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Cascade-based attacks on complex networks
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We live in a modern world supported by large, complex networks. Examples range from financial markets to
communication and transportation systems. In many realistic situations the flow of physical quantities in the
network, as characterized by the loads on nodes, is important. We show that for such networks where loads can
redistribute among the nodes, intentional attacks can leadc&s@deof overload failures, which can in turn
cause the entire or a substantial part of the network to collapse. This is relevant for real-world networks that
possess a highly heterogeneous distributioloadls such as the Internet and power grids. We demonstrate that
the heterogeneity of these networks makes them particularly vulnerable to attacks in that a large-scale cascade
may be triggered by disablingsanglekey node. This brings obvious concerns on the security of such systems.
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Complex networks are an essential part of a modern samodel for cascading failure in complex networks and show
ciety [1,2]. It has been shown that many networks, such ashat it is applicable to realistic networks such as the Internet
the World Wide Web(WWW), the Internet, and electrical and power grids.
power grids, present a surprisingly small average distance For a given network, suppose that at each time step one
between nodes and a highly organized distribution of linksunit of the relevant quantity, which can be information, en-
per node[3-5]. Generally, the average distance will not be ergy, etc., is exchanged between every pair of nodes and
affected by the removal of a random subset of nodes, but ffansmitted along the shortest path connecting them. The
will increase significantly if the removed nodes are amongoad at a node is then the total number of shortest paths
the most connected ong3] (see also Refd6—8]). The ex-  passing through the nod21-23. The capacity of a node is
istence of a giant connected component in the network, howthe maximum load that the node can handle. In man-made
ever, does not depend on the presence of highly connectétetworks, the capacity is severely limited by cost. Thus, it is
nodes. For instance, the WWW has homepages with manfjatural to assume that the capacdly of nodej is propor-
thousands of hyperlinks and can remain well connected aftdfonal to its initial loadL,
the removal of all homepages with five or more hyperlinks
[9]. In addition, the giant component itself is typically a Ci=(1+a)L;, j=12,...N, (1)
small-world networK10] even after the removal of all highly
connected nodefll]. These pioneering studies on network where the constant=0 is thetoleranceparameter, anll is
security address mainly static properties, i.e., the effect othe initial number of nodes. When all the nodes are on, the
different network architectures. They suggest that the netaetwork operates in a free-flow state in so farae=s0. But,
work connectivity, and hence its functionability, is robust the removal of nodes, in general, changes the distribution of
against random failure of nodg3,6,7] and to some extent is shortest paths. The load at a particular node can then change.
even robust against intentional atta¢Rsl1]. Here we show If it increases and becomes larger than the capacity, the cor-
that for many physical networks, the removal of nodes camesponding node fails. Any failure leads to a new redistribu-
have a much more devastating consequence when the intrition of loads and, as a result, subsequent failures can occur.
sic dynamicsof flows of physical quantities in the network is This step-by-step process is what we catbacading failure
taken into account. In a power transmission grid, for in-or a cascade. It can stop after a few steps but it can also
stance, each nodpower stationdeals with a load of power. propagate and shutdown a considerable fraction of the whole
The removal of nodes, either by random breakdown or intennetwork[24]. A fundamental question is, under what condi-
tional attacks, changes the balance of flows and leads to tions can such a global cascade take place?
global redistribution of loads over all the network. This can  Here we focus on cascades triggered by the removal of a
trigger a cascade of overload failuld®,13, as the one that single node. If a node has a relatively small load, its removal
happened on August 10, 1996 in the western United Statesill not cause major changes in the balance of loads, and
power grid[14,15. Another example is the Interngt6—-18,  subsequent overload failures are unlikely to occur. However,
where the load represents the amount of information a nodehen the load at the node is relatively large, its removal is
(routen is requested to transmit per unit of time, and over-likely to affect significantly loads at other nodes and possibly
loads correspond to congestidri9]. Internet collapses starts a sequence of overload failures. Our result is the fol-
caused by congestion have been reported since its very biewing: global cascades occur (1) the network exhibits a
ginning [20]. In this Rapid Communication, we introduce a highly heterogeneous distribution of loadg) the removed

node is among those with higher load. Otherwise, cascades
are not expected. The distribution of loads is in turn highly
*Electronic address: motter@chaos3.la.asu.edu correlated with the distribution of links: networks with het-
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erogeneous distribution of links are expected to be heteroge-
neous with respect to load so that on average, nodes with
larger number of links will have higher lod@2]. This result
confirms the robust-yet-fragile property of heterogeneous
networks, which was first observed in RE3] for the attack

on severalnodes. The cascade effect is important, however,
because a large damage can be caused in this case by the
attack on asinglenode. While a network with more links can

be more resistant against cascading failures, in practice the
number of links is limited by cost.

Now we provide evidence for our result. We study cas-
cades triggered by random breakdown and by intentional at-
tacks. To simulate the former, we choose a trigger at random
among all the nodes of the network, as can occur in networks
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such as power gridgl4]. In the case of attack the targeted  FIG. 1. Cascading failure in scale-free networks, as triggered by
node is selected from those with highest loads or largegshe removal of a single node chosen at randsquarey or among
degrees(number of links at a nodeWe consider heteroge- those with largest degree@sterisks or highest loads(circles,
neous networks with algebraiscale-fre¢ distribution P of wherea is the tolerance parameter aGdis the relative size of the

links, as observed in real systefi$s5,25,28,

largest connected component. Each curve corresponds to the aver-

age over five triggers and ten realizations of the network. The error
P(k)~k™7?, (2) bars represent the standard deviation. The networks are generated
according to the algebraic distributidi2). For the computations
wherek denotes the degree andthe scaling exponent, and shown we sety=3 and 5008<N<5100. The average degree in the
compare them with an equivalent homogeneous configurdargest component ié)~2.0.

tion. These networks are generated according to the proce-

dure in Refs.[27,28, where the nodes are connected ran-strengthens our conclusionsThe homogeneous network
domly for a given degree distribution, and self- and repeatedoes not experience cascading failures due either to random
links are forbidden. The damage caused by a cascade eakdown or to intentional attacks far as small as 0.05.
quantified in terms of the relative siz& of the largest con- For the heterogeneouscale-fre¢ network, for the same
nected component, value of @, cascades triggered by the attack on a key node
can reduce the largest connected component to less than 10%
G=N'/N, (3)  of the original size, as shown in the inset. Therefore, homo-
. ) geneous networks appear to be more robust against attacks
whereN and N’ are the numbers of nodes in the largesty,an the heterogeneous ones. This conclusion does not rely
component before and after the cascade, respectively. FIQUER, the particularities of these models, as the same was also

1 shows the relative siz& of the largest component after
cascading, as a function of the tolerance parameteior a
scale-free network. We can see that on aver@gemains

observed for classes of networks with exponential and
Poisson-like distributions of degreés.g., the Erds-Renyi
~model[29]): their homogeneity makes them relatively resis-

close to unity in the case of random breakdowns but it iSant 1o cascades triggered by attacks. The networks corre-

significantly reduced under intentional attacks, even dor
unrealistically large. Indeed, the size of the largest compo-
nent is reduced by more than 20% fer=1, i.e., for a ca-
pacity as large as two times the capacity required for the
system to operate when all the nodes function normally. This
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result is in agreement with intuition, because in the case of

random breakdown the trigger is probably one of the many 0.6

nodes with small load, while in the case of intentional attack G

it is a node with very large load. The damage is larger for 0.4}

smaller values ofa, as it is for load-based attacks when

compared with degree-based attacks. For instance, in the 0.2}

load-based attack fa##=0.2, more than 60% of the nodes

are affected. For the 5000-node networks used in our simu- g 0 01 02 03 04 05
lations, it means that a cascade triggered by the attack on a Y 0.2 0.4 0.6 0.8 1.0
single node shuts down and disconnects more than 3000 oth- o

ers! FIG. 2. Cascading failure in homogeneous networks. All nodes

Figure 2 shows the corresponding results for a homogeare set to have the same degkee3 andN=5000. In the inset, the
neous network with the same number of nodes and exactlyjetworks are generated according to the algebraic distribgpn

three Iin_ks per _node. To make a meaningfu_l comparison Weor k=2, y=3, andN=5000. The resulting average degree is
display in the inset results for an algebraic network with(k)~3.1. The legends and other parameters are the same as in

about the same average degrésctually larger, which Fig. 1.
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FIG. 3. Cascading failure in the Internet at autonomous system FIG. 4. Cascading failure in the western U.S. power transmis-
level[30]. The network has\=6474 nodes an¢k)~3.88 links per  sion grid[31], which hasN=4941 and(k)~2.67. The average is
node, on average. Each curve corresponds to the average overobtained via 5 triggers for attacks and 50 for random breakdown.
triggers for attacks and 50 for random breakdown. The legends arghe legends are the same as in Fig. 1.
as defined in Fig. 1.

less than a half of its initial size, even when the network is
. . . . highly tolerant(e.g.,a=1).
sponding t_o the_ms_et O.f Fig. 2 are g_ener_ated according 1o t_he gOEl/I‘ result is tr?us that)real networks are naturally evolved
tsrﬁg]::aazgatw:agmdilrﬁmzrzﬁnmt?(fartg?ﬁﬁklsnal?g.ncl);jg)i(gigtt :Q%te'rz]to be quite resistant to random failure of nodes, but the pres-
ence of a few nodes with exceptionalbrge load which is

Thereforez this inset ;hows that th_e fragility of scale-freeknown to be ubiquitous in natural and man-made networks,
networks is due to their heterogeneity and does not rely on

the presence of nodes with degree one, which are easily dihas a disturbing side effect: the attack on a single important

connectable. Naturally, the increase of the average degrj]eOde(one of those with high loadmay trigger a cascade of

reduces the damaae of the cascade. as can be seen fro overload failures capable of disabling the network almost
comparison betwegn Fio. 1 and the iﬁset of Fig. 2 n%r‘l"{irely. Such an event has dramatic consequences on the

Mgn real-world netvx?drks are hetero eneougs. aﬁ d as SLICrpletwork performance, because the functionability of a net-
are ex yected to underao larqe-scale cgscades i some vitWPrk relies on the ability of the nodes to communicate effi-
P 9 ge- lently with each other. What is the use, say, of having a
nodes are attacked, but rarely in the case of random brea hone if you cannot call anybody?

(rjnoc\)ltljgl sAitgrrT]] Ie;\;aégg]e \\/Ivvr?ic(;\ogfsl,dfar ;hznlrgfrgsrtag ;g:ﬁr‘o' We conclude with some thoughts on the meaning of our
y ' play 9 results for security. An effective attack relies on identifying

bution of links[3]. The damage caused by triggers of hlghervulnerabilities and is far from being random. Our society is

load or degree is much larger than that by random break'eographically distributed in a way that natural hazards are

down, as shown in Fig. 3. The cascading failures are rarel . .
triggered by random bgreakdown far>0 05g but more than gy no means rar_1dorfB3]. An example 'S thepronglng of
AN eople, communication, transportation, and financial centers

5 X . . X
Z?tﬂ) kOf rghenlnodr;es ncag t:e ilgczncvec:]e% W'tlh the 'lqntigntrlog round seismic areas, like the Pacific Rim. Natural disasters
%acl Ot 0 Iyo € no ('ed mf\th : et a Satszcgtaftés? €d and intentional attacks can then have devastating conse-

€ eectrical power grid ol the western Lnite ' guences on the complex networks underlying the society.

The degree distribution in this network is consistent with anrpase consequences will be more severe if the damage on
exponential[32] and is thus relatively homogeneous. The Joc or few nodes is capable of spreading over the entire

d:St”dett')on of Ipadz, howe\t/v(\a/r, Eﬁ?ggla Sl.(tﬁ\’\tlﬁd than thda.‘t dIS'network. In this sense a cascade-based attack can be much
played Dy semirandom Networka7,zg wi € Same diS- 516 destructive than any other strategies of attack previ-

tribution of links, indicating that the power grid has struc- ;

tures that are not captured by these models. As a resul?,USIy considered!3,7-9,28,34-3p

global cascades can be triggered by load-based intentional The authors thank &a Albert and Duncan J. Watts for
attacks but not by random or degree-based removal of nodegroviding the Internet and power-grid data, respectively. This
as shown in Fig. 4. We see that the attack on a single nodeork was supported by AFOSR under Grant No. F49620-98-
with large load reduces the largest connected component tb-0400 and by NSF under Grant No. PHY-9996454.
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