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Variational formulation of nonequilibrium thermodynamics for hydrodynamic pattern formations
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It is shown that a direct extension of the variational principle of near-equilibrium states due to Onsager leads
to the analogous principle in hydrodynamic flows; the entropy production rate of an isolated system is maxi-
mized both near and far from equilibrium. It possesses as its extremal paths the solutions to the hydrodynamic
equation of motion, and provides a general pattern selection criterion far from equilibrium.
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[. INTRODUCTION pirical observations is provided here by arguing that the
variational principle formulated by Onsagl5,16 can, in
Despite important progresses being made recdity7],  fact, be extended without modification to hydrodynamics far
the task of extending the equilibrium statistical mechanicgrom equilibrium. The hydrodynamic equation of motion can
and thermodynamics to the far-from-equilibrium situations,be regarded as the most probable path that emerges from the
under which many fascinating phenomena including patteriyariational principle. It thus potentially provides anpriori
formations in driven systems and self-organizations in livingPrinciple of pattern selection valid from equilibrium up to
organisms occuf8], remains incomplete. A prime source of turbulent flows; patterns are formed and selected to maxi-
difficulties is the apparent lack of a quantity analogous tomize the rate of entropy increase of the universe containing
free energy, whose minimization condition yields macro-the system.
scopic observablegl,8]. Specific studies of pattern forma-  In the following section, the general form of the varia-
tions have thus been mainly confined to analyzing solutionéional principle is stated and its relationship with the Onsager
of phenomenological evolution equations, such as hydrodytheory is discussed. Hydrodynamics is considered in the con-
namic or reaction-diffusion equatio[ﬁg]‘ When confronted text of the variational principle in Sec. lll. Section IV dis-
with multiple stationary solutions typically generated by bi- cusses implications to the properties of nonequilibrium sta-
furcations, one has little guide other than empirical means ofionary states using the Rayleigh-Bedaonvection(RBC)
how to select or properly weigh the solutions. On the con{8,13,17 as a model system. The relationships of the varia-
ceptual level, the difficulty in formulating such a variational tional principle to the “minimum entropy production theo-
approach poses an awkward gap in our description of natur&m” [18] are also considered in Sec. IV.
between the physical and biological realms, with the latter
characterized by the ubiquitous emergence of order out of Il. VARIATIONAL PRINCIPLE
disorder, whose “driving force” is nowhere obvious. ) o
Such “pattern selection” problem, or more fundamentally ~ According to the second law, the equilibrium stafe of
the identification of the proper thermodynamic variationalthe set of conserved extensive thermodynamic variahles
principle, is distinct from the focus of the theory of fluctua- @n isolated systerffuniverse”) is determined by
tions[6,7,9,1Q, where one considers the probability of ob- " .
serving a spontaneous deviation from a particular solution to S(ay’) = (maximum, @
the macroscopic equation of motion. Our aim in this paper is

to examine how one can properly select the particular soluSUPI€Ct to certain constraints, whega;) is the entropy
tion to the equation of motion among the finite or infinite [19)- The variational principle we consider in this paper is a
number of possibilities. close analog of Eq(1): for a system with hydrodynamic

In particular, we consider the following variational prin- 1OWS, the most probable macroscopic paf{r,t) approach-
ciple: in isolated macroscopic systems both near and far frorf'd & satisfies
equilibrium, the entropy production rate is maximized. The .
usefulness of the maximum heat flux criterion in convection Hai(r,t)]= (maximum, ()
as anad hochypothesis has been noted befpté—13. Ex- _
perimental evidences in a diverse range of turbulent flowsubject to appropriate constraints, wh&res the total rate of
have been collected recently in Rdfl4], where it was entropy increase. The “constraints” include the intrinsic dy-
shown that a simple and unified description becomes posiamics ofa;, represented by the phenomenological macro-
sible by introducing the assumption of the maximum entropyscopic equation of motion. Equati¢f) states that the time-
increase rate. A well-founded theoretical basis for such emdependent nonequilibrium trajectory of a macroscopic
systema;(r,t) is determined by the condition that the overall
entropy production rate of the universe containing the system
*Present address: Department of Biochemistry, Weill Medicalis maximized. The intuitive motivation behind E@) is the
College of Cornell University, New York, NY 10021. Electronic expectation that in its approach to equilibrium, an isolated
address: hyw2001@med.cornell.edu system would follow the most efficient route to increase its
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entropy under the constraints. If “heat always flows down- . HYDRODYNAMICS
hill” according to Eq.(1), Eq.(2) implies that “the heat flow
finds the fastest way downhill.”

Equation (2) is closely related to Onsager’s variational
principle [15,16, which states that near equilibrium,

Bifurcations producing instabilities and multiple station-
ary solutions arise from the intrinsic nonlinearity of the un-
derlying equation. However, the nonlinearity in hydrody-
namics is due to the conservation laws, and not to a
_ departure from the linear constitutive relatiof®). It is
S— & =(maximum. (3)  worthwhile in this sense to contrast H) with the equation
that governs the total time evolution af,

In Eq. (3), Sis the total entropy production rate of a macro-

scopic system. The “dissipation functior is defined as %ai: —(v-V)a,—V-J;, (7)
b= Ef dr(L=1);:J;-J; (4) wherev is the velocity. A traditional approach of formulating
2 nee thermodynamic descriptions of hydrodynamics has been to

start with Eq.(7), and cast it into the “Onsager form,”
in terms of the set of fluxed; associated withe;, and the  da;/dt= L;;X; [20,21], which defines the generalized kinetic
kinetic coefficientL;; that satisfies the reciprocal relation coefficientZ;; and is inevitably nonlinear. Such an explicit
Lij=L;i . Summations over repeated indices are implied. Th@quatlon forai(_r,t) is necessary in considering quctu_aﬂonrs.
total entropy production rate is given in terms of the localSince our aim is to formulate a purely thermodynamic varia-
valuess by tional principle, we instead regard the dynamicsapfas an
implicit consequence of Ed6) and the conservation laws.
The Onsager’s variational principle can thus be adapted
'ng dr 'S:f dr VX-J;, (5) straightforwardly to hydrodynamics. Specifically, we assume
local equilibrium in the following sense: although each local
volume elements are in equilibrium and their thermodynamic
whereX;=dS/da; is the intensive variable conjugate @.  variables are smoothly varying, globally, the system can be
The variations refer to those Jf, or the rate of change of far from equilibrium[a;(r,t)—a” is arbitrarily largd. The

the state, given the statg(r,t) at a particular instant. The entropy production rate can be writtg22] as
Euler-Lagrange equation corresponding to Bj.is
- Tap( v,  dug 2 dv

5 y| N v,

= + — 8,52 +=—2
2T \axg  dx, 3 “Pax,| T ox,

1
+Jq-V?,

®

«p and X\ are the traceless and bulk parts of the
viscous stress tensow,, and x, are the Cartesian compo-
nents of the velocity and position vectod, is the heat flux,
andT is temperature. The dissipation function can be defined

‘]i:LijVXj1 (6)

the linear phenomenological constitutive equation, which W& here o
refer to as the “equation of motion.” It is a natural generali-
zation of the typical procedure one performs in equilibrium
thermodynamics, where an application of Efj) gives the
equation of state.

It is important to recognize Ed6) as theconsequencef as
the variational principle, the most probable path that maxi- 1 TapTpa N2
mizes S—®. Near equilibrium, there typically exists a ®= Ef (WJF T_§+Kl‘]q“]q)! 9

unique solution to Eq:6) under the given conditions, and the
practical utility of Eq.(3) is rather limited. However, if we where 5, { are the shear and bulk viscosities, ands the
were to imagine a situation where there are multiple soluheat conductivity. Application of E¢(3) gives the equation
tions to the equation of motion, one would have to comparef motion,
the values ofS—® corresponding to each extrema and

“choose” the one with the maximum value. For the subset of

trajectories satisfying Eq(6), we have® =S/2 from Egs.
(4)—(6). Therefore, when we project the full trajectory space
into a subset in which the equation of motion is satisfied, Eq. N= gava (10b)
(3) would reduce to Eq(2) [25]. X, '

Strictly speaking, such an extension would involve the
assumption, which goes beyond the original context consid-
ered by Onsager, that E(B) continues to be valid when the
equation of motion leads to multiple solutions, with the
“maximum” referring to theglobal maximum. It is the basic The rest of the ingredients necessary to obtain the full set of
assumption we take in this paper. Its intuitive plausibility hydrodynamic equations of motion in the schematic form of
appears obvious, and is strengthened by the consistency witfy. (7) are simply the conservation laws of mass, momen-
Eq. (2). tum, and energy, which should be regardedcasstraints

(103

v, dvg 2 &vy)

—pl 24+ £ __s5
Tap= 1 IXg X, 3 *Fox,

1
Jg=KV=. (109
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1<0 £=0 tem which is either in equilibriurf9] or in a stationary state
PN NP [7,10Q]. Since the particular part of the system where the im-
probable fluctuation is occurring is nadtiven by the sur-

Ry Ry rounding regionthe average net flux around the subsystem
boundary is fixell the most probable path creating the par-
[ ticular fluctuation is the one that minimizes the dissipation.

The “minimum entropy production theorem” for station-

=0
ary stateg 18] might appear to contradict E¢R) near equi-
Ry R,
S

librium. To illustrate its relationship to E@2), we consider a
generalized version of the proof in RéfL8]. One presup-
poses the equation of motion(6), which gives S
=[drL;;VX;-VX;. The deterministic time evolution is then
followed along a solution. Taking a time derivative and inte-
rating by parts,

FIG. 1. An example of a time-dependent nonequilibrium trajec-
tory between two equilibrium states generating quasistationar)g
states. The total isolated system is partitioned into three subsystems, .

S, Ry, andR,, whereR, and R, serve as reservoirs t5. The aS dX; 5 X
subsystems are initially segregated, each with diffedént At t ot § Liiﬁvxi'dA_J drv XiLijW'
=0, the gates are opened, inducing flalvs By taking the volume
ratio of the reservoirs t& and the transport coefficient &, and
R, large enough23], the time dependence of the nonequilibrium
relaxations can be made to approximate the stationary state flow:

11

where the first integral is over the boundaries betwseamd

ghe reservoirs. For the series of quasistationary states gener-
ated as in Fig. 1, the values ¥f in R,,, X\™ are indepen-
dent ofr, and change only quasistaticallytinUsing Eqs(6)

present even for microscopic dynamics. In theofiés (] pand (7), we get

considering the generalization of the Onsager-Machlu

theory[9], the dissipation function has usually been defined .

as a quadratic form of E7). When we consider the con- S~ d da; da; JX; %S

servation laws as part of the constraints, Ej).is the more E‘AJi Exi + drﬁ? (9_aj+ dr(v~V)ai7,

natural form. (12
Therefore, the extremal paths of the variational principle

(3), extended to far from equilibrium, coincide with the mac- whereA is the surface area of the boundaries afftl is the
roscopic trajectories one normally obtains by solving the fullfj,x out into R.,. The integrand in the second term can be

Navier-Stokes and energy equations. Equat@napplies if  yecognized as a special case of the second-order variation of
we restrict ourselves to the subset of trajectories satisfyingnropy,

the equation of motion. It corresponds to the situation where

we ignore the vastly improbable fluctuations away from the 2
trajectories satisfying Eq6). 52S= da,6a;<0, (13
ﬁaiﬁaj !
IV. STATIONARY STATES necessarily negative definite from the second law. For a time

We now consider the consequences of the variationghterval st small enough such th@x(™=0, the first term in
principle to the stationary states. In reality, realizations ofgq. (12) is negligible. If we assume=0, the entropy pro-
stationary states can, in fact, only be quasistationary sincgyction monotonically decreases to reach the stationary state,
the reservoirs cannot be infinite in sig€ig. 1). Any non-  \yhich was the origin of the term “minimum entropy produc-
equilibrium process occurring within the system of interesttion.” More appropriately, in the absence of convection, the
S, is beingdriven by the imbalance oK; between the two  stationary state is an attractor with minimum dissipation un-
reservoirs, and is forcedto utilize the best possible route to der the deterministic dynamics of trajectories maximizing
relieve the imbalance, allowing the universe to reach the glogq. (3). The stationary state near equilibrium thus can be
bal equilibrium most efficiently. Equatiof2) quantifies such  thought of as a “saddle point” when we use the variations in
an intuitive statement; since the dissipation occurring in therajectory, 8J; and 8t, as the two axegFig. 2.
reservoirs is negligible by definition, the rate of entropy in- o 4 Jarger time intervadt> 6t, for whichdX(™ is non-

crease of the universe equals the entropy production withiegiigible, it is more convenient to observe that the series of
S, which would be maximizeflEq. (6.4) of Ref.[15]]. quasistationary states satisfy

The often-used term for Eq3), “the principle of least
dissipation,” refers to a rather different special case as fol-
lows: the flux on the boundaries &f is prescribed, which S= % dA-J. X, (14)
fixesthe entropy production rate for stationary states. Equa-
tion (3) then implies thatb is minimized[15]. This special ) ) )
case is also the most relevant one if we are considering th@ince the overall entropy & remains constant in stationary
probability of aspontaneoudluctuation of a part of the sys- states. The quasistatic rad&/dt is given by
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FIG. 2. A schematic rendering of the evolution of entropy pro-  FIG. 3. A projection of the maximal path in Fig. 2 onto the
duction landscape expected for Fig. 1. A RBC system initially with plane. They axis shown is the the entropy production rate normal-
R>R; at t=0 evolves toward the equilibrium whef@=0 att  ized by the pure conduction value, equal to the Nusselt nutkber
=o. At eacht, the systemsS is in quasistationary states for the The solid line forR>R,=1708 is from Ref[24] for the rolls with
givenR(t). TheJ; axis represents the space of macroscopic trajecPrandtl numbeP=7.0 and wave number=3.117. The solid and
tories satisfying the conservation laws. The dotted lines areéSthe dashed lines alV=1 represent the stable and unstable branches of
— & profiles at each. The thick solid lines are the loci of trajecto- the conduction mode.
ries, given by Eq(6), maximizingS—®. The convective roll state
is replaced by conduction at the instability threshold whi(e)
=R,.

the variational principle now takes the form of Eg). Equa-
tion (15) dictates that the slope is negative therein.

V. DISCUSSIONS

zAa(JiAXi)io, (15 It should be noted that the existence and stability of the
stationary solutions are determined not by the variational

WhereJini(z): _Ji(l) andAxi:xi(Z)_xi(l)' The inequality principle, but via the full nonlinear dynamics of E@). The

reflects the expectation that the magnitudelaf and there- gntropy productio.n rate isot a po_te_ntial or Lyapunqv func-
fore AX;, would only decrease in time as the equilibrium ist'on to the dynamics. Therefore, Itis p()_SSlbIe, ar!d in fact has
approached been noted beforl 3], that a solution might remain unstable

Figure 2 summarizes the expected behavior of the overaﬁlnd thus physically inaccessible even though it has a larger
Pverall heat flux.

nonequilibrium thermodynamics represented by variational The plot of entro roduction rate as a function of con-
principle (3). A RBC system of Fig. 1, initially set up with a P Py pro . .
trol parameter, such as Fig. 3, is a close analog of the equi-

Rayleigh number above the threshoR>R., att=0, is " ; ; .
o . L librium counterpart, the free energy versus an intensive vari-
allowed to relax toward equilibrium. At each timeS is in a .
N I . able. The threshold in RBC would then be an example of
guasistationary state witR=R(t). For anyt, solutions to S - .
the equation of motior6) correspond to the set of extrema nonequilibrium phase transition. Unlike the full landscape
q P shown in Fig. 2, it can be straightforwardly obtained for

of S—®. The maximum would be selected, which should ;5565 where one can obtain solutions to the nonlinear hydro-
also be hydrodynamically stable to be physically realizableyynamic equation. Thus the entropy production rate is seen
Equation(14) implies that for a giverR, the overall heat (4 play the role of thermodynamic potentials for nonequilib-
flux, or the Nusselt numbe¥, would be maximized. For  jym stationary states.

<t; [where R(t;)=Rc], convective rolls with a band of Onsager’s variational principle, E(B), depends crucially
wave numbers are stati&3,24, and the roll with the maxi- o the validity of the linear phenomenological equation of
mum A would be realized. At the threshold, the rolls becomemotion. which justifiesa posteriorithe definition of the dis-
u_nstable, and the conduction b.ecomes the only stable_ SO|lé-ipation function(4). It remains to be seen whether H@),

tion for R<R.. When we restrict ourselves to the loci of which appears general, still holds for systems where the ba-
local maxima of Eq(3), or equivalently, make a projection sic dissipative relation is intrinsically nonlinear, as is typical
of the thick lines in Fig. 2 onto theversusS plane(Fig. 3), in chemical reactions.

dt
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