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Cascade-based attacks on complex networks
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We live in a modern world supported by large, complex networks. Examples range from financial markets to
communication and transportation systems. In many realistic situations the flow of physical quantities in the
network, as characterized by the loads on nodes, is important. We show that for such networks where loads can
redistribute among the nodes, intentional attacks can lead to acascadeof overload failures, which can in turn
cause the entire or a substantial part of the network to collapse. This is relevant for real-world networks that
possess a highly heterogeneous distribution ofloads, such as the Internet and power grids. We demonstrate that
the heterogeneity of these networks makes them particularly vulnerable to attacks in that a large-scale cascade
may be triggered by disabling asinglekey node. This brings obvious concerns on the security of such systems.
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Complex networks are an essential part of a modern
ciety @1,2#. It has been shown that many networks, such
the World Wide Web~WWW!, the Internet, and electrica
power grids, present a surprisingly small average dista
between nodes and a highly organized distribution of lin
per node@3–5#. Generally, the average distance will not
affected by the removal of a random subset of nodes, b
will increase significantly if the removed nodes are amo
the most connected ones@3# ~see also Refs.@6–8#!. The ex-
istence of a giant connected component in the network, h
ever, does not depend on the presence of highly conne
nodes. For instance, the WWW has homepages with m
thousands of hyperlinks and can remain well connected a
the removal of all homepages with five or more hyperlin
@9#. In addition, the giant component itself is typically
small-world network@10# even after the removal of all highly
connected nodes@11#. These pioneering studies on netwo
security address mainly static properties, i.e., the effec
different network architectures. They suggest that the n
work connectivity, and hence its functionability, is robu
against random failure of nodes@3,6,7# and to some extent is
even robust against intentional attacks@9,11#. Here we show
that for many physical networks, the removal of nodes c
have a much more devastating consequence when the in
sic dynamicsof flows of physical quantities in the network
taken into account. In a power transmission grid, for
stance, each node~power station! deals with a load of power
The removal of nodes, either by random breakdown or int
tional attacks, changes the balance of flows and leads
global redistribution of loads over all the network. This c
trigger a cascade of overload failures@12,13#, as the one tha
happened on August 10, 1996 in the western United St
power grid@14,15#. Another example is the Internet@16–18#,
where the load represents the amount of information a n
~router! is requested to transmit per unit of time, and ov
loads correspond to congestion@19#. Internet collapses
caused by congestion have been reported since its very
ginning @20#. In this Rapid Communication, we introduce
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model for cascading failure in complex networks and sh
that it is applicable to realistic networks such as the Inter
and power grids.

For a given network, suppose that at each time step
unit of the relevant quantity, which can be information, e
ergy, etc., is exchanged between every pair of nodes
transmitted along the shortest path connecting them.
load at a node is then the total number of shortest pa
passing through the node@21–23#. The capacity of a node is
the maximum load that the node can handle. In man-m
networks, the capacity is severely limited by cost. Thus, i
natural to assume that the capacityCj of node j is propor-
tional to its initial loadL j ,

Cj5~11a!L j , j 51,2, . . .N, ~1!

where the constanta>0 is thetoleranceparameter, andN is
the initial number of nodes. When all the nodes are on,
network operates in a free-flow state in so far asa>0. But,
the removal of nodes, in general, changes the distribution
shortest paths. The load at a particular node can then cha
If it increases and becomes larger than the capacity, the
responding node fails. Any failure leads to a new redistrib
tion of loads and, as a result, subsequent failures can oc
This step-by-step process is what we call acascading failure,
or a cascade. It can stop after a few steps but it can
propagate and shutdown a considerable fraction of the wh
network @24#. A fundamental question is, under what cond
tions can such a global cascade take place?

Here we focus on cascades triggered by the removal
single node. If a node has a relatively small load, its remo
will not cause major changes in the balance of loads,
subsequent overload failures are unlikely to occur. Howe
when the load at the node is relatively large, its remova
likely to affect significantly loads at other nodes and possi
starts a sequence of overload failures. Our result is the
lowing: global cascades occur if~1! the network exhibits a
highly heterogeneous distribution of loads;~2! the removed
node is among those with higher load. Otherwise, casca
are not expected. The distribution of loads is in turn high
correlated with the distribution of links: networks with he
©2002 The American Physical Society02-1
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erogeneous distribution of links are expected to be hetero
neous with respect to load so that on average, nodes
larger number of links will have higher load@22#. This result
confirms the robust-yet-fragile property of heterogene
networks, which was first observed in Ref.@3# for the attack
on severalnodes. The cascade effect is important, howev
because a large damage can be caused in this case b
attack on asinglenode. While a network with more links ca
be more resistant against cascading failures, in practice
number of links is limited by cost.

Now we provide evidence for our result. We study ca
cades triggered by random breakdown and by intentiona
tacks. To simulate the former, we choose a trigger at rand
among all the nodes of the network, as can occur in netwo
such as power grids@14#. In the case of attack the targete
node is selected from those with highest loads or larg
degrees~number of links at a node!. We consider heteroge
neous networks with algebraic~scale-free! distribution P of
links, as observed in real systems@2,5,25,26#,

P~k!;k2g, ~2!

wherek denotes the degree andg the scaling exponent, an
compare them with an equivalent homogeneous config
tion. These networks are generated according to the pr
dure in Refs.@27,28#, where the nodes are connected ra
domly for a given degree distribution, and self- and repea
links are forbidden. The damage caused by a cascad
quantified in terms of the relative sizeG of the largest con-
nected component,

G5N8/N, ~3!

where N and N8 are the numbers of nodes in the large
component before and after the cascade, respectively. Fi
1 shows the relative sizeG of the largest component afte
cascading, as a function of the tolerance parametera, for a
scale-free network. We can see that on averageG remains
close to unity in the case of random breakdowns but i
significantly reduced under intentional attacks, even fora
unrealistically large. Indeed, the size of the largest com
nent is reduced by more than 20% fora51, i.e., for a ca-
pacity as large as two times the capacity required for
system to operate when all the nodes function normally. T
result is in agreement with intuition, because in the case
random breakdown the trigger is probably one of the ma
nodes with small load, while in the case of intentional atta
it is a node with very large load. The damage is larger
smaller values ofa, as it is for load-based attacks whe
compared with degree-based attacks. For instance, in
load-based attack fora50.2, more than 60% of the node
are affected. For the 5000-node networks used in our si
lations, it means that a cascade triggered by the attack
single node shuts down and disconnects more than 3000
ers!

Figure 2 shows the corresponding results for a homo
neous network with the same number of nodes and exa
three links per node. To make a meaningful comparison
display in the inset results for an algebraic network w
about the same average degree~actually larger, which
06510
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strengthens our conclusions!. The homogeneous networ
does not experience cascading failures due either to ran
breakdown or to intentional attacks fora as small as 0.05.
For the heterogeneous~scale-free! network, for the same
value of a, cascades triggered by the attack on a key no
can reduce the largest connected component to less than
of the original size, as shown in the inset. Therefore, hom
geneous networks appear to be more robust against att
than the heterogeneous ones. This conclusion does not
on the particularities of these models, as the same was
observed for classes of networks with exponential a
Poisson-like distributions of degrees~e.g., the Erdo¨s-Rényi
model @29#!: their homogeneity makes them relatively res
tant to cascades triggered by attacks. The networks co

FIG. 1. Cascading failure in scale-free networks, as triggered
the removal of a single node chosen at random~squares!, or among
those with largest degrees~asterisks! or highest loads~circles!,
wherea is the tolerance parameter andG is the relative size of the
largest connected component. Each curve corresponds to the
age over five triggers and ten realizations of the network. The e
bars represent the standard deviation. The networks are gene
according to the algebraic distribution~2!. For the computations
shown we setg53 and 5000<N<5100. The average degree in th
largest component iŝk&'2.0.

FIG. 2. Cascading failure in homogeneous networks. All nod
are set to have the same degreek53 andN55000. In the inset, the
networks are generated according to the algebraic distribution~2!
for k>2, g53, and N55000. The resulting average degree
^k&'3.1. The legends and other parameters are the same a
Fig. 1.
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sponding to the inset of Fig. 2 are generated according to
same scaling distribution of those in Fig. 1, except that
this case the minimal number of links at a node is set to b
Therefore, this inset shows that the fragility of scale-fr
networks is due to their heterogeneity and does not rely
the presence of nodes with degree one, which are easily
connectable. Naturally, the increase of the average de
reduces the damage of the cascade, as can be seen fr
comparison between Fig. 1 and the inset of Fig. 2.

Many real-world networks are heterogeneous and as s
are expected to undergo large-scale cascades if some
nodes are attacked, but rarely in the case of random br
down. As an example we consider the Internet at auto
mous system level@30#, which displays an algebraic distr
bution of links@3#. The damage caused by triggers of high
load or degree is much larger than that by random bre
down, as shown in Fig. 3. The cascading failures are ra
triggered by random breakdown fora.0.05, but more than
20% of the nodes can be disconnected with the intentio
attack on only one node fora<0.4. We have also considere
the electrical power grid of the western United States@31#.
The degree distribution in this network is consistent with
exponential@32# and is thus relatively homogeneous. T
distribution of loads, however, is more skewed than that d
played by semirandom networks@27,28# with the same dis-
tribution of links, indicating that the power grid has stru
tures that are not captured by these models. As a re
global cascades can be triggered by load-based intenti
attacks but not by random or degree-based removal of no
as shown in Fig. 4. We see that the attack on a single n
with large load reduces the largest connected componen

FIG. 3. Cascading failure in the Internet at autonomous sys
level @30#. The network hasN56474 nodes and̂k&'3.88 links per
node, on average. Each curve corresponds to the average o
triggers for attacks and 50 for random breakdown. The legends
as defined in Fig. 1.
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less than a half of its initial size, even when the network
highly tolerant~e.g.,a51).

Our result is thus that real networks are naturally evolv
to be quite resistant to random failure of nodes, but the p
ence of a few nodes with exceptionallylarge load, which is
known to be ubiquitous in natural and man-made networ
has a disturbing side effect: the attack on a single impor
node~one of those with high load! may trigger a cascade o
overload failures capable of disabling the network alm
entirely. Such an event has dramatic consequences on
network performance, because the functionability of a n
work relies on the ability of the nodes to communicate e
ciently with each other. What is the use, say, of having
phone if you cannot call anybody?

We conclude with some thoughts on the meaning of
results for security. An effective attack relies on identifyin
vulnerabilities and is far from being random. Our society
geographically distributed in a way that natural hazards
by no means random@33#. An example is the crowding o
people, communication, transportation, and financial cen
around seismic areas, like the Pacific Rim. Natural disas
and intentional attacks can then have devastating co
quences on the complex networks underlying the soci
These consequences will be more severe if the damag
one or few nodes is capable of spreading over the en
network. In this sense a cascade-based attack can be m
more destructive than any other strategies of attack pr
ously considered@3,7–9,28,34–36#.

The authors thank Re´ka Albert and Duncan J. Watts fo
providing the Internet and power-grid data, respectively. T
work was supported by AFOSR under Grant No. F49620-
1-0400 and by NSF under Grant No. PHY-9996454.
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FIG. 4. Cascading failure in the western U.S. power transm
sion grid @31#, which hasN54941 and̂ k&'2.67. The average is
obtained via 5 triggers for attacks and 50 for random breakdo
The legends are the same as in Fig. 1.
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