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Secure key-exchange protocol with an absence of injective functions
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The security of neural cryptography is investigated. A key-exchange protocol over a public channel is
studied where the parties exchanging secret messages use multilayer neural networks which are trained by their
mutual output bits and synchronize to a time dependent secret key. The weights of the networks have integer
values betweert L. Recently an algorithm for an eavesdropper which could break the key was introduced by
[A. Shamir, A. Mityagin, and A. Klimov,Ramp SessiofEurocrypt, Amsterdam, 200R We show that the
synchronization time increases witif while the probability to find a successful attacker decreases exponen-
tially with L. Hence for largel we find a secure key-exchange protocol which depends neither on number
theory nor on injective trapdoor functions used in conventional cryptography.
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The ability to build a secure channel is one of the most This protocol for the given parameters in Rg8] (K
challenging fields of research in modern communicafin =L =3) was recently shown to be breakable by an ensemble
One of the fundamental tasks of cryptography is to generatef advanced flipping attackef§]. In such an ensemble, there
a key-exchange protocoBoth partners start with private is a probability that a low percentage of the attackers will
keys and transmit—using a public protocol—their encryptedind the key. Someone reading all the decrypted messages
private keys which, after some transformations, leads to dill determine the original plaintext from the message which
common secret key. A prototypical protocol for the generahas a meaning. This result raises the question of the exis-
tion of a common secret key is the Diffie-Hellman key- tence of a secure key-exchange protocol based on the syn-
exchange protocdlL]. chronlz_atlon of neural networks. .

All known secure key-exchange protocols use one-way In this paper we demonstrate' that the security of our key-
functions, which are usually based on number theory and iﬁxchange protocol against the flipping attack increases as the

. o ; s synchronization time increases. The mechanism used to vary
particular on the difficulty in factorizing a product of long the synchronization time is the depth of the weights, i.e., the

number of values for each component of the synaptic
f d b iniective function to th kev. Thi %/Y/eights. The main result in this paper is that with increasing
ormed by an Injective function 1o the common Key. This epth the probability of an attacker finding the key decreases
function usually can be_lnve_rted by a secret trapdoor. One _ngponentially with the depth. Hence we conjecture that a
the fundamental questions in the theory of cryptography i§ey_exchange protocol exists in the limit where the synchro-
first whether it is possible to build a secure cryptosystem,ization time diverges. We also present a variant of our origi-
which does not rely on number theory, second, whether ongg| scheme which includes a permutation of a fraction of the
can transmit less thaN bits, and third, whether one can weights.

generate very long keys which can be directly used for one- |n our original scheme each party of the secure charnel,
time stream cipherfl]. andB, is represented by a two-layered perceptron, exempli-

In our recent pap€i3] we presented a principle of a key- fied here by a parity machine witk hidden units. More

exchange protocol based on a new phenomenon which werecisely, the size of the input N and its components are

observed for artificial neural networks. The protocol is basedienoted byx,;, k=1,2, ...,K and j=1, ...,N. For
on the synchronization of feedforward neural networks bysimplicity, each input unit takes binary valueg;=+1. The
mutual learning. It was shown by simulations and by theK binary hidden units are denoted By, y,, ..., yk. Our

analytical solution of the dynamics that synchronization isarchitecture is characterized by nonoverlapping receptive
faster than the learning of a naive attacker that is trying tdields (a treg, where the weight from thelj input unit to the
reveal the weights of one of the partig&4]. Our new ap-  kth hidden unit is denoted by, ;, and the output biD is the
proach does not rely on previous agreement on public inforproduct of the state of the hidden units. The weights can take
mation, and the only secret of each one of the parties is thiateger values bounded Hi/|, i.e., wy; can take the values
initial conditions of the weights. The protocol generates per—L, —L+1, ..., L.

manently new keys and can be generalized to include the The secret information of each of the parties is the initial
scenario of a key-exchange protocol amangre than two value for the XN weights,w{jj andij. The parties do not
partners[3]. Hence, we suggest a symmetric key-exchange&now the initial weights of the other party which are used to
protocol over a public channel which simplifies the task ofconstruct the common secret key.

key management. The parties exchange a finite number of Each network is then trained with the output of its partner.
bits less thanN and can generate very long keys by fastAt each training step a new common public input vector
calculationg5]. (Xj) is needed for both parties. For a given input, the output
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is calculated in the following two steps. In the first step, the Recently, an efficient flipping attack was presenfétl
state of theK hidden unitsyf'® of the two parties, are de- The strategy of a flipping attackeg, is as follows. In the
termined from the corresponding fields event of a disagreement between the part@8# OB and
OC€=0", the attacker moves as for the naive attack follow-
ing its internal presentation, the common input @ In
(1) the case where the parties move but the attacker does not
agree withA, O*# 0B, andO®+0”, the move consists of
' . the following two steps. In the first step the attacker flips the
In the case of zero f"EI(EWEJNB x;=0, A/B sets the hidden sign of one %f it hid%len unitswithout a?ltering the Weigﬁts

. A/B . .
unit to 1/~ 1. In the next step thelou;t\?B01 K'S deAt/elzBrmlned The selected hidden unit i€, with the minimal absolute
by the product of the hidden unit®™*"=1II_,y;,,~. The |5cal field

output bit of each party is transmitted to its partner. In the
event of disagreemen©”+ OB, the weights of the parties

N

AIB_ AIB

Yk —5'9"{21 Wiii— X |-
i<

are updated according to the following Hebbian learning rule Ko=ming(|hg)), ©)
[7.8]
if (OMBy/®>0) then wy/®=wg/®+ 08 x, whereh$ is the local field on themth hidden units of the
attacker[see Eq.(1) for the definition of the local field
if (|W@f8|>L) then Wﬁj’stigr(wﬁj’B)L. (2)  After flipping one hidden unit the new output of the attacker

agrees with that ofA. The learning step is then performed
Only weights belonging to hidden units which are in theWith the new internal presentation and with the strategy of
same state as their output unit are updated. Note that frofft€ naive attacker. The flipping attack is based on the strat-
the knowledge of the output, the internal representation ofdY that a flipping attacker develops some similarity with the
the hidden units is not uniquely determined because there Rarties. This similarity can be measured by the fraction of
a 21 fold degeneracy. As a consequence, an attacker ca/fdual weights which is greater than 1i(2 1), a result for a
not know which weight vectors are updated according to Eqfandom attacker, or by a positive overlap between the
(2). Nevertheless, although partidsandB do not have more  Weights ofC andA [4]. The minimal change in the weights
information than an attacker, they still can synchronize. ~ Which preserves the already produced similarity vAtiand
The synchronization time is finite even in the thermody-Wh'Ch is also consistent WIFh the current mput/output relat|o_n
namic limit[3,4]. For K=L=3, for instance, the synchroni- IS Most probable by changing the weights of the hidden units
zation timet,, converges to=400 for large networks. This with the m_|n|mal al_)solute local fleld_. Slmulatlo_ns as well as
observation was recently confirmed by an analytical solutior"€ @nalytical solution of the dynamics of the flipping attack-
of the presented modg4]. Surprisingly, in the limit of large ers[10] indicate that there is a high probability that there is
N one needs to exchange only a few hundred bits to obtaiff Successful attacker among a few dozen attackers. By a
agreement betweerNBcomponents5,9,11]. successful attacker we mean an att_acker with a learning t'|me
An attacker eavesdropping on the channel knows the a|§m_aller than the _synchronlzatlon tln_1e between the parties.
gorithm as well as the actual mutual outputs, hence he know5niS attacker achieves the same weights asifefore the
in which time steps the weights are changed. In addition, agynchronization process terminates. In Fig. 1 the average
attacker knows the input; as well. However, the attacker synchrpmzaﬂon time,, as well as its standard deviation as
does not know the initial conditions of the weights of the & function ofL for K=3 andN=10" are presented. Results
parties and as a consequence, even for the synchroniz¥¢fre averaged over 10° different runs, where each run is
state, the internal representations of the hidden units of theharacterized by different initial conditions for the parties
parties are hidden from the attacker. As a result he does n&d & different set of inputs. Results indicate that the syn-
know which are the weights participating in the learningchronization time increases k3, for L<O(y/N). This scal-
step. Note that for random inputs aff 2" internal represen- NG is consistent with the analytical solution of Ré12]
tations appear with equal probability at any stage of the dywhere forL=1N, t,,xN. For L=0(yN) we observe in
namical process. The strategy of a naive attacker which hagimulations a crossover to the scaling behatige: NL.
the same architecture as the parties is defined as fo[ldjys This crossover explains the deviation of «L?,0c=1.91
The attacker tries to imitate the moves of one of the parties<2 (see Fig. 3, and furthermorer is expected to increase
A for instance. The attacker is trained using its internal repwith N (see Fig. 4
resentation, the input vector and the output biofnd the In Fig. 2 the fraction of successful flipping attackég;,
training step is performed only iA moves (disagreement is presented as a function bf In order to reduce fluctuations
between the partigsNote that the trained weights of a naive in our simulations we define a successful attacker as one
attacker are only weights belonging to hidden units that argvhich has 0.98 fraction of correct values for the weights at
in agreement wittD”. Simulations as well as analytical so- the synchronization time between the parties. Figure 2 indi-
lution of the dynamics indicate that the learning time of acates that the success rate drops exponentially witfio
naive attacker is much longer than the synchronization timeonclude, for &L < /N the synchronization time diverges
[3,4]. Hence our key-exchange protocol is robust against @olynomially while the probability of a successful attacker
large ensemble of naive attackers. drops exponentially. Hence for larde our construction is
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robust against the flipping attadiPractically, forL~85 and  single perceptron. The learning time as a functiorh dér a
N>2x 10, the complexity of an effective flipping attack is perceptron attackei =1 is presented in Fig. 3, indicating
greater than ¥.) that for largeN, to~L?, as expected from similar analyti-
Finally we note that the complexity of the synchronizationcally solvable model$12]. Hence the complexity of an ex-
process for &L < /N is O[L2N In(N)]. The factor In{) isa  haustive attack scales exponentially wltR while for the
result of a typical scenario of an exponential decay of thelipping attack the complexity is reduced to scale exponen-
overlap in the case of discrete weiglid. Hence, the com- tially only with L.
plexity for the generation of a large common keéy;— oo, In the following we show that one can increase the secu-
scales a©(In N) operations per weight. rity of our key-exchange protocol by the following variant of
Let us compare now the complexity of an exhaustive atour dynamical rules. The new ingredient is a permutation of
tack with the complexity of the flipping attack. For each a fractionf of the weights, and the protocol is defined by the
input (outpud pair there are 4 possible configurations of thefollowing steps. In the case where the parties move, we as-
hidden units. Hence to cover all possible training processesign for each hidden unit a permutation consisting Fof
over a period one has to deal with an ensemble dfs¢ée- =fN pairs. Each pair consists of a random selection of two
narios. The crucial question is the scaling of the minimalindices amongN of the trained hidden unitl3]. The three
necessary perio) with L which ensures a convergence with permutations for the three hidden uniighich differ from
the weights of partyA. Since one of the attackers amon'g 4 step to stepare part of the public protocol. In the case where
has an identical series of internal representations to garty a hidden unit is trained we apply the assigned permutation
the problem is reduced to calculating the weight vector of &or this hidden unit. Note that the permutations is an ingre-
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dient that prevents an attack where one may assign for eachO, 3 (number of permuted pairs is 3 per hidden urin
weight (among N) a probability equal to one of thel2 insignificant deviation from the scaling behavior is observed
+1 possible values. During the dynamics one may try toonly for L=32. In the inset of Fig. 4, similar results are
sharpen this probability around one of the possible valuepresented foN=10° with F=3, andN=10* with F=3 and

[6]. The permutations are responsible for mixing these prob2o. The deviation from the scaling behavior is observed for a
abilities as a function of time. larger L as we increaseN or as we decreasé (L

Results indicate that there are two different scaling behav-- 34N/(60F)). We also measure®;,(L) L<10 for N
iors fort,, (L) andPy;, (L) as a function of the total number —10* 10° with F=3 or F=0. We repalized thaP,, is
of permuted paird/ during the synchronization process. As inde ,endent oF and it decreases exponentiall Wllhel'he
long asM < KN where¢p~1, the permutations do not af- P P y

fect the synchronization time,,(L)=AL?, A~60 is inde- perfgtdtations do not aﬁect. the equnential drdyip
pendent of the permutatiofs increases slightly witihand €~ » WhereB appears to increase witN. Note that al-
is asymptotically expected to scale withW)(4]]. This scal-  though the permutations do not affegt and Py , the ac-

ing behavior can be observed for 34N/ (60f). Hence in cumulated affect of the permutations over all the synchroni-
order to observe the scaling,,~60L2 over a decade of zation process is significant. In the event that the flipping
v

one has to choose a larjeand a very smalF. In Fig. 4 the attacker does not use the permutation, a dramatic drops in
average synchronization tintg, and its standard deviations Prip iS observed10]. The analysis of the scaling behavior
as a function ofL are presented fok =3, N=10°, andF  0f ty, and Py, in the second regimé > \3¢N/(60f) is
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beyond our computational ability, where huge fluctuationsunit [6]. Our results indicate that all such types of attacks are
are observed. less efficient than the flipping attack presented. Hence, for all

The scaling of Py, may be examined against other known attacks neural cryptography is secure in the limit of
classes of attacks including a genetic attack, a majority attacie’ge values ot.

and a flipping attack where the weights of the selected hid- We thank Adi Shamir for critical comments on the manu-
den unit are modified to actually flip the sign of the hiddenscript.
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