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Reaction-diffusion wave fronts: Multigeneration biological species under climate change
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A generalization of reaction-diffusion models to multigeneration biological species is presented. It is based
on more complex random walks than those in previous approaches. The new model is developed analytically
up to infinite order. Our predictions for the speed agree to experimental data for several butterfly species better
than existing models. The predicted dependence for the speed on the number of generations per year allows us
to explain the change in speed observed for a specific invasion.
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I. INTRODUCTION

Many attempts have been made in order to describe
logical migrations and colonizations by physical metho
@1–4#. A possible approach to these problems is based
reaction-diffusion equations@4#. Extension of such equation
by considering time-delayed processes has focused the a
tion of many physicists in recent years@5–7#. In this paper,
we expand this approach to allow the study of multigene
tion species, i.e., to explain range expansions for species
have several generations per year~gen/yr!, separated by dif-
ferent delay~or resting! times. The problem we want to solv
is fundamentally different from that of a waiting time distr
bution function considered by other authors@8,9#. In their
models, particles or individuals may ‘‘jump’’ after a rest tim
t1 with probability p1, after a restt2 with probability p2,
etc., and this happensat any instant of time. In contrast, in
the case we shall introduce below, there is a seasonal,
overlapping succession of resting times.

Delayed diffusion-reaction models can be derived fro
random-walk movements@5#. Every particle or individual is
supposed to move at successive steps~with time of travelt),
separated by a time of restt @Fig. 1~a!#. Here we allow for
more complex situations, by introducing the possibility
secondary steps with different travel and rest tim
t1 ,t1 ,t2 ,t2 . . . @Fig. 1~b!#.

In Sec. II we derive our model. In Sec. III, we apply
using typical dispersion and reproduction data for Brit
butterflies, some of which present several gen/yr@10#. Such
species have been observed to expand their ranges n
wards in the past years, and biologists have pointed out
mate change as one main reason@11–14#. We use our equa
tion to predict the typical rates of spread, and compare th
to experimental data and previous models. There is g
agreement between theory and observations. We argue
this shows~i! the convenience of analytical models such
the one presented and~ii ! that climatic change, on its own
does not explain the observed speed.
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II. MODEL

Let n(rW,t) be the density of particles or individuals in
two-dimensional space. If we assume that the particles ju
in the way depicted in Fig. 1~b!, we may write for the change
in particle number in a differential of areadA during a sec-
ondary step of durationTi[t i1t i ,

@n~rW,t1Ti !2n~rW,t !#dA5@n~rW,t1Ti !2n~rW,t !#DdA

1@n~rW,t1Ti !2n~rW,t !#RdA,

~1!

where the first term in the right is due to diffusion, and t
second one to net reproduction~if dealing with a biological
species!. Following Einstein’s approach@15#, we write the
diffusive term as the number of particles reaching the a
dA minus those leaving it duringTi ,

@n~rW,t1Ti !2n~rW,t !#DdA5F2n~rW,t !dA, ~2!

where

F5dAE
2`

` E
2`

`

n~x1Dx,y1Dy,t !

3w i~Dx,Dy!dDx dDy, ~3!

with w i(Dx,Dy)dA the fraction of particles which have
jumped from an area differential centered at (x1Dx,y
1Dy) at time t into another area differential centered
(x,y) in t1Ti . We also assume, as in@15#, that all disper-
sion kernels are isotropic,w i(Dx,Dy)5w i(D), where n

[ADx21Dy2. Equations~1! and ~2! can be approximated
by Taylor series if the experimental data on the range exp
sion span along large enough times (t@( i 51

N Ti) and dis-
tances (x@Dx, y@Dy). Following the same approach as
Ref. @16# we arrive at the expression up tokth order
©2002 The American Physical Society01-1
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(
j 51

k Ti
j

j !

] jn

]t j
5

2DiTi

2! S ]2n

]x2
1

]2n

]y2D 1
~2DiTi !

2

4! S ]4n

]x4

16
]4n

]x2]y2
1

]4n

]y4D 1•••1a(
j 51

k Ti
j

j !

] j 21n

]t j 21
,

~4!

where a represents the initial growth rate~i.e., @]n/]t#R
.an for n.0 @16#! andDi is the diffusion coefficient of the
i th substep,

Di[
1

4Ti
E

2`

` E
2`

`

w i~D!~Dx21Dy2!dDx dDy. ~5!

As usual in this kind of analysis@4,16#, we assume the
existence of wave front solutions, by using in Eq.~4! solu-
tions with the formn'exp„l(x2vt)…, with l,0. Next, to
analyze the process during a time interval encompassinN
secondary steps@i.e., for a time interval( i 51

N Ti5( i 51
N (t i

1t i)], we just have to write the expression resulting fro
Eq. ~4! for the time interval (t,t1T1), for the interval (t
1T1 ,t1T11T2), etc., and add up all these equations. T
yields

(
i 51

N

(
j 51

k
~2Tivl! j

j !
5(

i 51

N

(
j 51

~2DiTil
2! j

~2 j !!

1a(
i 51

N

(
j 51

k Ti
j~2vl! j 21

j !
, ~6!

which in the limit k→` acquires the form

FIG. 1. Two kinds of random walks for the trajectory of a pa
ticle ~or individual!. ~a! Classical diffusion, where the travel time~t!
alternates with the rest time (t) @4#. ~b! The more general case i
which there is a periodic distribution of travel (t i) and rest (t i)
times.
06290
s

(
i 51

N

~e2vTil21!S 11
a

vl D5(
i 51

N

cosh~lA2DiTi !2N.

~7!

The wave front speedv can be found numerically from
this equation in the usual way: for given parameter valu
the speed is the minimum value ofv such that a solutionl
,0 exists@16#.

In order to show the generality of Eq.~7!, let us take the
limit Ti→0 ~weakly delayed systems!. From Eq. ~7! one
finds, up to first and second order inTi , respectively,

D* l21v (1)l1a50, ~8!

2v (2)l1
v (2)2T*

2
l25D* l21aS 12

v (2)T*

2
l D , ~9!

with

D* 5

(
i 51

N

DiTi

(
i 51

N

Ti

, T* 5

(
i 51

N

Ti
2

(
i 51

N

Ti

. ~10!

In these special cases, using the fact thatl must be real, we
reach the expressions for speed

v (1)52AaD* , ~11!

v (2)5
2AaD*

11
aT*

2

, ~12!

which correspond to the wave front speed for the we
known parabolic~i.e., nondelayed! @17# and hyperbolic~i.e.,
weakly delayed! @4,18# approximations, respectively, exce
that hereT* andD* appear~instead ofT andD in Ref. @4#!.
This is due to our assumption of secondary steps. The c
sical, single-substep case@4# is recovered forN51. Equa-
tion ~7! is more general than Eq.~12!, because it applies eve
to strongly delayed diffusion. Moreover, the new diffusiv
behavior due toi secondary steps@Fig. 1~b!# is considered in
the general expression~7! and taken into account even fo
the parabolic and hyperbolic approximations by means of
new parametersT* andD* .

III. APPLICATIONS

(1) Invasion speeds. One of the most direct applications o
our new model, and indeed its original motivation, is t
spread of biological species withN generations per year. Le
us see whether our model is able to predict the magnitud
the observed speeds.

Many butterfly species have up to 4~or sometimes even
more! summer generations, whereas they do not appea
colder seasons. The periods during which individuals
able to disperse, known as flight times, are typicallyt1.t2
.•••.30 days, separated byt1.t2.t3.10 days@10#, ex-
1-2
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cept for the last annual generation. For thisNth generation,
because of the annual behavior (T[( i 51

N Ti51 yr), we have
tN5T2t12t12t22•••. Thus, if N54 gen/yr, t4.215
days~choosing similar values would not change considera
our final results!.

The diffusion coefficientDi ~5! can be rewritten, accord
ing to a well-known result of basic diffusion theory@19#, as

Di5
1

4Ti

^D2&obs

tobs
t i , ~13!

where the subscriptobs means that these values correspo
to direct observations. The values of^D2&obs and tobs are
determined in ecology from mark-recapture experimen
which yield 2,Di,31 km2/yr for butterflies @20,21#, de-
pending on the species considered and the ecological co
tions. Such a range may seem rather wide, but in fact
biological systems the range of diffusion coefficients o
served spans many orders of magnitude~from 1025 to
104 km2/yr @22#!. Finally, typical values ofa between 0.6
and 1 yr21 follow from the population field data as a func
tion of time in Ref.@23#.

We may now compare the predictions to experimental
servations. Nonmigratory butterfly expansions have b
measured for the last thirty years in Great Britain and the
@23#. Their observed spread rates are in the range 1.3–
km/yr @24#. Introducing the values above fort i ,Ti ,a,Di into
our new Eq.~7!, we obtain the prediction~for 4 gen/yr! 1.9
,v,8.4 km/yr, which agrees quite well with the observ
range above.

The usefulness of assuming several generations ca
seen by comparing with the results of a model@16# based in
the same Eq.~7!, but with N51 gen/yr. In that model we
take t5( i 51

4 t i.120 days, so the annual flight time is th
same in both cases. The range predicted by the previo
known model is 3.3,v,14.2, which is less consistent wit
the experimental data@24#. This is also observed in Fig. 2
where our new model~solid lines! is more conistent with the
observed values ofa and Di than the model withN
51 gen/yr~dotted lines!.

The inset in Fig. 2 shows the convenience of assum
different waiting times from variations inv/vo (vo is the
speed value for 1 gen/yr! as a function ofN. Triangles cor-
respond to the case with identical waiting timesT15T2
5•••5Ti ~that is, T* 5Ti and D* 5Di). Squares corre-
spond to experimental values fort i , t i above. The differ-
ences between both models are qualitatively important, e
cially for low N, simply because in our case~squares!
generations are concentrated in a specific season~summer!.
WhenN is high enough, generations become uniformly d
tributed throughout the year, and both models lead to sim
results, as they should. Of course, for other biological s
cies, differences between both models could be importan
to much higher values ofN.

(2) Changes of speed. One of the very few butterfly spe
cies whose spreads have been measured in detail isPieris
Rapae. Andow et al. @25# analyzed its southward invasio
across the US in the 19th century. They mentioned that
number of gen/yr for this species is higher in Missouri~6–7
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gen/yr! than in more Northern locations~typically 3 gen/yr!,
all generations with similar flight times (t1.t2.•••). They
even argued that this could explain the increase in the fr
speed observed during this expansion. This gives us a un
oportunity to check whether the tendency of the speed on
number of generations agrees with our model or not.
checked the original data from Scudder@26# beforeP. Rapae
reached Missouri (NBM.3 gen/yr) and after passing Mis
souri (NAM.6 –7 gen/yr) and found that the observed ra
of both speeds wasvAM /vBM51.560.2. We will compute
the predicted speed ratio, instead of both speeds, becauP.
Rapaeis an extremely migrating species so its diffusion c
efficient is very difficult to measure and the value ofa for
this species is also unknown. Equation~7! does not allow us
to perform speed ratios, and we use the aproximation~11!. If
we recall the annual behavior (( i 51

N Ti[T51 yr) and
assume, as mentioned, the same flight timest i for all
generationsi, Eqs. ~10! and ~13! yield D* 5N,Dobs

2 .t i /
(4tobs•1 yr). Then,

vAM

vBM
5ANAM

NBM
. ~14!

Finally, we predict from Eq.~14! vAM /vBM51.6, which is
very similar to the experimental value above. Addition
agreement and more detailed comparisons to observa
are expected to be achieved in the future, as new data
specific species will be obtained.

IV. DISCUSSION

In this work we have extended reaction-diffusion mod
to consider, up to infinite order, a more general diffusi

FIG. 2. Hatched regions define the range of independently
served values for the parametersa and Di . The solid lines corre-
spond to the new multigeneration model~4 gen/yr! with v51.3 and
8.6 km/yr, which is the experimental range,T15T25T3540 days,
and T45245 days. Dotted lines are for the model withN
51 gen/yr@16# and flight timet5( i 51

4 t i . Inset: Speed ratiov/v0

vs number of generationsN for the multigeneration model~squares,
T15T25•••5TN21540 days,TN51 yr2( i 51

N21Ti days! and as-
suming allTi are equal~triangles,T15T25•••51 yr/N).
1-3
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pattern than previous authors. The new random walk is c
acterized by a sequential, periodic succession of move
rest times@Fig. 1~b!#. The need for this more general beha
ior comes from biological applications, namely from the fa
that some species present more than one generation per

The situation considered can be regarded as a rap
time-varying value for the rest time. In principle, this cou
lead to a rapidly changing wave front speed. But the exp
mental data are not accurate enough to show such an e
This is why we have presented an averaged description, l
ing to a constant speed.

We stress that we have presented a specific application
illustration purposes, and because of the interest that ph
logical response have as an indicator of climate change. S
cifically, nonmigratory butterflies have been intensively stu
ied with the aim to predict the effects of climate, weather a
habitat variations@11,14,27,28#. Numerical methods have re
cently been used to describe the polewards expansion
butterflies and other biological species@29,13#. These ap-
proaches are able to predict whether the species can be
pected to be present in a given locality, but such a detai
microscopic method assumes in fact that butterfly ra
shifts can be as high as allowed by the speed of clim
change, which has been criticized@30#. A very recent paper
tt

n

.
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@14# summarizes a list of species which are expanding th
ranges in response to climate change. The speeds listed
have very different values. Thus, it is unlikely that the
expansions can be explained just by the speed of clim
isotherms@11,31#.

This argument makes us think that analytical approac
to these processes, as proposed here, could be useful
results obtained by our model are quite satisfactory: p
dicted~1.9–8.4 km/yr! and observed~1.3–8.6 km/yr! ranges
for butterflies are very similar~see Fig. 2!. Hence, we con-
sider that our model may be applied to the study of ot
multigeneration species, as well as to new applications wh
are in accordance with the diffusive behavior in Fig. 1~b!.
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