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Reaction-diffusion wave fronts: Multigeneration biological species under climate change
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A generalization of reaction-diffusion models to multigeneration biological species is presented. It is based
on more complex random walks than those in previous approaches. The new model is developed analytically
up to infinite order. Our predictions for the speed agree to experimental data for several butterfly species better
than existing models. The predicted dependence for the speed on the number of generations per year allows us
to explain the change in speed observed for a specific invasion.
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I. INTRODUCTION Il. MODEL

Many attempts have been made in order to describe bio- €t N(r.t) be the density of particles or individuals in a
two-dimensional space. If we assume that the particles jump

logical migrations and colonizations by physical methods; : S ;
[1-4]. A possible approach to these problems is based off the way depicted in Fig.(b), we may write for the change

reaction-diffusion equatior{gl]. Extension of such equations in particle number In-a dﬂ‘ferenﬂal of arehA during a sec-

b idering time-delayed processes has focused the attefid"y Step of duratiol;=t;+;,
y consi g yed p

tion of many physicists in recent yedis—7]. In this paper,

we expand this approach to allow the study of multigenera-

tion species, i.e., to explain range expansions for species that

have several generations per yégen/yy, separated by dif- +In(rt+T)—n(r,t)]pdA,

ferent delay(or resting times. The problem we want to solve

is fundamentally different from that of a waiting time distri- @

bution function considered by other authd&9]. In their

models, particles or individuals may “jump” after a rest ime \ypare the first term in the right is due to diffusion, and the
71 With probability p,, after a restr, with probability p2,  second one to net reproducticii dealing with a biological

etc., and this happerat any instant of timeln contrast, in  gpecies Following Einstein’s approachl5], we write the

the case we shall introduce below, there is a seasonal, nogiffusive term as the number of particles reaching the area

overlapping succession of resting times. dA minus those leaving it durin; ,
Delayed diffusion-reaction models can be derived from

random-walk movemen{&]. Every particle or individual is
supposed to move at successive si@yith time of travelt), [n(r,t+T)—n(r,H)]pdA=d—n(r,t)dA, 2
separated by a time of rest[Fig. 1(a)]. Here we allow for
more complex situations, by introducing the possibility of
secondary steps with different travel and rest timeswhere
t1,71,to, 7 . .. [Fig. 1b)].
In Sec. Il we derive our model. In Sec. lll, we apply it
using typical dispersion and reproduction data for British
butterflies, some of which present several gefly¥. Such
species have been observed to expand their ranges north-
wards in the past years, and biologists have pointed out cli- X @i(Ax,Ay)dAx dAy, (©)
mate change as one main rea$dh—14. We use our equa-
tion to predict the typical rates of spread, and compare them
to experimental data and previous models. There is goodith ¢;(AX,Ay)dA the fraction of particles which have
agreement between theory and observations. We argue thigmped from an area differential centered at+Ax,y
this shows(i) the convenience of analytical models such astAy) at timet into another area differential centered at
the one presented arii) that climatic change, on its own, (X,y) in t+T;. We also assume, as [i5], that all disper-
does not explain the observed speed. sion kernels are isotropice;(AX,Ay)=¢;(A), where A
= JAX?>+ Ay?. Equations(1) and (2) can be approximated
by Taylor series if the experimental data on the range expan-

[n(r,t+T)—n(r,t)]dA=[n(r,t+T;) —n(r,t)]pd A

o= dAf f n(x+Ax,y+Ay,t)

*Email address: daniel.campos@uab.es sion span along large enough times>EN,T;) and dis-
"Email address: joaquim.fort@udg.es tances x>Ax, y>Ay). Following the same approach as in
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FIG. 1. Two kinds of random walks for the trajectory of a par-
ticle (or individual. (a) Classical diffusion, where the travel tintg
alternates with the rest timer) [4]. (b) The more general case in
which there is a periodic distribution of travet; and rest ¢;)
times.

ﬁ Tl oin 2D, T,[#*n #*n\ (2D;T)?( o*n
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=ittt 20 \ox® gy? 4! ax
6 o o*n K T gimtn
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ax2ay?  ay* =gt gt

(4)

where a represents the initial growth raté.e., [In/dt]g
=an for n=0 [16]) andD; is the diffusion coefficient of the
ith substep,

1 o o
Dizﬁf f @i(A)(Ax*+Ay?)dAx dAy.  (5)
i — o0 — 00

As usual in this kind of analysif4,16], we assume the
existence of wave front solutions, by using in Ed) solu-
tions with the formn~exp(\ (x—uvt)), with A<0. Next, to
analyze the process during a time interval encompadsing
secondary stepf.e., for a time interval=!L  T;=3N . (7,
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N
:'—21 cosiAy/2D;T;)—N.
(7)

The wave front speed can be found numerically from
this equation in the usual way: for given parameter values,
the speed is the minimum value ofsuch that a solution
<0 exists[16].

In order to show the generality of E¢r), let us take the
limit T,—0 (weakly delayed systemsFrom Eq.(7) one
finds, up to first and second orderTn, respectively,

a

+_
1 UA

N
2[ (e*uTi)\_l)

D*N\2+v®\+a=0, (8)
o @PT* LT
—v @\ + N2=D*\?+al1— > x), 9
with
N
> DT, > T
i=1 i=1
D*: N y T*: N (10)
> T > T

In these special cases, using the fact thamust be real, we
reach the expressions for speed

vM=2./aD*,

(11

(12

which correspond to the wave front speed for the well-
known parabolidi.e., nondelayed[17] and hyperbolidi.e.,
weakly delayeyl[4,18] approximations, respectively, except
that hereT* andD* appear(iinstead ofT andD in Ref.[4]).
This is due to our assumption of secondary steps. The clas-
sical, single-substep ca$4] is recovered foN=1. Equa-
tion (7) is more general than EL2), because it applies even
to strongly delayed diffusion. Moreover, the new diffusive
behavior due to secondary steg$-ig. 1(b)] is considered in
the general expressiofY) and taken into account even for
the parabolic and hyperbolic approximations by means of the

+1,)], we just have to write the expression resulting fromneéw parameter§* andD*.

Eq. (4) for the time interval {,t+T,), for the interval ¢

+T,,t+T,+T,), etc., and add up all these equations. This

yields

(2D;Ti\?)]
(2))!
Ti(—on)i™t

T ®

which in the limitk—oc acquires the form

Ill. APPLICATIONS

(1) Invasion speed®©ne of the most direct applications of
our new model, and indeed its original motivation, is the
spread of biological species witlh generations per year. Let
us see whether our model is able to predict the magnitude of
the observed speeds.

Many butterfly species have up to(dr sometimes even
more summer generations, whereas they do not appear in
colder seasons. The periods during which individuals are
able to disperse, known as flight times, are typicajlyt,
---=30 days, separated by=7,=73=10 dayd 10], ex-
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cept for the last annual generation. For thith generation, 2.0 -
because of the annual behavid'rzéEi’\‘: 1T;=1 yr), we have 18 ' b L sas
w=T—t;— 7 —t,—---. Thus, if N=4 gen/yr, r,=215 A ' AL T
days(choosing similar values would not change considerably . \ Em s
our final results 141 A o
The diffusion coefficienD; (5) can be rewritten, accord- 1.2 . S TTTE e T R o
ing to a well-known result of basic diffusion theof%9], as 10 ' ' 7 N
)
1 <A2>obs ; 0.8 ] /7%
R T (13 06 2 %

where the subscripibs means that these values correspond
to direct observations. The values @52),, and ty,s are ]
determined in ecology from mark-recapture experiments, 0.0+
which yield 2<D;<31 kn?/yr for butterflies[20,21], de- 10

10° 10
2
pending on the species considered and the ecological cond D, (km“/yr)
tions. Such a range may seem rather wide, but in fact, in . _ .
biological systems the range of diffusion coefficients ob- FIG. 2. Hatched regions define the range of independently ob-
served spans many orders of magnitudiesm 1075 to served values for the parameterand D;. The solid lines corre-

spond to the new multigeneration modélgen/yy with v =1.3 and

2 . .
10* km?/yr [22]). Finally, typical values ofa between 0.6 8.6 kmiyr, which is the experimental rangB,— T,— To—40 days,

_l . .
a.‘nd 1fy.r f(?||0W ]Irom the population field data as a func- and T,=245 days. Dotted lines are for the model with
tion of time in Ref.[23]. =1 gen/yr[16] and flight timet=2i4:1ti . Inset: Speed ratio/vg

We may now compare the predictions to experimental 0byg nymper of generations for the multigeneration modésquares,

servations. Nonmigratory butterfly expansions have beeg _ —...—T =40 daysTy=1 yr— 37T, day$ and as-

measured for the last thirty years in Great Britain and the USyming allT; are equaltriangles,T,=T,=---=1 yr/N).
[23]. Their observed spread rates are in the range 1.3—8.6

km/yr [24]. Introducing the values above for,T;,a,D; into  gen/yp than in more Northern locatior(§ypically 3 gen/yy,

our new Eq.(7), we obtain the predictiotfor 4 gen/y) 1.9 3|l generations with similar flight timeg{=t,=- - -). They

<v<8.4 kmlyr, which agrees quite well with the observedeven argued that this could explain the increase in the front

range above. speed observed during this expansion. This gives us a unique
The usefulness of assuming several generations can kgortunity to check whether the tendency of the speed on the

seen by comparing with the results of a mode] based in  number of generations agrees with our model or not. We

the same Eq(7), but with N=1 gen/yr. In that model we checked the original data from Scudd@6] beforeP. Rapae

take t=3"_,t;=120 days, so the annual flight time is the reached Missouri Ngw=3 gen/yr) and after passing Mis-

same in both cases. The range predicted by the previousbouri (NAy=6-7 gen/yr) and found that the observed ratio

known model is 3.3v<14.2, which is less consistent with of both speeds wasuy /vgy=1.5=0.2. We will compute

the experimental datg24]. This is also observed in Fig. 2, the predicted speed ratio, instead of both speeds, be€ause

where our new modebolid lineg is more conistent with the Rapaeis an extremely migrating species so its diffusion co-

observed values ofa and D; than the model withN  efficient is very difficult to measure and the value afor

=1 genlyr(dotted lines. this species is also unknown. Equatiah does not allow us
The inset in Fig. 2 shows the convenience of assumingo perform speed ratios, and we use the aproximdtidn If

different waiting times from variations in/v, (v, is the ~ we recall the annual behavior=[,T;=T=1yr) and

speed value for 1 gen/yas a function ofN. Triangles cor-  assume, as mentioned, the same flight timesfor all

respond to the case with identical waiting tim&s=T, generationd, Egs. (10) and (13) yield D*:N<A§bs>ti/

=...=T; (that is, T*=T,; and D*=D;). Squares corre- (4typs 1 yr). Then,

spond to experimental values ftyr, 7; above. The differ-

ences between both models are qualitatively important, espe- UAM Nam

cially for low N, simply because in our casesquares NN (14)

generations are concentrated in a specific segs@mmey. BM BM

WhenN is high enough, generations become uniformly dis-Fina"y' we predict from Eq(14) vay/vgy= 1.6, which is

tributed throughout the year, and both models lead to similagery similar to the experimental value above. Additional

results, as they should. Of course, for other biological speagreement and more detailed comparisons to observations

cies, differences between both models could be important ugre expected to be achieved in the future, as new data for

to much higher values dX. specific species will be obtained.
(2) Changes of spee®ne of the very few butterfly spe-

cies whose spreads have been measured in detRileiss

Rapae Andow et al. [25] analyzed its southward invasion
across the US in the 19th century. They mentioned that the In this work we have extended reaction-diffusion models
number of gen/yr for this species is higher in Missd@+7  to consider, up to infinite order, a more general diffusive

IV. DISCUSSION
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pattern than previous authors. The new random walk is chafL14] summarizes a list of species which are expanding their
acterized by a sequential, periodic succession of move angnges in response to climate change. The speeds listed there
rest timegFig. 1(b)]. The need for this more general behav- have very different values. Thus, it is unlikely that these
ior comes from biological applications, namely from the factexpansions can be explained just by the speed of climatic
that some species present more than one generation per yegbtherms[11,31].

The situation considered can be regarded as a rapidly Thjs argument makes us think that analytical approaches
time-varying value for the rest time. In principle, this could to these processes, as proposed here, could be useful. The
lead to a rapidly changing wave front speed. But the experiresults obtained by our model are quite satisfactory: pre-
mental data are not accurate enough to show such an eﬁe‘éﬁcted(l.g—8.4 km/yF and observedl.3—8.6 km/yy ranges
This is why we have presented an averaged description, leagyr putterflies are very similafsee Fig. 2 Hence, we con-
ing to a constant speed. sider that our model may be applied to the study of other

We stress that we have presented a specific application fopy|tigeneration species, as well as to new applications which

illustration purposes, and because of the interest that phengre in accordance with the diffusive behavior in Figh)1
logical response have as an indicator of climate change. Spe-

cifically, nonmigratory butterflies have been intensively stud-

ied with the aim to predict the effects of climate, weather and

habitat variation$11,14,27,28 Numerical methods have re- ACKNOWLEDGMENTS

cently been used to describe the polewards expansions of We thank Camille Parmesan for discussions on the field
butterflies and other biological specig29,13. These ap- data. Daniel Campos acknowledges the Departament
proaches are able to predict whether the species can be ekUniversitats, Recerca i Societat de la Informacibthe
pected to be present in a given locality, but such a detailedzeneralitat of Catalunya. Partially funded by the Generalitat
microscopic method assumes in fact that butterfly rangele Catalunya under Grant No. SGR-2001-00186, and by the
shifts can be as high as allowed by the speed of climatdICYT under Grants Nos. REN-2000-1621 CLI and BFM-
change, which has been criticiz€80]. A very recent paper 2000-0351-C03-01J.F).

[1] K. Sznajd-Weron and A. Pekalski, Physice284, 424 (2001). [22] E.D. Grosholz, Ecology'7, 1680(1996.
[2] I. Mrdz, A. Pekalski, and K. Sznajd-Weron, Phys. Rev. Lett.[23] J. L. Banwell and T. J. Crawford, “Butterfly Monitoring

76, 3025(1996. Scheme. Key indicators for British wildlife,” Report PECD
[3] F. Manzo and L. Peliti, J. Phys. 27, 7079(1994. 712184, University of York, 1992. All data used are available at
[4] J. Fort and V. Madez, Phys. Rev. LetB82, 867 (1999. http://bms.ceh.ac.uk/

[5] V. Méndez and J. Camacho, Phys. Re\6% 6476(1997. [24] For 35 nonmigratory butterfly species, the shifts to the north
[6] G. Abramson, A.R. Bishop, and V.M. Kenkre, Phys. ReG4- have been by 35—200 kfi1] over 27 yr(Ref.[14], Table II),
066615(2001).

which yields speeds from 1.3 to 7.4 km/yr. This is consistent
with Ref. [27], which reports 1.4 to 8.6 km/yr for 12 species,
and with the value 2.9 km/yr foPyronia Tithonus(Ref. [10],
p. 125.

[25] D. A. Andow, P. Kareiva, S. Levin, and A. Okubo, Evolution
of Insect Pests: The Pattern of Invasipeslited by K. C. Kim
(Wiley, New York, 1993.

[26] S.H. Scudder, Mem. Boston Soc. Nat. H&t.53 (1887.

[7] S. Fedotov, Phys. Rev. Le®6, 926 (2001).
[8] V. Méndez, Ph.D. thesis, UAB, 1998.
[9] S. Fedotov and Y. Okuda, UMIST repdunpublishedl
[10] E. Pollard and T. J. Yeatdonitoring Butterflies for Ecology
and ConservatiorifChapman & Hall, London, 1993
[11] C. Parmesat al, Nature(London 399, 579 (1999.
[12] S.L. Pimm, NaturgLondon 411, 531 (2002).
[13] M.S. Warrenet al, Nature(London 414, 65 (2001).

[14] G.R. Waltheret al, Nature(London 416, 389 (2002. [27] J. Asheret al, The Millennium Atlas of Butterflies in Britain
[15] A. Einstein, Investigations on the Theory of the Brownian and Ireland(Oxford University Press, Oxford, 2091
MovementDover, New York, 1958 [28] R. L. H. Dennis,Butterflies and Climate Chang&anchester
[16] J. Fort and V. Madez, Phys. Rev. B0, 5894(1999. University Press, Manchester, 1993
[17] R.A. Fisher, Ann. Eugenicg, 355 (1937). [29] J.K. Hill, C.D. Thomas, and B. Huntley, Proc. R. Soc. London,
[18] V. Méndez, J. Fort, and J. Farjas, Phys. Rev6& 5231 Ser. B266, 1197(1999.
(1999. [30] A.T. Petersoret al,, Nature(London 416, 626 (2002.
[19] J. Cranck,The Mathematics of DiffusiofOxford University =~ [31] M. Beniston et al, in The Regional Impacts of Climate
Press, London, 1956 Change, Intergovernmental Panel on Climate Change Working
[20] R.E. Jones, N. Gilbert, M. Guppy, and V. Nealis, J. Anim. Group I, edited by R. T. Watson, M. C. Zinyowera, and R. H.
Ecol. 49, 629 (1980. Moss (Cambridge University Press, Cambridge, England,
[21] P.M. Kareiva, Oecologi®7, 322 (1983. 1998, pp. 149-185.

062901-4



