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Secure key-exchange protocol with an absence of injective functions
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The security of neural cryptography is investigated. A key-exchange protocol over a public channel is
studied where the parties exchanging secret messages use multilayer neural networks which are trained by their
mutual output bits and synchronize to a time dependent secret key. The weights of the networks have integer
values between6L. Recently an algorithm for an eavesdropper which could break the key was introduced by
@A. Shamir, A. Mityagin, and A. Klimov,Ramp Session~Eurocrypt, Amsterdam, 2002!#. We show that the
synchronization time increases withL2 while the probability to find a successful attacker decreases exponen-
tially with L. Hence for largeL we find a secure key-exchange protocol which depends neither on number
theory nor on injective trapdoor functions used in conventional cryptography.
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The ability to build a secure channel is one of the m
challenging fields of research in modern communication@1#.
One of the fundamental tasks of cryptography is to gene
a key-exchange protocol. Both partners start with private
keys and transmit—using a public protocol—their encryp
private keys which, after some transformations, leads t
common secret key. A prototypical protocol for the gene
tion of a common secret key is the Diffie-Hellman ke
exchange protocol@1#.

All known secure key-exchange protocols use one-w
functions, which are usually based on number theory an
particular on the difficulty in factorizing a product of lon
prime numbers@1,2#. Typically, N bits—the length of the
key—are transmitted between the two partners and tra
formed by an injective function to the common key. Th
function usually can be inverted by a secret trapdoor. On
the fundamental questions in the theory of cryptography
first whether it is possible to build a secure cryptosyst
which does not rely on number theory, second, whether
can transmit less thanN bits, and third, whether one ca
generate very long keys which can be directly used for o
time stream ciphers@1#.

In our recent paper@3# we presented a principle of a key
exchange protocol based on a new phenomenon which
observed for artificial neural networks. The protocol is bas
on the synchronization of feedforward neural networks
mutual learning. It was shown by simulations and by t
analytical solution of the dynamics that synchronization
faster than the learning of a naive attacker that is trying
reveal the weights of one of the parties@3,4#. Our new ap-
proach does not rely on previous agreement on public in
mation, and the only secret of each one of the parties is
initial conditions of the weights. The protocol generates p
manently new keys and can be generalized to include
scenario of a key-exchange protocol amongmore than two
partners@3#. Hence, we suggest a symmetric key-exchan
protocol over a public channel which simplifies the task
key management. The parties exchange a finite numbe
bits less thanN and can generate very long keys by fa
calculations@5#.
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This protocol for the given parameters in Ref.@3# (K
5L53) was recently shown to be breakable by an ensem
of advanced flipping attackers@6#. In such an ensemble, ther
is a probability that a low percentage of the attackers w
find the key. Someone reading all the decrypted messa
will determine the original plaintext from the message whi
has a meaning. This result raises the question of the e
tence of a secure key-exchange protocol based on the
chronization of neural networks.

In this paper we demonstrate that the security of our k
exchange protocol against the flipping attack increases as
synchronization time increases. The mechanism used to
the synchronization time is the depth of the weights, i.e.,
number of values for each component of the synap
weights. The main result in this paper is that with increas
depth the probability of an attacker finding the key decrea
exponentially with the depth. Hence we conjecture tha
key-exchange protocol exists in the limit where the synch
nization time diverges. We also present a variant of our or
nal scheme which includes a permutation of a fraction of
weights.

In our original scheme each party of the secure channeA
andB, is represented by a two-layered perceptron, exem
fied here by a parity machine withK hidden units. More
precisely, the size of the input isKN and its components ar
denoted byxk j , k51, 2, . . . ,K and j 51, . . . , N. For
simplicity, each input unit takes binary values,xk j561. The
K binary hidden units are denoted byy1 , y2 , . . . , yK . Our
architecture is characterized by nonoverlapping recep
fields ~a tree!, where the weight from the jth input unit to the
kth hidden unit is denoted bywk j , and the output bitO is the
product of the state of the hidden units. The weights can t
integer values bounded byuLu, i.e., wk j can take the values
2L, 2L11, . . . , L.

The secret information of each of the parties is the init
value for the 2KN weights,wk j

A andwk j
B . The parties do not

know the initial weights of the other party which are used
construct the common secret key.

Each network is then trained with the output of its partn
At each training step a new common public input vec
(xk j) is needed for both parties. For a given input, the out
©2002 The American Physical Society02-1
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is calculated in the following two steps. In the first step, t
state of theK hidden units,yk

A/B of the two parties, are de
termined from the corresponding fields

yk
A/B5signF (

j 51

N

wk j
A/B xk jG . ~1!

In the case of zero field,(wk j
SA/B xk j50, A/B sets the hidden

unit to 1/21. In the next step the outputOA/B is determined
by the product of the hidden units,OA/B5Pm51

K ym
A/B . The

output bit of each party is transmitted to its partner. In t
event of disagreement,OAÞOB, the weights of the parties
are updated according to the following Hebbian learning r
@7,8#

if ~OA/Byk
A/B.0! then wk j

A/B5wk j
A/B1OA/B xk j ,

if ~ uwk j
A/Bu.L ! then wk j

A/B5sign~wk j
A/B!L. ~2!

Only weights belonging to hidden units which are in t
same state as their output unit are updated. Note that f
the knowledge of the output, the internal representation
the hidden units is not uniquely determined because the
a 2K21 fold degeneracy. As a consequence, an attacker
not know which weight vectors are updated according to
~2!. Nevertheless, although partiesA andB do not have more
information than an attacker, they still can synchronize.

The synchronization time is finite even in the thermod
namic limit @3,4#. For K5L53, for instance, the synchron
zation timetav converges to.400 for large networks. This
observation was recently confirmed by an analytical solut
of the presented model@4#. Surprisingly, in the limit of large
N one needs to exchange only a few hundred bits to ob
agreement between 3N components@5,9,11#.

An attacker eavesdropping on the channel knows the
gorithm as well as the actual mutual outputs, hence he kn
in which time steps the weights are changed. In addition
attacker knows the inputxk j as well. However, the attacke
does not know the initial conditions of the weights of t
parties and as a consequence, even for the synchron
state, the internal representations of the hidden units of
parties are hidden from the attacker. As a result he does
know which are the weights participating in the learni
step. Note that for random inputs all 2k21 internal represen-
tations appear with equal probability at any stage of the
namical process. The strategy of a naive attacker which
the same architecture as the parties is defined as follows@3#.
The attacker tries to imitate the moves of one of the part
A for instance. The attacker is trained using its internal r
resentation, the input vector and the output bit ofA, and the
training step is performed only ifA moves ~disagreement
between the parties!. Note that the trained weights of a naiv
attacker are only weights belonging to hidden units that
in agreement withOA. Simulations as well as analytical so
lution of the dynamics indicate that the learning time of
naive attacker is much longer than the synchronization t
@3,4#. Hence our key-exchange protocol is robust agains
large ensemble of naive attackers.
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Recently, an efficient flipping attack was presented@6#.
The strategy of a flipping attacker,C is as follows. In the
event of a disagreement between the parties,OAÞOB and
OC5OA, the attacker moves as for the naive attack follo
ing its internal presentation, the common input andOA. In
the case where the parties move but the attacker does
agree withA, OAÞOB, andOCÞOA, the move consists o
the following two steps. In the first step the attacker flips t
sign of one of itsK hidden unitswithout altering the weights.
The selected hidden unit isK0 with the minimal absolute
local field

K05minm~ uhm
Cu!, ~3!

wherehm
C is the local field on themth hidden units of the

attacker@see Eq.~1! for the definition of the local field#.
After flipping one hidden unit the new output of the attack
agrees with that ofA. The learning step is then performe
with the new internal presentation and with the strategy
the naive attacker. The flipping attack is based on the st
egy that a flipping attacker develops some similarity with t
parties. This similarity can be measured by the fraction
equal weights which is greater than 1/(2L11), a result for a
random attacker, or by a positive overlap between
weights ofC andA @4#. The minimal change in the weight
which preserves the already produced similarity withA and
which is also consistent with the current input/output relat
is most probable by changing the weights of the hidden u
with the minimal absolute local field. Simulations as well
the analytical solution of the dynamics of the flipping attac
ers @10# indicate that there is a high probability that there
a successful attacker among a few dozen attackers. B
successful attacker we mean an attacker with a learning
smaller than the synchronization time between the part
This attacker achieves the same weights as forA before the
synchronization process terminates. In Fig. 1 the aver
synchronization timetav as well as its standard deviation a
a function ofL for K53 andN5103 are presented. Result
were averaged over;104 different runs, where each run i
characterized by different initial conditions for the parti
and a different set of inputs. Results indicate that the s
chronization time increases asL2, for L,O(AN). This scal-
ing is consistent with the analytical solution of Ref.@12#
where for L5AN, tav}N. For L5O(AN) we observe in
simulations a crossover to the scaling behaviortav}ANL.
This crossover explains the deviation oftav}Ls,s51.91
,2 ~see Fig. 3!, and furthermores is expected to increas
with N ~see Fig. 4!.

In Fig. 2 the fraction of successful flipping attackersPf lip
is presented as a function ofL. In order to reduce fluctuation
in our simulations we define a successful attacker as
which has 0.98 fraction of correct values for the weights
the synchronization time between the parties. Figure 2 in
cates that the success rate drops exponentially withL. To
conclude, for 1!L!AN the synchronization time diverge
polynomially while the probability of a successful attack
drops exponentially. Hence for largeL our construction is
2-2
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FIG. 1. The average synchronization timetav
and its standard deviations as a function ofL for
K53 andN5103. The regression fit for the dot
ted line is;50L1.91.
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robust against the flipping attack.~Practically, forL;85 and
N.23104, the complexity of an effective flipping attack i
greater than 280.)

Finally we note that the complexity of the synchronizati
process for 1!L!AN is O@L2N ln(N)#. The factor ln(N) is a
result of a typical scenario of an exponential decay of
overlap in the case of discrete weights@4#. Hence, the com-
plexity for the generation of a large common key,N→`,
scales asO(ln N) operations per weight.

Let us compare now the complexity of an exhaustive
tack with the complexity of the flipping attack. For eac
input ~output! pair there are 4 possible configurations of t
hidden units. Hence to cover all possible training proces
over a periodt one has to deal with an ensemble of 4t sce-
narios. The crucial question is the scaling of the minim
necessary periodt0 with L which ensures a convergence wi
the weights of partyA. Since one of the attackers among 4t0

has an identical series of internal representations to partA,
the problem is reduced to calculating the weight vector o
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single perceptron. The learning time as a function ofL for a
perceptron attackerK51 is presented in Fig. 3, indicatin
that for largeN, t0;L2, as expected from similar analyti
cally solvable models@12#. Hence the complexity of an ex
haustive attack scales exponentially withL2 while for the
flipping attack the complexity is reduced to scale expon
tially only with L.

In the following we show that one can increase the se
rity of our key-exchange protocol by the following variant
our dynamical rules. The new ingredient is a permutation
a fractionf of the weights, and the protocol is defined by t
following steps. In the case where the parties move, we
sign for each hidden unit a permutation consisting ofF
5 f N pairs. Each pair consists of a random selection of t
indices amongN of the trained hidden unit@13#. The three
permutations for the three hidden units~which differ from
step to step! are part of the public protocol. In the case whe
a hidden unit is trained we apply the assigned permuta
for this hidden unit. Note that the permutations is an ing
t-

s

FIG. 2. The fraction of successful flipping a
tackers Pf lip as a function ofL for K53, N
5103. The regression fit for the dotted line i
;1.4e20.41L.
2-3
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FIG. 3. The learning time for a perceptron a
a function ofL andN5103, 105. The regression
power-law fit for N5103, 105 is ;12L1.77,
;17L1.9, respectively.
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dient that prevents an attack where one may assign for e
weight ~among 3N) a probability equal to one of the 2L
11 possible values. During the dynamics one may try
sharpen this probability around one of the possible val
@6#. The permutations are responsible for mixing these pr
abilities as a function of time.

Results indicate that there are two different scaling beh
iors for tav(L) andPf lip(L) as a function of the total numbe
of permuted pairsM during the synchronization process. A
long asM,fKN wheref;1, the permutations do not af
fect the synchronization time,tav(L)5AL2; A;60 is inde-
pendent of the permutations@A increases slightly withN and
is asymptotically expected to scale with ln(N) @4##. This scal-
ing behavior can be observed forL,A3fN/(60f ). Hence in
order to observe the scaling,tav;60L2 over a decade ofL
one has to choose a largeN and a very smallF. In Fig. 4 the
average synchronization timetav and its standard deviation
as a function ofL are presented forK53, N5105, andF
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50, 3 ~number of permuted pairs is 3 per hidden unit!. An
insignificant deviation from the scaling behavior is observ
only for L>32. In the inset of Fig. 4, similar results ar
presented forN5103 with F53, andN5104 with F53 and
20. The deviation from the scaling behavior is observed fo
larger L as we increaseN or as we decreaseF (L
,A3fN/(60f )). We also measuredPf lip(L) L,10 for N
5104, 105 with F53 or F50. We realized thatPf lip is
independent ofF and it decreases exponentially withL. The
permutations do not affect the exponential drop,Pf lip

}e2BL, whereB appears to increase withN. Note that al-
though the permutations do not affecttav andPf lip , the ac-
cumulated affect of the permutations over all the synchro
zation process is significant. In the event that the flipp
attacker does not use the permutation, a dramatic drop
Pf lip is observed@10#. The analysis of the scaling behavio
of tav and Pf lip in the second regimeL.A3fN/(60f ) is
FIG. 4. The synchronization times,tav , and
their standard deviations as a function ofL for
K53, N5105 with F50 (n) and F53 (s).
The regression fit for 2<L<25, dotted line, is
;57.3L2.02. Inset: tav as a function ofL, N
5103, F53 ~dashed line!, N5104 F50, 3, 20
(n,s,1).
2-4
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beyond our computational ability, where huge fluctuatio
are observed.

The scaling of Pf lip may be examined against oth
classes of attacks including a genetic attack, a majority at
and a flipping attack where the weights of the selected h
den unit are modified to actually flip the sign of the hidd
t

no
t

fo
er
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unit @6#. Our results indicate that all such types of attacks
less efficient than the flipping attack presented. Hence, fo
known attacks neural cryptography is secure in the limit
large values ofL.

We thank Adi Shamir for critical comments on the man
script.
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