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First-order transition of tethered membranes in three-dimensional space
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We study a model of phantom tethered membranes, embedded in three-dimensional space, by extensive
Monte Carlo simulations. The membranes have hexagonal lattice structure where each monomer is interacting
with six nearest-neighboi®N). Tethering interaction between NN, as well as curvature penalty between NN
triangles are taken into account. This model is new in the sense that NN interactions are taken into account by
a truncated Lennard-Jones potential including both repulsive and attractive parts. The main result of our study
is that the system undergoesfisst-order crumpling transitionfrom low-temperature flat phase to high-
temperature crumpled phase, in contrast with early numerical results on models of tethered membranes.
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. INTRODUCTION (t,)=0 inthe crumpled phase
Statistical mechanics of membranes is a rich subject and #0 inthe flat phase.

has been studied since about twenty years. Motivations to ) o
obtain a full understanding of the behavior of these complexrollowing a standard method, a free energy functidhas
systems are enforced by many experimental realizations. F&Wilt for the{r(o)} by a Landau-Ginzburg expansion .
recent reviews, see Refil] and[2]. See also Ref[3] for Moreover, rotational invariance is required. This leads to
many introducing and pedagogical courses on the subject. )

" ) . P

Membranes are_two d|men_3|0nal _fluctuatlng ;ystems of F{r(a)}zf dDa—(aar)er—(&aaar)2+u(aaﬁﬁr)2

monomers. According to their physical properties, mem- 2 2
branes can be “fluid” or “tethered.” Fluid membranes con-

sist of freely moving monomers, i.e., with Hamiltonian de- + (9,5 d,5) %+ EJ' dDUlf dPa, 8D (r(oy)
pending only on the shape of membranes. On the contrary, 2
monomers in tethered membranes are tied together by a teth- —r(ay)).

ering potential and their connectivity is fixed. In addition, a
membrane can be'selfja.voiding if intersections with itse]f are_is the bending rigidity, coupled to the square of the extrin-
forbidden. Otherwise, it is a phantom membrane. In this pagjc oyrvaturet, u, andv are harmonic and anharmonic elas-
per, we focus our attention on a model of tethered memsc coefficients.b is the coupling constant for self-avoiding
branes with external curvature energy without self-energy. Higher-order terms in the expansion are expected to
avoidance. be irrelevant in the infrared limit.

Any realistic model should include self-avoiding interac-  |n the phantom caseb&0), continuous crumpling tran-
tions. But phase diagrams of phantom membranes are rickition is expected by mean-field arguments tfer0. Taking
and contribute to understand the behavior of self-avoidingnto account the fluctuations, long distance behavior can be
membrane$4,5]. It is now firmly established that phantom obtainedvia renormalization group technics, using as 4
membranes undergo a crumpling transition between a flat D expansion. The authors of Rdi6] calculated thes
and a crumpled phase. The flat phase possesses long-rarfgactions to the lowest order ia They found no stable fixed
orientational order between the normal to the surfacegoint ford (the dimension of the embedding spatess than
whereas the crumpled phase is totally disordered. Howeved =219, interpreting this as a weak fluctuation-driven first-
the nature of the crumpling transition is still puzzling. Renor-order phase transition. However, this prediction may not be
malization group(RG) calculations[6] with a Landau con- reliable in the physical casel&3,D=2) corresponding to
tinuous model[7] predict a discontinuous phase transition e=2.
when the dimension of the embedding space is lower than  On the other hand, numerical simulations of lattice mod-
219, including the physical casd=3. This continuous els[8-18|, larged expansior19] and calculations based on
model describes membranes Bsdimensional manifolds truncationg20] of the Schwinger-Dyson equations are con-
with internal flat coordinates o, embedded in a sistent with a continuous phase transition.

d-dimensional(euclidean space, where the position of is In this paper, we try to shed light on this contradiction
denoted byr (o). Tangents,=dr/ox® are identified as the with an extensive Monte Carl@MC) study on a model of
order parameter of the crumpling transition, i.e., phantom tethered membranes with bending rigidity. As it

turns out, our results show that the crumpling transition
within our model is of first order in agreement with the RG
*Email address: diep@ptm.u-cergy.fr prediction of{6].
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Section Il is devoted to a description of the model. Ourstate is taken to be the unit of distance, irg5=1, and the
method is described in Sec. Il and the results are shown impper boundR,,,,=4. We use free boundary conditions, at
Sec. IV. Concluding remarks are given in the last section. constant pressure in our simulations.

The following algorithm was used. Starting from the
Il. THE MODEL ground state where monomers are on the hexagonal lattice

) i . . sites, we heat the system to a temperafuréve equilibrate
We consider a two-dimensioné2D) lattice of monomers  the system at variable volume. The local equilibration is

connected in hexagonal structure, and embedded in thggne as follows: we take a monomer and move it to a nearby
physical 31 euclidean space. The tethering potential betweeRangom position in a cubic box of volumé® around its
nearest-neighbofNN) monomers is a truncated Lennard- psition, in the 8 space. This position is accepted if it low-
Jones(LJ) potential. The curvature energy is a standarders the energy. Otherwise it is accepted with a probability
normal-normal interaction between NN triangles. The dis-¢cording to the Metropolis algorithm. We repeat this for all

tance between NN monomers is not allowed to be larger thag,onomers: we say we achieve one MC step/monomer. We
an upper bound distand&,,,. Otherwise, in the absence of ¢no0ses=0.1 to have an acceptance of the order of 50%.

Rmax, monomers are no longer effectively tethered at high \\e define the following physical quantities - averaged
temperature and the system becomes a gas. In order to kegfy) energy(E), averaged normal vectgn), averaged NN

essential features of the LJ potenti&ya, must be suffi-  gistance(d), radius of gyratiorR, with the following stan-
ciently larger tharry, the NN distance corresponding to the ya,d definitions:

minimum of the potential, so thaR,.x lies in the flat
asymptotic region of the potential. However, to have an ac- (E)=(H) )
tual tethered membrand3,,,, should not be too large as ’
discussed above. Moreover, equilibration times increase as
Rmaxincreases, since NN distances are then allowed to grow _ 1
more and more. (m= 2(L—1)2 ; Na| | @
The system is described by the Hamiltonian
(@)= = S (1) ®
= .. _ . = —-— r y
H (|EJ> U(I’,J) K(a2,8> n, nﬁ. (1) (3|__1)(|__1) & 1)

The first sum is performed on pairs of NN monomers
(i,j) only, and the second one is restricted to pairs of NN Ri= . > ((ri—r)?), (6)
triangles{a,B). Tethering interaction between NN mono- 2L" 0

1

U(I’,])ZUO if rij<RmaX

mers labeled by andj depends only on their distancg in

the 3d embedding space and is describedubiy ;), where(- - -) indicates thermal average and the sunidh is

1 . performed only on NN links.

(f_o> _ 2( f_o> All the results described below are obtained after thermal-

r; rj ization of the system. This requires about®3Q0’ MC
) steps/monomer, depending on the temperature. After ther-

=0 if rij=Rmax (2 malization, measures are done on6i00 MC steps/

. . - . monomer, depending also on the temperature.

with ry; :Hri_.riH’ ri andr; being the position vectors inthe ~p barsp are cgalculated using g standard jack-knife
3d spacer, is the equilibrium distance between NN mono-

mers. The second term in E¢L) is the external curvature algorithm.
energy, withK the bending rigidity. The 8-vector n, is
defined as the normal unit vector of theth triangle formed <E> al
by three NN monomers. Note thaj, is defined for a coun- o N=16x16 © *
terclockwise oriented triangle. o .V
The phase space of the model depends on three param 5 «N=48x48 o
eters. We fix two of them, namely, andK, and look for .-EE
temperature-dependent properties. Sl
o %<
I1l. NUMERICAL METHOD . o« Y «
We consider a membrane of linear sizeThe total num- . * v 8
ber of monomers iN=LXL. We chooseU,=3 andK E
=1. A more extensive study would require to explore the oa 06 08 10 12 14 16
complete phase space, but these particular values alread T

give interesting results. In the followindgs =1 is taken as

unit of energy. We take alskg=1 (Boltzmann constantto FIG. 1. Averaged energy versus temperature, Nor 16X 16,
simplify the temperature unit. The NN distance in the ground24x 24, 32<32, and 4& 48.
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FIG. 4. Averaged gyration radiuRy versusT, for N=16x 16,

FIG. 2. (n) versusT, for N=16X 16, 24x 24, 32<32, and 48 24X 24 32x32. and 4& 48.

X 48.

crumpled phase &t=1.1: there is a sharp jump ¢E) from
the low-T flat phase to the high-crumpled phase. Note that
At low temperature, equilibrium configurations are con-the slope ofE) increases with size in the transition region.
figurations of minimum energy. This means that NN distancelhe order parametgn) drops from a finite valuéthis value
must be close to,, the minimum of the LJ potential, and would clearly tend to 1 ag tends to zerpto a vanishing
that NN normals must be parallel to minimize curvature en-value, as expected for an order-disorder transition.
ergy. So, equilibrium states correspond to a flat state, with At the transition R falls from a finite value dependent of
(n)=1 andRy=L. It is an ordered phase. the linear size to a small value more or less independent of
At high temperature, maximal entropy configurations cor-L. This corresponds to the scaliiy~L", with v=1 in the
respond to crumpled states, where the membrane is compdtat phase and’=0 (indeed, a logarithmic dependende
and occupies a very small volume in the embedding space. the crumpled phase. It should be noticed that the NN dis-
is a completely disordered phase, Wity =0 andRy<L. tance remains finite in the crumpled phase, which means that
Between low and high temperatures, a crumpling phasgionomers actually still form a tethered membrane even in
transition is expected. In this work, we study the nature ofthe high-temperature phase as discussed earlier.
this transition to see whether it is continuous or not. The second purpose of our work was to determine
As a first point, we measurdd), (n), (d) andRy versus ~ whether the transition is continuous or not. A standard
temperature for sizebl=16X 16, N=24x24, N=32X 32, method, when using numerical simulations, consists in a fi-
andN=48x48. Results are shown in Figs. 1, 2, 3, and 4. hite size scaling analysis of the maximum of the specific heat
It turned out that equilibration times are very large for thisC, . For a second-order phase transition, it is expected to
system. So, as we were interested in critical properties, wgrow as the linear system size. For a discontinuous transi-
concentrated our work on the temperature region around thigon, there are in principle discontinuities in thermodynamic
phase transition, especially fdé=48x48. Figures 1, 2, 3, quantities. However, for small systems, a discontinuous
and 4 clearly show a phase transition between a flat and phase transition can appear to be continuous if the correla-

IV. RESULTS AND ANALYSIS

2.5 . . . . . 55
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FIG. 3. Averaged NN distancéd) versusT, for N=16X 16,
24X 24, 3232, and 4& 48.

FIG. 5. CI"® versusN in logarithmic coordinates, foN= 16
X 16, N=24x 24, andN=32X32. The dashed line is the best fit.
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FIG. 6. Normalized histogram for the energy, fd=48x48. FIG. 7. Normalized histogram for the energy, fide=48x48:
The double-peak structure shows the first-order character of ththe single-peak structure abov&=1.14) and below T=1.1) the
phase transition in the critical regioT €1.11 andT=1.12). critical region.
tion length is greater than the linear size of the system. In V. CONCLUSION

that caseC!'®i

[21] s expected to grow as the size of the system We have studied the crumpling phase transition by MC

max simulation of a model of tethered membranes with LJ poten-
We measgred:u fpr N=16%16, N=24>< 24, andN g energy and bending rigidity. We have shown clearly the
=32x32 using the histogram techniqU@2]. For these firsi-order nature of the phase transition between flat and
small sizes, energy histograms have a single peak for all,ympled phases, in contrast with earlier simulations using
temperatures we explored around the transitimniltihisto-  Gayssian tethering interaction. Note that these early MC re-
gram methodl They are found more or less Gaussian. sults[8—18] and also analytical calculatio$9,20 show a

In Fig. 5, we plotC;"** versusN in logarithmic scale.  continuousphase transition for models which do not include
Fitting these data, we obtai@;'*~N* with x=0.83(12).  anharmonic excitations. We believe that the anharmonic na-
This value is far from the valug=0.5 expected for a con- ture of the LJ potential used in our model to some extend
tinuous transition. It is closer to 1, the theoretical value for acontributes to the first-order transition observed here. We did
first-oder transition as discussed above. At this stage, in viewot vary in this work the value of bending rigidit§. Let us
of this, we conjecture that the transition is of first order. Asmention however that foK =0, there is no flat phase, the
seen below this conjecture is confirmed by histograms madgembrane is crumpled at all

for a larger size. It would be interesting to include self-avoidance between

In order to check further the first-order character of thenon-nearest-neighbors in our model. However, it seems that
transition, we increask. For largeL, if the transition is of  in that case the precise form of NN potential is irrelevant: for
first order, the energy histogram should show a structure ofepulsive self-avoidance between non-nearest-neighbors the
multiple peaks corresponding to the coexistence of ordereghembrane is always flat regardless of the form of the poten-
and disordered phases at the transition. The system would gzl between NN, even in the absence of bending rigidity.
back and forth between these phases resulting in a doubl€g 9,23,24 This is interpreted as an effective bending rigidity
peak energy histogram. Takirlg=48, we indeed observed induced by excluded volume effect. This can be overcome by
this double-peak histogram in the regids-1.1, as shownin an attractive interaction between non nearest-neighbors in
Fig. 6. Note that above and below the critical region, thisaddition to the repulsive self-avoiding interaction, leading to
double-peak structure is absent, as shown in Fig. 7. This is #he folding of the membrane at loWand a flat phase at high
very strong signal which confirms the first-order character ofT [25]. Including such repulsive and attractive interactions
the crumpling transition found earlier by finite-size scalingbetween non-nearest-neighbors in our model is a formidable
of C'¥. task which is left for future investigations.
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