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Dynamic phase separation of fluid membranes with rigid inclusions

Thomas R. Weikl*
Max-Planck-Institut fu¨r Kolloid- und Grenzfla¨chenforschung, 14424 Potsdam, Germany

~Received 5 September 2002; published 30 December 2002!

Membrane shape fluctuations induce attractive interactions between rigid inclusions. Previous analytical
studies showed that the fluctuation-induced pair interactions are rather small compared to thermal energies, but
also that multibody interactions cannot be neglected. In this paper, it is shown numerically that shape fluctua-
tions indeed lead to the dynamic separation of the membrane into phases with different inclusion concentra-
tions. The tendency of lateral phase separation strongly increases with the inclusion size. Large inclusions
aggregate at very small inclusion concentrations and for relatively small values of the inclusions’ elastic
modulus.
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I. INTRODUCTION

Biological and biomimetic membranes consist of a lip
bilayer with various types of macromolecules such as p
teins @1,2#. Many of these macromolecules are incorpora
in the bilayer, others are covalently bound or adsorbed to
membrane. The membranes are fluid and often tend to p
separate and form domains or ‘‘rafts’’ with different molec
lar compositions. In biological membranes, the presence
domains has been linked to specific functions in signal
@3#, budding@4#, or cell adhesion@5,6#. In some cases, th
domain formation is caused by a separation of the lipid
layer into phases with different lipid compositions@7,8#. In
other cases, the phase separation of the membrane appe
be driven by attractive interactions between membrane in
sions@9#.

Besides direct interactions such as van der Waals or e
trostatic forces, membrane inclusions are subject to indi
interactions that are mediated by the membrane. Som
these membrane-mediated interactions arestatic, i.e., they
arise from local perturbations of the bilayer structure
shape around the inclusions. Transmembrane proteins
exhibit a hydrophobic mismatch with respect to the lip
bilayer cause a perturbation of the bilayer thickness. T
thickness perturbation has been found to induce attrac
interactions between the proteins@10–13#. Similar interac-
tions due to membrane thickness perturbations have
been proposed for adsorbed particles@14#. Membrane inclu-
sions with conical shape@15–21# or membrane-anchore
polymers@22,23# cause local perturbations of the membra
curvature, which induce attractive or repulsive interaction

Other indirect interactions aredynamic, i.e., they are me-
diated by shape fluctuations of the membrane. In this pa
rigid membrane inclusions are considered, which inter
due to the suppression of membrane shape fluctuat
@15,24–30#, see Fig. 1. Fluctuation-induced interactions ha
also been found for specific receptors or stickers that loc
bind opposing membranes during adhesion@31–33#.

The fluctuation-induced pair interactions of rigid mem
brane inclusions have been studied intensively@15,19,20,24–
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27,30#. The pair interaction of rigid disks with radiusr and
distanceL was found to be

G~L !526kBT~r /L !41O@~r /L !6# ~1!

in the absence of an external membrane potential and la
tension@15,26#. Here,O@(r /L)6# stands for terms of sixth o
higher order inr /L. The prefactor of the leading term in Eq
~1! was first 12, and later corrected to 6@26#, see also Refs
@19,20,25,30#. Since the distanceL has to be larger than th
inclusion diameter 2r , this term is only a fraction of the
thermal energykBT. However, higher-order terms in (r /L)
might be relevant at small inclusion separations, and t
contribute to the phase behavior of a membrane with m
inclusions. Deducing the phase behavior of such a memb
is also complicated by nontrivial multi-body interaction
@27#.

In this paper, it is shown numerically that membran
shape fluctuations indeed lead to the aggregation of r
inclusions. The phase behavior of a discretized membr
with rigid inclusions is considered in Monte Carlo simul
tions. The membrane consists of quadratic patches with
ear extensiona, which corresponds to the smallest possib
wavelength for bending deformations. Computer simulatio
of molecular membrane models indicate that this length sc
is about 6 nm for a lipid bilayer with a thickness of about
nm @34#. Above a critical valueK* for the stiffness modulus
of the inclusions, the membrane is found to separate into
inclusion-rich and an inclusion-poor phase. The aggrega
tendency of the inclusions strongly increases with the sizeQ,
which is reflected in a decrease of the critical stiffnessK*
with the inclusion size. Large inclusions also aggregate
ready at relatively small inclusion concentrations. Here, q
dratic inclusions with a sizeQ of 232, 333, or 434 mem-

FIG. 1. Rigid inclusion in the lipid bilayer.
©2002 The American Physical Society15-1
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brane patches are considered, which extends previous re
on smaller inclusions with the size of a single patch@29#. For
these inclusions, the critical stiffness is found to decre
according to the power lawK* ;Qc with exponentc.
20.70.

II. GENERAL MODEL

The configurations of a fluctuating membrane with inc
sions can be described by a fieldl for the membrane shap
and a concentration fieldn for the inclusions@35#. For a
membrane that is on average planar, the membrane sha
usually given by the deviationl (x,y) from a reference plane
with coordinatesx and y. Here, the reference plane is di
cretized into a square lattice with lattice constanta, which
corresponds to the smallest possible wavelength for ben
deformations. The inclusion positions are then given by
cupation numbersni50 or 1, whereni51 denotes the pres
ence of an inclusion at the lattice sitei of the reference plane
see Fig. 2.

In the absence of inclusions, the discretized bending
ergy per lattice site can be written as

E i
M~ l !5 1

2 a2ko~ci ,x1ci ,y!2, ~2!

where ko is the bending rigidity of the lipid bilayer, and
1
2 (ci ,x1ci ,y) is the local mean curvature of the membra
@36#. Here,

ci ,x5~ l x1a,y1 l x2a,y22l x,y!/a2, ~3!

ci ,y5~ l x,y1a1 l x,y2a22l x,y!/a2, ~4!

are the discretized curvatures inx and y directions at the
lattice sitei with coordinates (x,y). The rigid inclusions here
are characterized by the elastic energy per site,

E i
I~ l !5 1

2 a2K~ci ,x
2 1ci ,y

2 !, ~5!

with the stiffness modulusK @37#. For K→`, such inclu-
sions are completely rigid and suppress any local curva
at the inclusion position similar to the rigid disks or ro
studied in Refs.@15,25,26,30#. In contrast, inclusions with
increased bending rigidity as considered in Refs.@24,27,29#
only suppress fluctuations of the total curvatureci ,x1ci ,y ,
but not saddle-type fluctuations withci ,x52ci ,y .

FIG. 2. A membrane segment containing inclusions with
size of one lattice site. The segment consists of 534 membrane
patches that are labeled by the lattice sitesi. Membrane patches
with black inclusions correspond to occupation numbersni51,
while gray patches without inclusion have occupation numbersni

50. The local deviation of the membrane from the white refere
plane is denoted byl i .
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The grand-canonical Hamiltonian of a membrane conta
ing inclusions with the size of one lattice site can be writt
as

HQ51$ l ,n%5(
i

$~12ni !E i
M~ l !1ni@E i

I~ l !2m#1V~ l i !%,

~6!

wherem is the relative chemical potential of the inclusion
andV( l i) is the external membrane potential. For lattice si
with occupation numbersni51 indicating the presence o
inclusions, the elastic energy is given byE i

I( l ). For lattice
sites withni50, the elastic energy is the energyE i

M( l ) of
the lipid bilayer.

The larger inclusions considered here have an area oQ
5232, 333, or 434 membrane patches or lattice site
see Fig. 3. The elastic energy at every lattice site of an
clusion is given by Eq.~5!. The larger inclusions thus can b
seen as quadratic arrays of small inclusions with the size
one lattice site. The grand–canonical Hamiltonian for
membrane with larger inclusions can be formally written
@32#

HQ$ l ,n%5(
i

H E i
M~ l !1niF (

q51

Q

@E iq
I ~ l !2E iq

M~ l !#2mG
1V~ l i !J 1(̂

i j &
Wi j ninj , ~7!

where $ i1, . . . ,iQ% denotes quadratic arrays ofQ5232,
333, or 434 lattice sites. The position of an inclusio
given byni51 corresponds to one of the lattice sites occ
pied by the inclusion, e.g., the center of an inclusion w
sizeQ5333. The hard-square interaction

e

e

FIG. 3. Top view of membrane segments with inclusions of s
Q51, 232, 333, and 434, respectively. The inclusions ar
shown in black.
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Wi j 5` for j in Ai
Q

50 otherwise ~8!

prevents any overlap of inclusions. Here,Ai
Q denotes the

exclusion area of an individual inclusion with sizeQ at lat-
tice sitei.

In the following, the external potential of the membrane
taken to be the harmonic potential

V~ l i !5mli
2/2 ~9!

with potential strengthm. The harmonic potential introduce
an additional length scale, the correlation lengthj
5(4a2ko /m)1/4 for the deviation fieldl, see, e.g., Ref.@24#.
Membrane fluctuations on length scales larger than the
relation lengthj are suppressed by the harmonic potent
while fluctuations on smaller scales are governed predo
nantly by the elastic energy of the membrane.

The membrane model defined by Eqs.~2!–~7! has four
characteristic dimensionless parameters, as can be show
introducing the rescaled deviation field

z[~ l /a!Ako /~kBT!. ~10!

These parameters are the ratioK/ko of the inclusion modu-
lus and the bare membrane rigidity, the dimensionless che
cal potentialm/(kBT) for the inclusions, the rescaled pote
tial strengthm̃[ma2/ko , and the inclusion sizeQ.

III. MONTE CARLO SIMULATIONS

To deduce the phase behavior from Monte Carlo simu
tions, the inclusion concentrationX[Q^ni&/a

2 is determined
as a function of the chemical potentialm for various values
of the inclusion stiffnessK, sizeQ, and the rescaled potentia
strengthm̃. A first-order phase transition is reflected in
discontinuity of X(m) at a certain chemical potentialm tr .
The two limiting values ofX(m) at m tr are the inclusion
concentrations of the coexisting phases, an inclusion-
and an inclusion-poor phase. To determine the inclusion c
centrationX at a given value ofm, Monte Carlo simulations
are performed with up to 107 Monte Carlo steps per lattic
site on a lattice with 1203120 sites and periodic boundar
conditions. Each Monte Carlo step consists in attempted
cal moves of the rescaled deviation fieldz and of the con-
centration fieldn on all lattice sites. For rescaled potenti
strengthsm̃>0.01 as considered here, the correlation len
of the membrane is much smaller than the lateral exten
of the lattice, and finite size effects are negligible.

In Fig. 4, phase diagrams as a function of the inclus
modulusK are shown for inclusions with sizeQ51, 232,
and 333. The rescaled potential strength ism̃50.01. At
points (X,K) inside the shaded two-phase coexistence
gions, the membrane separates into an inclusion-rich an
inclusion-poor phase. The inclusion concentrations in the
existing phases are given by the lines of Monte Carlo d
points, the critical points are represented by stars. The ex
of the two-phase regions strongly increases with the inc
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sion sizeQ, which is reflected~i! in a strong decrease of th
critical stiffnessK* and~ii ! in an increase of the width of the
coexistence region with the inclusion size. For inclusio
with sizeQ5333, the membrane phase separates alread
very small inclusion concentrations.

The external harmonic potential~9! suppresses
membrane-shape fluctuations for length scales larger than
correlation lengthz5a(4/m̃)1/4. Since the phase separatio
of the membrane is driven by the fluctuations, the critic
stiffnessK* increases with the rescaled potential strengthm̃,
see Fig. 5. For weak potentials with small values ofm̃, the
critical stiffness is rather independent ofm̃ and tends towards
a limiting value, since the correlation lengthz then is much
larger than the average distance between neighboring in
sions.

In the absence of an external potential, i.e., form̃50, the
critical stiffnessK* of the inclusions only depends on th
inclusion sizeQ. Since the increasing correlation lengthz
leads to finite size effects in Monte Carlo simulations w

FIG. 4. Phase diagrams for inclusions with sizeQ51, Q52
32, andQ5333 as function of the inclusion concentrationX and
stiffnessK in units of the bare membrane rigidityko . The rescaled

potential strength ism̃50.01. Inside the shaded coexistence
gions, the membrane separates into an inclusion-rich and
inclusion-poor phase with concentrations given by the lines
Monte Carlo points. The critical points are represented by stars
5-3
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m̃50, the critical stiffnessK* for m̃→0 is determined here
by extrapolation, see Table 1. For the inclusion sizes con
ered in this paper, the functional dependence of the crit
valuesK* for m̃→0 on the sizeQ can be approximated b
the power law

K* ;Qc, ~11!

with exponentc520.7060.01, see Fig. 6.

IV. SCALING ANALYSIS

Large inclusions with sizeQ.1 can be seen as quadrat
arrays of small inclusions with the size of one lattice si
These inclusions aggregate at much smaller values of
stiffnessK than inclusions with sizeQ51, see above. In
order to understand this behavior, it is instructive to consi
the free energy differenceDF between the two membran
states: The uniform state in which the inclusions are more
less homogeneously distributed throughout the membr
and the phase-separated state in which the inclusions ar
gregated. IfDF is negative, the membrane will be in it
homogenous state; ifDF is positive, the membrane wil
phase separate. For a given area concentrationX of the in-
clusions, the free energy difference between the uniform
the aggregated state can be written as

DF~K,Q!5DFint~K,Q!2TDSmix~Q! ~12!

TABLE I. Critical valuesK* /ko of the inclusion stiffnessK in
units of the bare membrane rigidityko for various inclusion sizesQ

and rescaled potential strengthsm̃. Values forK* /ko in the limit

m̃→0 are obtained by extrapolation from the critical values at fin

m̃ shown in the columns 2–4.

m̃51 m̃50.1 m̃50.01 m̃→0

Q51 300610 225610 205610 198610
Q5232 10062 8162 7762 7662
Q5333 5562 4462 4362 42.962
Q5434 3762 2962 2862 27.962

FIG. 5. Critical inclusion stiffnessK* as a function of the res

caled potential strengthm̃ for inclusions with sizeQ5232. The
critical stiffnessK* is given in units of the bare membrane rigidi

ko and increases withm̃ since the harmonic potential suppress
membrane fluctuations.
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in the absence of an external potential, i.e., form50. Here,
DFint(K,Q) is the difference in the dynamic interaction fre
energy of the inclusions, which is induced by the shape fl
tuations of the membrane, andDSmix(K,Q) is the difference
in the entropy of mixing.

The second term in Eq.~12! is dominated by the entropy
of mixing in the homogeneous state. For small area conc
trationsX5Q^ni&/a

2 of the inclusions, this entropy of mix
ing is proportional to the number of inclusions, andDSmix
scales as

DSmix~Q!;1/Q. ~13!

Equation~13! simply results from the fact that the number
inclusions is proportional to 1/Q for given area concentration
X of the inclusions.

The termDFint(K,Q) is dominated by the interaction fre
energy of the inclusions in the aggregated state. ForQ.1,
the inclusions are rather densely packed in this state with
area fractiona2X larger than 0.9~see Fig. 4!, and have con-
tact with neighboring inclusions almost along the whole c
cumference of length 4AQ. If one assumes that the intera
tion free energy in the aggregated state is proportional to
ratio of the inclusion circumference 4AQ and the areaQ, the
scaling form of the interaction free energy difference can
estimated as

DFint~K,Q!. f ~K !/AQ;Km/AQ, ~14!

presupposing power law form forf (K). According to this
estimate, the interaction free energyDFint decreases with the
inclusion sizeQ proportional toQ21/2, following the de-
crease of the ‘‘surface-to-area’’ ratio of the inclusions. T
critical stiffnessK* obtained fromDF50 then scales as

K* ;Q21/(2m). ~15!

Comparing with the exponentc.20.70 from the Monte
Carlo simulations~see Fig. 6!, one obtains

m521/~2c!.0.71. ~16!

FIG. 6. Scaling plot for the critical inclusion stiffnessK* as a
function of the sizeQ in the limit of the rescaled potential strengt

m̃→0, see also Table I. The straight line has the slope20.70,
which corresponds to the exponentc in Eq. ~11!.
5-4
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Thus, for the stiffness valuesK and inclusion sizesQ con-
sidered here, the dynamic interaction free energyDFint of
the inclusions appears to increase proportional toK0.71.

V. DISCUSSION

In summary, I have considered the dynamic phase beh
ior of a discretized membrane with rigid inclusions usi
Monte Carlo simulations. The phase behavior strongly
pends on the inclusion size. For inclusion sizes ranging fr
Q51 to Q5434 lattice sites or membrane patches, t
critical stiffnessK* decreases with the size asK* ;Q20.70 in
the absence of an external potential, see Fig. 6. The la
extension of a membrane patch, the lattice spacinga, corre-
sponds to the cutoff length for membrane-shape fluctuatio
which has been estimated as 6 nm for a membrane wi
thickness of about 4 nm@34#. In biological or biomimetic
membranes, rigid objects with an extension larger than 6
may correspond to large transmembrane proteins, aggreg
of proteins and other macromolecules, or, more gene
membrane domains with increased elastic moduli. Colloi
particles adsorbed on membranes suppress membrane
tuations similar to rigid inclusions. In general, membra
inclusions and membrane-adsorbed particles may have a
riety of shapes and, therefore, orientational degrees of f
dom @20,26,28#. Here, I have only considered quadratic o
jects on a square lattice. At high area concentrationsa2X
.0.8, the phase behavior of the membrane with quadr
inclusions of sizeQ.1 is complicated by the packing tran
sitions of the hard-square lattice gas@38,39#, which are not
considered here. These transitions are induced by the h
square interactions~8! of the inclusions, but do not depen
on the inclusion stiffness in contrast to the dynamic ph
separation.

The inclusions considered here suppress fluctuation
the local curvaturesci ,x andci ,y in x andy directions at the
inclusion sites, see Eqs.~3!–~5!. In contrast, inclusions with
increased bending rigidity studied in Refs.@24,27,29# only
suppress fluctuations of the total curvatureci ,x1ci ,y , but not
‘‘saddle-type’’ fluctuations withci ,x52ci ,y , which seems
somewhat less realistic. The phase behavior of these in
sions is remarkably different from that of the rigid inclusio
s

.

w,

-

.
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studied here. Inclusions with increased bending rigidity
not interact in the absence of an external membrane po
tial, since local fluctuations of the total curvature at differe
membrane sites are not correlated in the free membrane@24#.
Such correlations are only induced by the external poten
of the membrane. The fluctuation-induced interactions
tween inclusions with increased bending rigidity attain
maximum at a certain nonzero potential strength, but
always considerably weaker than those of rigid inclusio
characterized by Eq.~5!, see Ref.@29#. Intermediate cases
between these two types of inclusions can be studied by
ing an elastic energy with two moduli for the inclusions@29#.

Rigid inclusions may also be subject to other membra
mediated interactions if they perturb the bilayer thickness
have a conical or wedgelike shape, see the Introduction
general, dynamic fluctuation-induced interactions can be
sumed to be additive to static interactions arising from p
turbations of the equilibrium membrane structure, as long
these perturbations do not affect the elastic moduli of
membrane. The variety of membrane-mediated indirect in
actions often complicates the interpretation of experimen
results. The dynamic phase separation of a fluctuating m
ticomponent membrane in contact with a substrate has b
recently reported in Ref.@40#. The membrane contains an
chored polymers and appears to phase separate into dom
with different separation from the substrate, which might
sult from different effective bending rigidities for the do
mains since the fluctuation-induced Helfrich repulsion@41#
between membrane and substrate depends on the rig
Fluctuation-induced interactions may also contribute to
aggregation of latex spheres adsorbed to vesicles reporte
Ref. @42#. Lateral phase separation has also been obse
during the adhesion of biomimetic membranes with spec
receptors or stickers that bind to ligands in a supported m
brane@9#. Phase separation during membrane adhesion
be induced by membrane fluctuations@32,33# or by an effec-
tive barrier in the interaction energy between the membra
@33,43,44#. In the first case, the aggregation tendency of
stickers strongly increases with the sticker size, similar to
rigid inclusion considered here@32#. The fluctuation-induced
interactions between bound stickers are also enhanced i
stickers are more rigid than the surrounding membrane@33#.
k-
-
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