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Nondeterministic density classification with diffusive probabilistic cellular automata
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We present a probabilistic cellular automat@»A) with two absorbing states which performs classification
of binary strings in a nondeterministic sense. In a system evolving under this CA rule, empty sites become
occupied with a probability proportional to the number of occupied sites in the neighborhood, while occupied
sites become empty with a probability proportional to the number of empty sites in the neighborhood. The
probability that all sites become eventually occupied is equal to the density of occupied sites in the initial
string.
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I. INTRODUCTION si(k) with nearest neighbors; ;(k),s;; (k) changes its
state tos;(k+1) in a single time step. The following set of
Cellular automatdCA) and other spatially extended dis- transition probabilities defines the aforementioned CA rule:
crete dynamical systems are often used as models of com-

plex systems with a large number of locally interacting com- P(1/0,0,0=0, P(1/0,0,=p,
ponents. One of the primary problems encountered in
constructing such models is the inverse problem: the ques- P(1/0,1,0=1-2p, P(1]0,1,)=1-p,
tion of how to find a local CA rule which would exhibit the
desired global behavior. P(1/1,0,0=p, P(1]1,0,)=2p,
As a typical representative of the inverse problem, the
so-called density classification takk] has been extensively P(1/1,1,0=1-p, P(1[1,1,1)=1, (1)

studied in recent years. The CA performing this task should . . . -
converge to a fixed point of all 1's if the initial configuration Wherepe (0,1/2] [the remaining eight transition probabili-

contains more 1's than O's, and to a fixed point of all O's if i€S ¢an be obtained usirR(0la,b,c)=1-P(1[a,b,c) for
the converse is true. While it has been proy&tithat the &:P.c€{0.1}]. The probabilistic CA defined by Ed1) can

two-state rule performing this task does not exist, solution®€ defined e{p"c't'y if we introduce a set of iid random
of modified tasks are possible if one allows more than on&/ariables {Xi}i_, with probability distribution P(X;=1)
CA rule [3], modifies specifications for the final configura- =P, P(Xj=0)=1-p, and another sefY;}{_, with prob-
tion [4], or assumes different boundary conditif]. Ap-  ability distribution P(Y;=1)=2p, P(Y;=0)=1-2p. Dy-
proximate solutions have been studied in the context of genamics of the rulg1) can then be described as

netic algorithms in on¢6] and two dimension§7].

In what follows, we will define a probabilistic CA which ~ Si(KT1)=Xi(1=81)(1=8)8; 11+ (1-Y)(1—5i_1)s

solves the density classification problem in the stochastic X(1=8i+ 1)+ (1= X)(1—8 _1)SS +1+ XS,
sense, meaning that the probability that all sites become i ' PR A
eventually occupied is equal to the density of occupied sites X(1=5)(1—S:1)+tY;5_1(1—5)Sj+1

in the initial string.

We will assume that the dynamics takes place on a one-
dimensional lattice with periodic boundary conditions. Let
s;(k) denotes the state of the lattice sitat timek, where
i eZ, ke N. All operations on spatial indicdsare assumed
to be moduloL, wherelL is the length of the lattice. We will
fqrthgr assume thad; (k) e{Q,l}, and we_vvill say tiat the S(K+1)=8—SY,+XiS_1+X;S15(S 1S+SS 1
sitei is occupied(empty at timek if s;(k)=1 [s;(k)=0].

The dynamics of the system can be described as follows: —2S_1S5iSi+1+Si—1Si+ 1) (Yi—2X,). (3)
empty sites become occupied with a probability proportional
to the.num_ber of occupied sites_ in the neig_hporhood, \_/vhile Il. DIFFERENCE AND DIFFERENTIAL EQUATIONS
occupied sites become empty with a probability proportional
to the number of empty sites in the neighborhood, with all The state of the system at the tirkés determined by the
lattice sites updated simultaneously at each time step. Tetates of all lattice sites and is described by the Boolean
be more precise, let us denote byP[s((k random fields(k)={s;(k): i=0,... L}. The Boolean field
+1)|si_1(k),si(k),si+1(k)] the probability that the site {s(k):k=0,1,2...} is then a Markov stochastic process.

Denoting byEg) the expectation of this Markov process
when the initial configuration is(0) we will now define the
*Electronic address: hfuks@brocku.ca expected local density of occupied sites byi(k)

+(1=X)si_1Si(1—Si41) +S-1SiSi11- (2

To make the above formula easier to read, we omitted the
time argument, denoting|(k) by s; . After simplification and
reordering of terms, we obtain
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=Ego)[si(k)]. The expected global density will be defined
as

L
p(K)=L712 pi(k). @
N(k)/L
While both p;(k) andp(k) depend on the initial configura-
tion 5(0), wewill drop this dependence to simplify notation.
We will assume that the initial configuration is exactly
known (nonstochastic hencep(0)=2}:05i(0) is the frac-

tion of initially occupied sites. 0 . . . . . . .
Taking expectation value of both sides of E), and 0 200 400 600 800 1000 1200 1400 1600

taking into account thaEg) Y;—2X;]=0, we obtain the k

following difference equation FIG. 1. Fraction of occupied sitd$(k)/L as a function of time

k for two sample trajectories starting from identical initial configu-
pi(k+1)=pi(K)+p(pi+1(k) +pi-1(K)=2pi(K)). (5 ration with N(0)=30, L=100, p=0.3. The third, almost horizon-

. . . L tal line represents average of 1000 such trajectories.
After summing over all lattice sites this yields

p(k+1)=p(Kk), (6) DPCA has thus two absorbing states, corresponding to all
empty sitegto be referred to a6) and to all occupied sites
which means that the expected global density should be corto be referred to ag). If we start with 0<N(0)<L, then
stant, independently of the value of parametend indepen- the graph ofN(k) resembles a random walk, as shown in
dently of the initial configuratios(0). We cartherefore say Fig. 1. Both sample trajectories shown there eventually end
that the probabilistic CA defined in E2) is analogous to in the absorbing state, one of themGp another one irt.
conservativeCA, i.e., deterministic CA which preserve the This is a general property of the DPCA: regardless of the
number of occupied sitg8—11]. initial configuration, the system sooner or later ends up in
Note that up to now we have not made any approximaone of the two absorbing states. Although the time required
tions, i.e., both Eqs(5) and(6) are exact. We can, however, to reach the absorbing state can be large for a given realiza-
consider limiting behavior of Eq. (5) when the physical dis-tion of the process, the expected value of the number of time
tance between lattice sites and the size of the time step ssteps required to reach the absorbing state is finite, as it is the
multaneously go to zero, using a similar procedure as decase for all finite absorbing Markov chaih%3]. Figure 2
scribed in Ref[12]. Letx=ei andt=rk. Now in Eq.(5) we illustrates this property foL =100 and the initial configura-
can replacep(i,k) by p(x,t), p(i=1k) by p(x*+€,t), and  tion with 30 occupied sites clustered around the center, ie.,
p(i,k+1) by p(x,t+7), which results in the following located ati=35,36...,64. All other sites are empty. We

equation: start with an assembly of 200 of such initial configurations,
all plotted as vertical lines in which black pixels represent
p(r,t+7)=p(X,t) + p(p(X+ €,1) + p(X— €,1) = 2p(X,1)). occupied sites, while white pixels represent empty sites, as in

. . o o o Fig. 2@). Each of these initial configurations evolves accord-
We will consider diffusive scaling in which time scales as aing to the DPCA rule, and aftde= 100 (k=1000) iterations
square of the spatial length, meaning thate”. Taking Tay-  they are again plotted as 200 vertical lines in Fig&) 2nd
lor expansion of the above equation in powersafp to the  2(c). After 12 000 iterations all 200 configurations reach ab-

second order we obtain sorbing states, as illustrated in Figd2 Obviously, some
2 reach the statd, while othersO, yet it turns out that the
GP= PP, (™ fraction of configurations which ended up in the states
very close to 30%, the same as the fraction of occupied sites

i.e., the standard diffusion equation. Due to the form of Eq
(7), in what follows we will refer to the process defined in
Eq. (2) asdiffusive probabilistic cellular automato{DPCA).

atk=0.

To explain this phenomenon, let us defingk) to be the
probability that the number of occupied sites at tiknis N.
Since the Markov proceds(k):k=0,1,2 ...} is finite and

Iil. ABSORPTION PROBABILITY absorbing, no matter where the process starts, the probability
We will now present some simulation results illustrating that afterk steps it is in an absorbing state tends to Ikas

dynamics of DPCA. Since main features of DPCA remaint€nds to infinity[13]. This implies that
qualitatively the same for all values of the parametar the

interval (0,1/2), we have chosgr=0.25 as a representative limuy(k)=0 if N#0 and N#L, (8
value to perform all subsequent simulations. ko

Let N(k)=2iLzlsi(k) be the number of occupied sites at
time k. If we start with N(0)=0, thenN(k)=0 for all k lim (ug (k) +uo(k))=1. (9)
>0. Similarly, if N(0)=L, thenN(k)=L for all k>0. The k—oo
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FIG. 3. The average time required to reach the absorbing state
(T) as a function of the initial density(0)=N(0)/L for L= 100,
p=0.3. Each data pointH) represents the average taken over
1000 realizations of the process with identical initial configurations.
The continuous line represents fitted parabd®)=ap(0)(1

—p(0)).

seek a CA rule which would converge 1d0) if the fraction
of occupied sites in the initial string is greatérsg than 1/2,

ie.,
limu (k)=0(p(0)), (13
K—s o0
(d) limug(k)=0(1—p(0)), (14
k— o0

FIG. 2. Multiple realizations of the CA evolution &) k=0,

(b) k=100, (c) k=1000, and(d) k=12 000. Each vertical line where ®(-) is the step function defined @ (x)=0 if x
corresponds to different realizations of the procesd erl00 lat-  <1/2, and®(x)=1 if x>1/2. Thus the difference between
tice. Black pixels represent occupied sites and white pixels emptyhe deterministic and the probabilistic density classification
sites. 200 different realizations of the process are shown. introduced here is the replacement of the step function in
Egs.(13)—(14) by the identity function in Eqs(11)—(12).

As opposed to deterministically decided outcome in the
standard density classification process, in DPCA it is just
more probablehat the system reaché&shenO if the fraction
of occupied sites in the initial string is greater than 1/2, and
it is more probablehat it reache® thenl if the converse is
true. Additionally, DPCA can in some sensgasureoncen-
tration of occupied sites in the initial string. If we want to
know what is the initial density of occupied sites, we need to
run DPCA many times with the same initial condition until it
reaches the absorbing state, and observe how frequently it
reachesl. This frequency will approximat&l(0)/L, with
accuracy increasing with the number of experiments.

The expected global density, as defined in By, is inde-
pendent ofk, hence

L
p<0>:L*1Es<O)[N<k>]:L*1N§lNuN<k>. (10)

Taking the limitk—o of both sides of the above equation,
and using Eqgs(8) and(9), we obtain

lim u (k)= p(0), (11)

k— oo

limug(k)=1-p(0). (12

K— o0

IV. TIME TO ABSORPTION

Simulations shown in Fig. 2 indicate that for largehe

We have shown thahe probability that the DPCA reaches system is typically in a state in which blocks of both empty
the absorbing staté is equal to the initial fraction of occu- and occupied sites are relatively long. We can use this obser-
pied sitesp(0). The probability that it reache® is 1  vation to obtain the approximate dependence of the time re-
—p(0). This is in agreement with the behavior observed inquired to reach the absorbing state on the density of initial
Fig. 2. configuration.

The above can be viewed as a probabilistic generalization If we assume that in a given configuration all occupied
of the density classification process. In the standdeter- sites are grouped in a few long continuous blocks, then the
ministic) version of the density classification problem we value ofN(k) cannot change too much in a single time step.
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For simplicity, let us assume that the only allowed values ofaverage time required to reach the absorbing state for 1000

AN(K)=N(k+1)—N(k) are{—2,—-1,0,1,2. realizations of the DPCA process, for a range of initial den-
Sincep(k) is time independent, the probability tHetk) sities. Results are shown in Fig. 3. One can clearly see that

increases by a given amount should be equal to the probabittata points are aligned along a curve of parabolic shape, as

ity that it decreases by the same amount in a single time stepxpected from Eq(16).

In the agreement with the above, let us defpeas the

probability thatAN(k) takes the valug, so thatp; is non-

zero forje{—-2,-1,0,1,2, wherep_,=p,, p_,=ps, and V. CONCLUSION

2p,+2p;+po=1. If T, denotes the expected time to reach

the stateN(k)=0 or N(k)=L starting fromN(0)=z, a

simple argumentl4] yields the difference equation whidh

must satisfy

The probabilistic CA introduced in this article solves the
density classification problem in a nondeterministic sense. It
is interesting to note that the DPCA conserves the average
number of occupied sites, similarly as deterministic rules

_ employed in solutions of related problems mentioned in the
Te=P2Tze2# Palzeat PoTo Palooat Polz-2* 1'(15) introduction. Indeed, conservation of the number of occupied
sites is a necessary condition for density classification by CA

The solution of this equation satisfying boundary conditionsif one allows modified output configuration, as recently

To=0 andT_ =0 is given by shown in Ref[15]. This suggests that a wider class of proba-
) bilistic CA conservingp(k) might be a useful paradigm in
T,=a z(L-2)=a Lp(0)(1—p(0)), (160 studying how locally interacting systems compute global

wherea = 1/(8p,+ 4p,), meaning that the mean time to ab- properties, and certainly deserves further attention.

sorption scales with lattice length &(L2). The above re-

sult would remain valid even if we alloyvgd further jumps ACKNOWLEDGMENT
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