode
Sec. II B. Finally, if the cooling rate is very fast, the syste
will not have enough time to nucleate even a single doma
so it will enter the region in which the homogeneous state
the system is unstable. In that case a pattern consistin
domains whose characteristic size is comparable with
correlation length will form spontaneously and then evo
toward equilibrium via coarsening~see Sec. V C!.

If small local inhomogeneities exist in the system, th
can work as nucleation centers. One could, for example, h
a slightly nonuniform distribution off̄ across the system. I
their amplitude and size are not very large, the nucleat
events will produce stable spots that will be pinned to
locations of these inhomogeneities. If, on the other hand,
amplitude and size of these inhomogeneities are la
enough, the spots that nucleate at their locations may
unstable with respect to the morphological instabilities,
they can work as nucleation centers for spatially exten
patterns.

B. Growth of complex patterns

As was discussed in Sec. V A, typically a spot that form
as a result of a nucleation event will be unstable with resp
to deformations of its shape. After such a spot is formed
will start to grow into a more complex pattern on the tim
scale oft rel!tnucl. Therefore, in the process of growth o
such a spot thermal fluctuations become unimportant. A ty
cal evolution of a pattern in this situation is shown in Fig.
8-15
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C. B. MURATOV PHYSICAL REVIEW E66, 066108 ~2002!
which shows the result of the numerical solution of Eq.~81!
in this parameter regime. At long times, the system evol
to a disordered metastable equilibrium pattern.

The evolution of unstable localized patterns within t
framework of Eq.~81! and the corresponding interfacial dy
namics problem was studied in detail in@45,56,57#. The so-
lution of the interfacial dynamics equation shows that
sufficiently larged the morphological instability of a spo
will always lead to self-replication of spots@56#. As a result
of the instability, the spot grows more and more distort
until at some point the interfaces touch, what leads to
pinch-off and splitting~fission! of one domain into two. The
daughter domains move away from each other, and the
cess of splitting repeats itself. This self-replication proc
will continue until the whole system is filled with the mult
domain pattern@56,57#.

Note that these results hold in the asymptotic limite
→0, in which R s;e22/3!e21, so the screening effect
may be ignored. On the other hand, for reasonably small
finite e the effective interaction may get truncated at d
tances comparable to the sizes of the spots. In particula
the spots move away from each other after splitting, the
teraction between the distant portions of their interfaces m
get screened, so the spots will remain connected by astripe
as they move apart~see Fig. 7,t5580). Fordc2,d&dc3
~the latter corresponds to the value ofd at which the spot
becomes unstable with respect to them53 mode! the tips on
both sides of the stripe will be stable, so as a result of
destabilization a spot will transform into a stripe spann
the system. Note that according to Eq.~53!, this can happen
only whend.d' , when the stripe is energetically favorabl
According to Eqs.~54! and~65!, for not very small values of
e it may be possible to havedc2;d' . Note that for these
values ofd the newly grown stripe will destabilize with re
spect to wriggling and fill up the entire space of the syste
Furthermore, the stripe segments with the highest curva
may become unstable with respect to fingering@57#. This is
what we see in the numerical simulations of Eq.~81! in this
parameter range. Whend*dc3, the tips of a stripe growing
as a result of a splitting event can further destabilize w
respect to them53 mode, which will result in tip splitting
and the formation of alabyrinthinepattern. Note that similar
results were obtained in the case of reaction-diffusion s
tems with weak activator-inhibitor coupling@45#.

From the arguments above it is possible to conclude t
following a nucleation event atd not very far fromdc2 and
for not very small values ofe, the dominating pattern mor

FIG. 7. Formation of a complex pattern as the result of insta
ity of a spot. Results of the numerical solution of Eq.~81! with e

50.025 andf̄520.6, with no-flux boundary conditions. The sy
tem is 4003460.
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phology is that of the stripe. Nevertheless, for larger valu
of d the spot morphology starts to compete with the str
morphology. This is because for larged interfaces will tend
to split, so the forming labyrinthine pattern will becomedis-
connected@57#. When the value ofe is decreased, one shoul
find coexistence of both spot and stripe morphologies in
patterns formed as a result of the destabilization of a s
~Fig. 7!. So all the processes associated with the dynamic
the interfaces, fission, elongation, tip splitting, fingering, a
wriggling @7#, should generally be important for the evolu
tion of a single unstable spot.

C. Coarsening and disorder

If the system is quenched deeply into the region in wh
the homogeneous phase is unstable, at first a small-s
multidomain pattern will form. Since the effect of the long
range interaction can be seen only on the length scalR
*e22/3, initially the long-range interaction will be negli
gible. Therefore, immediately following the quench the p
tern will undergo transientcoarsening. Note that in systems
with nonconserved order parameter this transient coarse
may proceed at arbitraryf̄, since the long-range interactio
ensures the conservation of the total amount of the or
parameter. For example, in the case of Eq.~81! the interfaces
of the domains will be driven by curvature subject to glob
coupling, so the characteristic radius of the domains w
obey the standardt1/2 law independently of the volume frac
tion @37,71,72#. As a result, the characteristic size of the d
mains will grow until it becomes comparable with the equ
librium size of Eq.~14!. Then the long-range interaction wi
stabilize the pattern, so at some point the coarsening
becomearrested~see also@26,73#!. This scenario is observe
in experiments on thin diblock copolymer films@74#. Note
that this coarsening can be viewed as a consequence o
repumping instability discussed in Secs. III B and IV D.

When the temperature in the mean-field model from S
II B is slowly lowered, so that the value ofuf̄u becomes
lower than uf̄cu, the homogeneous state becomes unsta
with respect to fluctuations with wavelengthl;e21/2 ~see
Sec. II B!. Thus, at the threshold of the instability doma
pattern with characteristic size;l will start to form @2,57#.
These domains will still be smaller than the equilibrium si
R;e22/3, so the instability will be followed by coarsening
just as in the case of the renormalized model and in
mean-field model not close tof̄c .

The results of the simulations of Eq.~81! displaying tran-
sient coarsening are presented in Fig. 8. In all these sim
tions the initial conditions were taken asf5f̄ plus small
random noise. One can see that the morphology of the
tern is determined by the volume fraction of the positi
domains. Whenf̄50 the pattern that forms at the end of th
simulation is a bicontinuous domain pattern similar to p
terns forming in the process of Ostwald ripening after t
critical quench@41#. When there is a small asymmetry b
tween the positive and negative domains@Fig. 8~b!#, the pat-
tern at the end of the simulation looks like a collection
disconnected spots and stripes of different shapes and s

l-
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FIG. 8. Coarsening of the do
main patterns at different value

of f̄: f̄50 ~a!, f̄520.2 ~b!, f̄
520.5 ~c!. Results of the numeri-
cal simulations of Eq.~81! with
e50.025 and periodic boundary
conditions. The system is 400
3460.
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When the asymmetry between the positive and negative
mains is strong@Fig. 8~c!#, only the spot morphology sur
vives, and in the end the pattern is made of a polydispe
mixture of spots.

Let us emphasize that the patterns that form at the en
the simulations of Fig. 8 do not change in time, that is, th
are metastable. Each of these patterns is completely d
dered, and isin no wayclose to the perfectly ordered patter
that are expected to be the global minimizers of the f
energy. In the absence of noise the shape of the patte
long times is determined only by the random initial con
tions. Numerical analysis of Eq.~81! shows that by changing
the random seed which determines the initial condition at
start of the simulation one will get totally different met
stable patterns in the end, so the system is in fact very
sitive to the initial conditions. This also suggests that,
addition to the ordered equilibrium patterns, there exis
huge number of irregular metastable patterns which loc
06610
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minimize the free energy. Thus, a typical pattern that sho
form as a result of a fast quench must be disordered.

Once metastable equilibrium is achieved, the patterns
evolve by thermally activated processes. Indeed, in order
a pattern with lower free energy to form, some of the d
mains may have to disappear and some may have to be
ated, since the topology of different metastable domain p
terns is not generally the same. This requires overcom
large free energy barriersDF}e22/3. Once again, on the
time scaletnucl;ecDF the system will enter the aging regime
To mimic this situation, we performed a numerical simu
tion of Eq.~81! with a special initial condition in the form o
a metastable hexagonal pattern with a single bigger spo
the center~Fig. 9!. As time goes on, the pattern tries to adju
to accommodate a defect it is presented with. Let us emp
size that, according to Fig. 9, the defectpropagatesto dis-
tances much larger than the characteristic size of the
mains. In the end, the pattern becomes comple
l
l

FIG. 9. The effect of a large-
scale fluctuation on a hexagona
pattern. Result of the numerica
solution of Eq. ~81! with e

50.025, f̄520.2, and periodic
boundary conditions. The system
is 4003460.
8-17
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C. B. MURATOV PHYSICAL REVIEW E66, 066108 ~2002!
disordered, with no traces of the original hexagonal order
Let us now ask a different question. Suppose that we

ready have an equilibrium domain pattern in the syste
What happens if at some moment the temperature of
system is raised or lowered? This question is related to w
happens if the system is gradually cooled below the tra
tion temperature. Suppose the system is initially occupied
the lowest-energy hexagonal pattern~at a given temperature!.
When the temperature of the system is lowered, the value
e and uf̄u will decrease, so this pattern will no longer corr
spond to the equilibrium pattern. To see this, let us w
down the length scales in Eq.~16! in the original~unscaled!
variables. Using the mean-field scaling@42# and the defini-
tion of e from Eq. ~6!, for example, we obtain

l;utu21/2, l;a21/4,

R;a21/3utu1/6, L;a21/2utu1/2. ~83!

One can see from here that if the temperature is abru
lowered the equilibrium sizeR will increase. At the same
time, thephysicalsize of the pattern will remain the same,
the relative size of the pattern will decrease with respec
the new value ofR.

If the temperature drop is sufficiently small, the patte
will remain metastable~see Sec. IV D!. However, when the
temperature falls below a certain critical temperature,
pattern will becomeunstablewith respect to repumping~Sec.
IV D !. The repumping will lead to the collapse of a fractio
of the domains and growth of the rest, so effectively this w
be equivalent to an increase of the characteristic interdom
distance. The resulting pattern will again be metasta
Note, however, that it will necessarily become disorder
since randomness is involved in the destabilization of
hexagonal pattern. When the temperature gets lower,
metastable pattern will again destabilize, and produce a
metastable pattern with a greater characteristic domain s
This process will go on. Thus we will have a stepwise rela
ation process creating disordered patterns. A similar ef
will be realized if one takes a hexagonal pattern as the in
condition and gradually raises the temperature. At some
ment the pattern will become unstable with respect to
asymmetric deformations, so domains of complex sha
will start to form, thus effectively making the distance b
tween the patterns smaller. Such a metastable domain pa
will further destabilize at higher temperature. These conc
sions are confirmed by numerical simulations of Eq.~81!
@48#. Note that these arguments imply that disordered p
terns will form even as a result of a slow~but fast compared
to tnucl) quench below the transition temperature. All th
indicates that disorder is an intrinsic state of the systems w
long-range competing interactions. This is also seen in
periments@7,74–76#.

Similarly, when one starts with a lamellar pattern a
raises the temperature, the pattern will become unstable
respect to wriggling~see Sec. IV D!. If the temperature is
further increased, corrugation instability and fingering w
follow. Notice that, in contrast to hexagonal patterns,
lamellar pattern will always remain metastable when
06610
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temperature is lowered, since there is no repumping insta
ity in this case. This means that a metastable lamellar pat
is more likely to survive after a slow~but fast compared with
tnucl) critical quench.

VI. CONCLUSIONS

In this work we have presented an energetic approac
the study of inhomogeneous states~patterns! in systems with
competing short-range attractive and long-range repuls
Coulomb interactions. Our approach becomes universal
systems with weak Coulomb interaction in the vicinity of th
microphase separation transition, thus allowing us to tre
variety of physical situations which involve competing Co
lomb interactions.

By the very definition of domain patterns, the width of th
domain wall should be much smaller than the characteri
size of an individual domain. This requires that the Coulom
interaction be sufficiently weak in order for these patterns
be feasible. On the other hand, one can take advantage o
and study these patterns in the asymptotic limit of infinite
weak Coulomb interaction. This poses a challenge, howe
since this interaction is a singular perturbation to the sh
range interaction.

We have performed an asymptotic analysis of the f
energy in the limit of vanishingly small strength of the Co
lomb interaction (e→0). Our main finding is that in this
limit the energetics of the patterns are described by the lo
tions of the domain interfaces. In fact, an important hierarc
of length scales appears in the system@Eq. ~16!#. Our second
major observation is that the characteristic size of the
mains in a stable domain pattern has to scale ase22/3. This is
different from similar estimates based on the properties
global minimizers of the free energy@18,35,43,58,62#. What
we showed in Sec. III B in general and Secs. IV C and IV
for particular patterns is that, unless this scaling is obey
the pattern cannot be alocal minimizer and thus thermody
namically stable.

In our analysis, the starting point was the mean-field f
energy functional from Eq.~1!. We chose to perform ou
calculations using Eq.~5! for two reasons. First, this is a
universal functional that is obtained in the vicinity of th
microphase separation transition and therefore may be
plied to a variety of systems. Second, using this functio
we could obtain very explicit results, making our presen
tion more tractable. It is not difficult to see that all our ca
culations can be extended to the more general functio
from Eq.~1!. The only difference is that in the case of Eq.~1!
the ‘‘positive’’ and ‘‘negative’’ domains may have asymme
ric linear response coefficientsk6 instead of a singlek in the
case of Eq.~5!. Nevertheless, in the case of Eq.~1! we can
choosek5k1 f 1k2(12 f ), wheref is the volume fraction
of the ‘‘positive’’ domains~similar ideas were used in@60#!.
Indeed, sincek is responsible for screening, we can avera
the response of the order parameter on the scale of the
mains, which is much smaller than the screening length~Sec.
II B !. The new definition ofk also takes into account that t
leading order the~locally! averaged value of the volum
fraction f is independent of space. The latter can be ea
8-18
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THEORY OF DOMAIN PATTERNS IN SYSTEMS WITH . . . PHYSICAL REVIEW E66, 066108 ~2002!
seen from the analog of Eq.~36! obtained from Eq.~1!, if
one integrates this equation over a closed volume of
e22/3!,!e21, uses the Gauss theorem, and takes into
count thatf is nearly constant in the domains andu¹cu
;c/R;e4/3 ~see Sec. II C!.

Let us point out that the interfacial representation of
free energy given by Eq.~29! which we obtained from the
free energy functional in Eq.~5! in the asymptotic limite
→0 may in fact itself form a basis for studying the doma
patterns in systems with long-range Coulomb interactio
provided that the driving force for the formation of the
patterns is the competition of the Coulomb energy with
surface energy~see, for example,@12,15,35#!. In this formu-
lation our results can be applied to an even wider range
systems, which may not generally possess a free en
functional, like the one in Eq.~5!. For example, our
asymptotic results should apply to ferromagnetic near
neighbor Ising models frustrated by Coulomb interactio
@30,32–34,36#. We argued that in these systems thermal fl
tuations should only renormalize the effective coupling co
stant of the Coulomb interactions without qualitatively a
fecting the overall picture~Sec. II D!. These predictions are
difficult to compare with recent Monte Carlo simulation
@33,34# because of the limitation of the latter on the system
size. Nevertheless, the result of@33# about the location of the
microphase separation transition, which givestc;ax, with
x.0.25–0.35, is not far from our prediction from Sec. II
of tc;a0.40 for the three-dimensional Ising model. Note th
we do not expect to find the avoided critical behavior d
cussed in the context of mean-spherical models@77#.

An interesting question arising in systems with long-ran
competing interactions is the nature of the thermodyna
ground state below the microphase separation transition
perature. We emphasize that our stability analysis of stat
ary patterns only addresses small-scale thermal fluctuati
so we are really talking aboutmetastabilityof these patterns
At the same time, rare large-scale thermal fluctuations m
lead to nucleation or transitions between different metasta
patterns~see Secs. V A and V C!. In this sense, if there ar
enough metastable patterns, the global minimizer of the
terfacial free energy, which is presumably a highly symm
ric periodic pattern@18#, has little to do with the thermody
namic ground state of the system.

In fact, we see that the stationary metastable patterns
form in one way or another are typically highly disorder
~Sec. V C!. Although the basic interaction between differe
domains is repulsion, the domains rarely arrange themse
in a close-packed fashion. The reason for that is that, e
though the interaction between the domains is repulsive,
range of this interaction, which is determined by the scre
ing length L;e21 is much greater than the characteris
interdomain distanceR;e22/3. So a single domain interact
simultaneously with many other domains and not only w
its nearest neighbors. Therefore, the optimization of the
energy becomes a collective problem, and a huge numbe
disordered metastable states appears. Then, the confi
tional entropy of these metastable disordered states
overwhelm their energy disadvantage@70,78#.

Furthermore, a large-scale fluctuation whose size is c
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parable with the domain size;R may propagate its action to
a much larger distance;L ~see Fig. 9!. It would seem natu-
ral to expect that, even if the system is in the lowest-ene
state, a sufficiently strong fluctuation will frustrate a regi
much larger than the size of such a fluctuation, which m
lead to increase of the degree of disorder with time. In t
sense systems with long-range competing Coulomb inte
tions can be considered asstructural glasses@30,37#. We
emphasize that in these systems the disorder is self-indu
As we showed in Sec. V C, these systems can age on
long time scales and exhibit complex relaxation phenom
even in the case when the equations of motion for the p
terns are very simple. Note that in a recent paper Schma
and Wolynes came to similar conclusions on the basis
their replica analysis of Eq.~5! treated as an effective Hamil
tonian @36#. Their calculations suggest that the number
metastable states grows exponentially with the system’s
ume, leading to anideal glass transitionbelow the mi-
crophase separation transition temperature. Also note
spin systems frustrated by Coulomb interactions have b
proposed for studying glassy behavior in the supercoo
liquids @79#.
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APPENDIX A: FREE ENERGY

Here we present the details of our manipulations of
interfacial free energy from Eq.~29! and the effective fieldc
from Eq. ~24!. Let us first show the derivation of Eq.~28!
from Eq. ~27!. In view of Eq. ~24!, we have

F long range5
1

2E ddx~fsh2f̄ !c. ~A1!

According to Eq.~24! with fsh561, we have

c52e2~11f̄ !E ddx8Ge~x2x8!

12e2E
V1

ddx8Ge~x2x8!, ~A2!

where the first integral is over the whole space. This integ
is equal to 1/(ek)2, according to Eq.~25!. Substituting this
back into Eq.~A1!, after simple algebra we arrive at Eq
~28!.

Let us now derive Eq.~29! from Eq. ~28!. Using Eq.~25!
and applying Gauss’s theorem, we calculate the long-ra
term:
8-19
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2e2E
V1

E
V1

ddx ddx8Ge~x2x8!5
2

k2E
V1

E
V1

ddxddx8~d (d)~x2x8!1¹2Ge~x2x8!!

5
2

k2E
V1

ddx1
2

k2E
V1

ddx8 R dS$n̂•¹W Ge~x2x8!%

3
2

k2d R dS~ n̂•xW !2
2

k2 R dSE
V1

ddx8¹W 8•$n̂Ge~x2x8!%

5
2

k2d R dS~ n̂•xW !2
2

k2 R dS R dS8~ n̂•n̂8!Ge~x2x8!. ~A3!
th
f
f
rs

e

ve
-
os
he
th

of

ds
Let us now derive Eq.~39!. Using Eq.~25!, Eq. ~A2!, and
Eq. ~2! to express thed function in terms ofG, we get

c52
11f̄

k2
1

2

k2E
V1

dd x8¹2$Ge~x2x8!2G~x2x8!%

52
11f̄

k2
1

2

k2 R dS8$n̂8•¹W 8~Ge2G!%, ~A4!

where we applied Gauss’s theorem.
Now let us calculate the first and second variations of

interfacial free energy. Letr(x) be a normal displacement o
the interface at pointx on the interface, which is positive i
the displacement is into the positive domain, and vice ve
Note that according to our definitionr.0 corresponds to
shrinking ofV1 .

Up to second order inr, the change of the surface fre
energyDFsurf is given by a well-known formula~see, for
example,@80#!:

DFsurf522s0 R dS Hr1
s0

2 R dS~ u¹W'ru212Kr2!,

~A5!

whereH andK are mean and Gaussian curvatures at a gi
point of the interface, respectively, and¹W' denotes the gra
dient restricted to the interface. The mean curvature is p
tive if the positive domain is convex. The change of t
long-range contributions to the free energy is given by
integral over a thin layer of thicknessr over the interface.
According to Eq.~28!, we have

DF long range5
2~11f̄ !

k2 R dSE
0

r(x)

dz~122Hz1Kz2!

24e2 R dSE
0

r(x)

dz~122Hz1Kz2!

3E
V1

ddx8Ge~x2n̂z2x8!

12e2 R dSE
0

r(x)

dz@122H~x!z1K~x!z2#
06610
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3 R dS8E
0

r(x8)
dz8@122H~x8!z81K~x8!z82#

3Ge~x2n̂z2x81n̂8z8!, ~A6!

where we used the fact that with our definition of the sign
the principal curvaturesddx5(12k1z)(12k2z)dzdS5(1
22Hz1Kz2)dzdSat a point distancez away from the in-
terface. Retaining only the terms up to second order inr and
using Eq.~A2!, we obtain

DF long range522 R dScr12 R dS Hcr2

1 R dS~ n̂•¹W c!r212e2 R dS R dS8

3Ge~x2x8!r~x!r~x8!, ~A7!

where we expandedc in a Taylor series inz. From this, and
Eq. ~A5!, we get

dF522 R dS~s0H1c!r, ~A8!

so the critical points must satisfy Eq.~38!. Similarly, using
Eq. ~38! in Eq. ~A7!, we obtain

d2F5s0 R dS~ u¹W'ru212Kr2!1 R dS$2~ n̂•¹W c!

24s0H2%r214e2 R dS R dS8

3Ge~x2x8!r~x!r~x8!, ~A9!

which in view of Eq.~39! coincides with Eq.~41!.

APPENDIX B: OPTIMAL PERIODS OF HEXAGONAL AND
LAMELLAR PATTERNS

Here, we give the Wigner-Seitz calculation of the perio
of hexagonal and lamellar patterns.
8-20



THEORY OF DOMAIN PATTERNS IN SYSTEMS WITH . . . PHYSICAL REVIEW E66, 066108 ~2002!
1. Hexagonal pattern

We start with a hexagonal pattern. Consider Eq.~23! on a disk of radiusR531/4Lp /A2p, with no-flux boundary condi-
tions. Neglecting the terme2k2c and using Eq.~56!, we write

d2c

dr2 1
1

r

dc

dr
1e2$u~Rs2r !

2u~r 2Rs!22 f 11%50, ~B1!

wherer is the radial coordinate andu(x) is the Heaviside step. The solution of this equation that satisfies Eq.~38! is given by

c5H 1

2
e2$~ f 21!r 21R 2f ~12 f !%2

1

2
s0R 21f 21/2, 0<r<Rs ,

1

2
e2$ f r 22 f 2R 21 fR 2~ ln fR 222 ln r !%2

1

2
s0R 21f 21/2, Rs<r<R.

~B2!
is
where we took into account thatf 5R s
2/R 2. According to

Eq. ~27! with fsh561 and Eq.~A2!, the long-range contri-
bution to the free energy can be computed as

F long range5~12 f !E
V1

cddx2 f E
V2

cddx

52p~12 f !E
0

Rs
rc~r !dr22p f E

R s

R
rc~r !dr.

~B3!

Combining this with the surface energyFsurf52ps0Rs and
using Eq.~B2!, we get that the free energy per unit area

F

pR 2 5
2s0f 1/2

R 1
e2R 2f 2

2
~ f 212 ln f !, ~B4!
qs

06610
so, minimizing this expression with respect toR with fixed f,
we obtain that the minimum is attained atR5R* , where

R* 5e22/3f 21/2S 2s0

f 2 ln f 21D 1/3

. ~B5!

Using the definition ofR in terms ofLp , this equation is
rewritten as Eq.~58!.

2. Lamellar pattern

Similarly, for the lamellar pattern centered atx50 we get
c5H e2~ f 21!x21
1

4
e2f 2~12 f !L p

2 , 0<x<Ls/2,

e2f x22e2fLpx1
1

4
e2f 2~22 f !L p

2 , Ls/2<x<Lp/2,

~B6!
r

where we used the fact thatf 5Ls /Lp . Calculating the free
energy per unit length, we get

F

Lp
5

2s0

Lp
1

1

6
e2L p

2 f 2~12 f !2. ~B7!

Minimizing this expression with respect toLp , we obtain
Eq. ~60!.

APPENDIX C: STABILITY OF HEXAGONAL AND
LAMELLAR PATTERNS

Here we present the details of our calculations of E
~74! and ~78!.
.

1. Hexagonal pattern

We begin with the hexagonal pattern. We define

Rmm8~k!5
2e2Rs

p (
n
E

0

2p

dwE
0

2p

dw8eimw2 im8w81 ik•Rn

3Ge„Rn1r ~w8!2r ~w!…, ~C1!

where r (w)5(Rscosw,Rssinw) and the summation is ove
the lattice:Rn5n1a11n2a2, wherea15 1

2 Lp(A3,1) anda2

5 1
2 Lp(A3,21). Using the Fourier representation ofGe(x

2x8), we obtain
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Rmm8~k!5
2e2Rs

p (
n
E

0

2p

dwE
0

2p

dw8eimw2 im8w8

3E dk8

~2p!2

eik•Rn2 ik8•[Rn1r (w8)2r (w)]

uk8u21e2k2
~C2!

5
2e2Rs

pv (
n
E

0

2p

dwE
0

2p

dw8eimw2 im8w8

3
ei (k1kn)•(r (w)2r (w8))

uk1knu21e2k2
, ~C3!

wherev5L p
2A3/2 is the area of the Wigner-Seitz cell~the

sum is now over the reciprocal lattice!, and we took into
account that(nei (k2k8)•Rn5(4p2/v)(nd(k82k2kn).

We proceed:

Rmm8~k!5
2e2Rs

pv (
n

1

uk1knu21e2k2

3E
0

2p

dweimw1 i (k1kn)•r (w)

3E
0

2p

dw8e2 im8w82 i (k1kn)•r (w8)

5
2e2Rs

pv (
n

1

uk1knu21e2k2

3E
0

2p

dweimw1 i uk1knuRscos(w2qk1kn
)

3E
0

2p

dw8e2 im8w82 i uk1knuRscos(w82qk1kn
)

5
8pe2Rs

v (
n

ei (m2m8)qk1kn

uk1knu21e2k2
i mJm~ uk

1knuRs!i
2m8Jm8~ uk1knuRs!, ~C4!

where we introduced the angleqk1kn
between the vectork

1kn and thex axis and used the integral representation
the Bessel function. After a few algebraic manipulations, t
equation can be converted to Eq.~75!. Using the reciprocal
lattice vectors b152pL p

21(1/A3,1) and b2

52pL p
21(1/A3,21), sokn5n1b11n2b2, this sum can be

evaluated numerically by truncating the summation at su
ciently largeun1u and un2u.

An alternative representation forRmm8(k), which allows
us to explicitly calculate its diagonal elements, can be
tained by performing the summation in real space, rat
than over the reciprocal lattice. We rewrite Eq.~C2! as
06610
f
s

-

-
r

Rmm8~k!54e2Rs(
n

eik•RnE
0

` qdq

q21e2k2

3E
0

2pdq

2p
e2 iquRnucos(q2qn)

3E
0

2pdw

2p
eimw1 iqRscos(w2q)

3E
0

2pdw8

2p
e2 im8w82 iqRscos(w82q)

54e2Rs(
n

eik•RnE
0

` qdq

q21e2k2

3E
0

2pdq

2p
e2 iquRnucos(q2qn)1 i (m2m8)q

3 i m2m8Jm~qRs!Jm8~qRs!, ~C5!

whereqn is the angle betweenRn and thex axis. Calculating
the integral overq, we obtain

Rmm8~k!54e2Rs(
n

eik•Rn1 i (m2m8)qn

3E
0

` qdq

q21e2k2 Jm2m8~quRnu!

3Jm~qRs!Jm8~qRs!. ~C6!

In calculating Rmm8(k), to leading order ine one can
neglect the terme2k2 in the denominator of Eq.~75! or Eq.
~C6!. Settinge to zero, we can calculate the diagonal e
mentsRmm(k) for m>2. After some algebra

Rmm~k!5
2e2Rs

m
, ~C7!

where we took into account that the integrals in Eq.~C6! all
vanish forRnÞ0. Thus, the diagonal elementsRmm(k) are
independent ofk and coincide with those of a single spot.

Caution, however, is necessary whenuku&e. In this case
thekn50 contribution to the sum in Eq.~75! will be singular
for m,m850,61. Taking only the contribution ofkn50, for
uku!1 we obtain

R0,0~k!5
16pe2Rs

L p
2A3

S 1

uku21e2k2D , ~C8!

where we expanded the Bessel functions in a Taylor se
and retained only the leading term. Now, to calculateR1,1(k)
for k50, note that if one formally setse50 in Eq.~75! with
m5m851, one should get the result of Eq.~C7!. On the
other hand, fork50 the term withkn50 does not contrib-
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ute, while for otherkn the terme2k2 in Eq. ~75! is a regular
perturbation and can be neglected. So to calculateR1,1(k) in
the limit uku→0, one has to subtract thee→0 limit of the
kn50 term in Eq.~75! from Eq.~C7!. As a result, we obtain

R1,1~0!52e2Rs2
4pe2R s

3

L p
2A3

, ~C9!

where we expanded the Bessel functions in a Taylor se
and retained only the leading term.

SinceR0,0(k)@uRmm8(k)u for m,m8Þ0 and smalluku, the
m50 mode is the eigenfunction of the operatorL in Eq. ~42!
for vanishinguku. The analysis of Eq.~74! with m5m850
andR0,0(k) from Eq. ~C8! shows that the hexagonal patte
is stable with respect to the long-wave modulation of
spots’ radii, as long asLp is large enough.

2. Lamellar pattern

Let us now turn to the lamellar pattern. Calculate the m
trix elements of 4e2Ge(x2x8) between the right~‘‘ 1 ’’ ! and
left ~‘‘ 2 ’’ ! walls of the stripe in the zeroth period for a give
modulation:
pu

r

a-

he

06610
es

e

-

^1u4e2Geu1&5^2u4e2Geu2&

5
2e2

k (
n52`

1`

e2kuLpnu1 ik inLp

5
2e2eik iLp~e2kLp21!

k~e(k1 ik i)Lp21!~ekLp2eik iLp!
~C10!

and

^1u4e2Geu2&5^2u4e2Geu1&*

5
2e2

k (
n52`

1`

e2kuLpn2Lsu1 ik inLp

5
2e2eik iLp2kLs

k

3S e2kLs

ekLp2eik iLp
1

ekL p

e(k1 ik i)Lp21
D ,

~C11!

where we introducedk5Ae2k21k'
2 , used the fact that the

Fourier transform of the Green’s functionGe in the trans-
verse direction is given by exp(2kuz2z8u)/2k, and summed
geometric series. After some algebra, the 232 matrix
R(ki ,k') formed by these matrix elements can be tra
formed into the following form:
R~ki ,k'!5
4e2ekLp

k~122ekLpcoskiLp1e2kLp!
S sinhkLp sinh@k~Lp2Ls!#1eik iLpsinhkLs

sinh@k~Lp2Ls!#1e2 ik iLpsinhkLs sinhkLp
D .

~C12!
in

n
s

ote
lar
This matrix can be easily diagonalized; after a few mani
lations we arrive at Eq.~79!. Then, Eq.~80! is obtained by
setting l052R2(0,0) and taking only the leading orde
terms. Note that forki50 or ki5p/Lp the fluctuations cor-
responding tol6 are symmetric and antisymmetric deform
tions of stripes.

To obtain the energy of the long-wave distortions of t
lamellar pattern, we expand Eq.~78! with R2 into a series in
ki and k' and retain the terms up to quadratic inki and
fourth order ink' . Then, to leading order ine, we get

l2.
1

2
f 2~12 f !2e2L p

3ki
21S s02

1

6
f 2~12 f !2e2L p

3D k'
2

1
1

360
@ f 2~12 f !2~112 f 22 f 2!e2L p

5#k'
4 , ~C13!

where we usedLs /Lp5 f . One can see that atLp5Lp* given
by Eq. ~60! the coefficient ofk'

2 changes sign from positive
-at Lp,Lp* to negative atLp.Lp* , signifying an instability.
At the same time, the coefficient ofk'

4 is positive for all
0, f ,1.

Let us now discuss the stability of the lamellar patterns
one dimension, which can be studied by looking at Eq.~78!
with k'50. Settingk'50 and expanding ine, after some
algebra we obtain that to leading order

l25
2e2Lp

12coskiLp
@12 f 1 f 21 f ~12 f !coskiLp

2A122 f ~12 f !~12coskiLp!#. ~C14!

It is not difficult to verify that according to this equatio
l2>0 for all values ofki , so the lamellar pattern is alway
stable regardless of the modulation vectorki in one dimen-
sion. This conclusion is applicable when lne21!L p!e21,
when the assumptions of the above equations are valid. N
that for Lp outside this range the one dimensional lamel
patterns~strata! may undergo a number of instabilities@2#.
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