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Exponential velocity tails in a driven inelastic Maxwell model
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The problem of the steady-state velocity distribution in a driven inelastic Maxwell model of shaken granular
material is revisited. Numerical solution of the master equation and analytical arguments show that the model
has bilateral exponential velocity ta[lﬁ’(v)~e‘|”|"’5], whereD is the amplitude of the noise. Previous study
of this model predicted Gaussian taﬂIB(u)~e’a"2].
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Recently, granular systems have been intensively studieshodel using a Fourier transform method. However, their
[1,2]. One reason of such an interest is the fact that in mangonclusion thaP(v) has a Gaussian decay is based on cer-
respects these systems are highly unconventional and evéain approximation whose validity is difficult to assess.
exotic[3]. As a result, very often even standard laws of sta-Namely, they infer the large-velocity behavior Bfv) from
tistical physics require certain modification when applied tothe lowk behavior of the Fourier transfor®(k). Since
granular systems. BNK model is one of the very few models for which exact or

As an example, let us consider the Maxwell-Boltzmannnumerical but very precise calculations can be made, it
law for velocity distributionP(v) of atoms or molecules in a would be desirable to clarify the validity of this approach.
gaseous state, which states tRgb)~e~*°. Under certain In the present paper, we reexamine the BNK model. Ana-
experimental conditions, a granular system can be considyZing numerically the solution of the master equation of the
ered as a gas and a natural question is what is its velocitifodel, we obtain the velocity distributidh(v). Asymptoti-
distribution. Numerous theoretical and experimental studie&ally (U—’OO?, this quantity shows bilateral exponential tails
do not provide a simple answer to this question. On the contP(v)~e "] and such a behavior is seen over more than
trary, they show thaP(v) depends on certain details of the ten decades. We also present analytical arguments that sup-
System as, for examp|e, hOW energy iS transferred by a thep.ort existence of bilateral eXponentiaI tails in this model.
mostat into the system, in order to balance the energy logsrom our analysis, it follows thai=1/yD, whereD is the
during inelastic collisions. Theoretical works have shownamplitude of noise which simulates the input of energy into
that P(v) might be of the forme™2" [4,5], e-2**[6,7], or e System. _ _

e 2 [8]. Under certain conditions experiments show clear . To introduce the mod_el, we Cons_;lder a collection of par-
deviations from the Maxwell-Boltzmann law, but it is still ticles that are characterized by a single parameter, their ve-
rather difficult to decide what is the form ¢#(v) in real  [0Ciy v. In this model, positions of particles are not speci-
granular systemEo]. fied _ hence the model neg!ects any spgtlal correlations.

Very often granular systems are described using the Sd?ar_tlcles qqdergo twq-body inelastic gollllsmns that change
called inelastic hard-sphere models, which could be theff€ir velocities according tovg ,v2)—(vy,v5), where
analyzed using corresponding Boltzmann equations. These
off-lattice two- or three-dimensional systems are, however, vy v 1=v\{v,
very difficult to study, especially when we want to explore 1= y D
large-velocity regions of the phase space. A possible alterna-

tive is to construct simplified models for which more accu-

rate calculations are possible. One class of such models a?é]d.y.'s thg meIastyc;ty parameter (0y<1). Particles t.h'at
Maxwell models for which the collision term in the corre- Participate in a collision are chosen at random. In addition to

sponding Boltzmann equation is velocity independent. Re;—[hte golllhs_lton ru_Ie(l),f p?rtlclet; aIrEe .S?bJeCteOfl to _the uncorre-
cent studies show that for Maxwell modd¥gv) might take ated white noise of strengl). EXISIEnce of NOISE ensures

. A . a2 that the model has a well-defined nontrivial steady state. In
either exponential € @) [10] or Gaussian € 2”") form

[11.12 the steady state, the velocity distributi®¥{v) satisfies the

following equation[12]:
A particularly interesting Maxwell model was proposed geq [12]
by Ben-Naim and KrapivskyBNK) [12]. These authors pre- 1 (e o
sented an elegant solution of the master equation of their _pp7(,)=—p(y)+ 1_f dup(u)p<v Y )
—v) .

vy U2
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2
*Electronic address: Tibor.Antal@physics.unige.ch
"Electronic address: Michel.Droz@physics.unige.ch where double primé¢ denotes the second derivative with
*Electronic address: lipowski@amu.edu.pl respect to velocity. To solve Ed2), BNK introduced the

1063-651X/2002/6@)/0623013)/$20.00 66 062301-1 ©2002 The American Physical Society



BRIEF REPORTS

Fourier transform of the velocity distributionls(k)
= [dve'*"P(v), which in the steady state satisfies

(1+Dk*)P(k)=P[ykIP[(1—y)k]. ©)

This equation admits the following solution:
o

Pro=11 ,Ho [1+2(1— )20 DDK2]" (). (9)

After some transformations, E¢4) can be written as

[

I5(k)=exp{ >

n=1

(—Dk?)"
Nagy(y)

: ©)

wherea,(y)=1-(1—-y)"—+". To obtain a large-velocity
behavior ofP(v), BNK truncate the series in E() keeping
only the first, quadratic irk, term

—DK?
}. (6)

P(k)%exp{ ax(y)
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FIG. 1. The velocity distributiofP(v) as a function ob calcu-
lated forD=1. Due to symmetry only>0 part is shown. The
thick line represents the exponential function expj.

that P(v) decays exponentially. Foy=0.5 and 0.8, such a
behavior is seen for more than ten decades. fatose to
unity there is an expfav?) decay for small velocities which

Subsequently, taking the inverse Fourier transform of thisygymptotically is replaced by the bilateral exponential decay

Gaussian function they obtaiﬁ(v)~exp(—v2/2v§), where
vi=2Dlay(y).

[exp(—clv|)]. Moreover, as shown in Fig. 1, the asymptotic
slopec is independent ofy and is approximately equal to 1.

~ In our opinion, the above procedure of truncating the seas we will show below this slope only depends on the am-
ries and inverting the resulting function is not well justified. plitude of noiseD. Before doing that let us notice that tBe

The approximatior(6) agrees with the exact expressi(®)

dependence of the velocity distributid®(v) can be easily

only up to thek? term of the Taylor expansion. Equally con- inferred from the fact tha andk enter its Fourier transform

sistent approximation can be given as

2

P(k)~ (7)

c2+k?'

wherec=+/a,(y)/D. But the inverse Fourier transform of

Eq. (7) is (c/2)exp(—clv|), which is qualitatively different
than the Gaussian decay obtained by BNK. Both Egjsand
(7) are consistent with the exact soluti¢®) up to thek?

order, but differ at the higher-orders. Apparently, these

only throughDKk? terms[see Eqgs(4) and (5)]. From this
property, one can easily obtain that

P(v,D)= D=1], (8)

1 v
ke

where we explicitly indicated the dependence on the nbise
In the following, we provide some analytical arguments

higher-order terms qualitatively affect the large-velocity SNOwing thatP(v) decays exponentially. Let us assume that

limit of P(v). Consequently, without more detailed argu-

in Eq. (2) the second terngain) can be neglected. Then Eq.

ments such approximations are not justified. Indeed, as wE?) Simplifies toDP”(v)=P(v) and the normalizable solu-

will show below, P(v) has a bilateral exponential decay bu

with a different coefficient.

To check the validity of the BNK approach, we calculate

P(v) numerically as an inverse Fourier transformRk).

One way to computé’(k) is to evaluate the infinite sums in

¢ tion reads

P(v)~e IPI"D, 9

the logarithm of Eq(4). However, it turns out that using Eq. L€t us note that the exponential partysndependentsince
(5) leads to a better precision. Let us notice, however, thay €nters the master equation only through the neglected gain

the series in Eq(5) converges but only fopk|<k.=1/\D.
To calculateP(k) for |k|>k., we can then use Eq3),
provided thatyk and (1- vy)k fall within the range of con-
vergence. If not, we have to calculafe(yk) and P((1
—y)k) referring again to Eq(3). Implementing this recur-

sive procedure, we calculatd(k) and then using the fast

Fourier transformation algorithm we obtainBdv). Our re-

term). Moreover, such a solution is in a very good agreement
with the numerical calculationsee Fig. L

For more general models it is known that neglecting the
gain term is justified fow —o when the resulting solution
decays faster than exponentiall§,7]. Our solution(9) is
thus a marginal case. However, we can show that for our
model the gain term in the limit —o° indeed can be ne-
glected. First, let us evaluate the gain term for the solution

sults forD =1 are shown in Fig. 1. This figure clearly shows (9). Elementary integration foD =1 andv>0 gives

062301-2



BRIEF REPORTS PHYSICAL REVIEW B6, 062301 (2002

1 J+°°d v—yu 02
=) . uexp(—|u|)expg — 1=y :
2 —v —-v 0.15
= — |+ (y—- — .
51 yexy< » (v 1)ex;<1_y” (10
£y
& o1
One can see that sinceOy< 1, the gain term decays expo-
nentially withv but faster than the solutio®) [i.e., a non- 0.05
neglected loss term in E€R)]. We expect that Eq9) is only )
an asymptotic  —) solution of the master equatidi).
Thus, for velocitiesu~O(1) the distributionP(u) deviates 0
from the asymptotic forn{9). This will modify the integral
(10), but only in the vicinity ofu=0 andu=uv/y. As we S vl _
argue below, such a modification &f(u) still leads to the FIG. 2. Velocity distributionP(v) calculated using Monte Carlo
gain term decaying faster than the loss term. simulations. Simulations were made = 10° particles. Continu-

Indeed, the contribution around=0 is a product oP(u) ous lines are the results obtained from Fourier inversion. The inset
and of the exponential term exp-v— yu)/(1—7)]. Thus, for shows our data in the semilogarithmic scale.

largev, a modification of?(u) aroundu=0 will change our In conclusion, we have shown that the Maxwell model
estimation(10), but only at the order of eXp-v/(1~7)].  proposed by Ben-Naim and Krapivsky has velocity distribu-
Similarly, one can show that a modification B{u) around  tion decaying as a bilateral exponential. Together with the
u=v/y will change Eq.(10) by a factor of the order of recent results by Ernst and Brifa0], it indicates that such a
exp(—v/y). Consequently, the gain term again decays fastedecay might be of more generic nature for this class of mod-
than the solutiorP(v), which justifies its neglect. Let us also els. As a possible extension, it would be desirable to examine
notice that wheny approaches 0 or 1 the model becomessome other Maxwell models where velocities are not scalars
energy conserving and the bilateral exponential distributiorbut ratherd-dimensional vectors. Actually, such models were
(9) is no longer expected to hold. But it is easy to notice tha@lready studied and the analysis indicates that, for increasing
in such cases the decay of the gain term matches the decay(a)fcorrelatlons b.etwe-en.the.velomtles and the deVla!:lC.)r-] from
the solutionP(v), and it cannot be neglected. the pure Gaussian distribution decreftg|. One possibility

As a comment let us notice that knowing the second molS that there might be a critical dimensialy and such that

ment of P(v) [12] enables us to calculate the effective tem-for d<d t'he velocity distribution has; a bilateral e'xponential
peratureT of our systems defined as an averaged square V(?_ecay(as in the present modelwhile I has Gaussian decay
locity, or d=d.. Analysis of such models is, however, left for the
' future.

Note addedAfter our paper was completed, U. M. B.

Marconi brought to our attention a Maxwell model of a

m- (13) granular mixture for which an exponential velocity distribu-
tion was also obtaineflL4]. Morever, P. Krapivsky and E.

To chec:< thg V?"c_j'ty offm.;}rl calculaltlons, V‘lle alsr? r;:""deBen-Naim sent us another analytical derivation of an expo-
Monte Carlo simulations of this model. Results, whic ar®hential velocity distribution for the BNK model.

shown in Fig. 2, confirm the bilateral exponential decay of
P(v) although the accuracy is this time much lower. Our We acknowledge interesting discussions with Foisic
Monte Carlo data are rescaled in such a way that their variCoppex. This work was partially supported by the Swiss Na-
ance matches that obtained using the Fourier transformional Science Foundation and Project No. OFES 00-0578
method, and a very good agreement is seen even on tH€OSYC OF SENS” and the Hungarian Academy of Sci-

T=(v?)=

logarithmic scale. ences(Grant No. OTKA T029792
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