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Dynamic phase separation of fluid membranes with rigid inclusions
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Membrane shape fluctuations induce attractive interactions between rigid inclusions. Previous analytical
studies showed that the fluctuation-induced pair interactions are rather small compared to thermal energies, but
also that multibody interactions cannot be neglected. In this paper, it is shown numerically that shape fluctua-
tions indeed lead to the dynamic separation of the membrane into phases with different inclusion concentra-
tions. The tendency of lateral phase separation strongly increases with the inclusion size. Large inclusions
aggregate at very small inclusion concentrations and for relatively small values of the inclusions’ elastic
modulus.
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[. INTRODUCTION 27,30. The pair interaction of rigid disks with radiusand
distancel. was found to be

Biological and biomimetic membranes consist of a lipid
bilayer with various types of macromolecules such as pro- G(L)=—6kgT(r/L)*+O[(r/L)°] (1)
teins[1,2]. Many of these macromolecules are incorporated
in the bilayer, others are covalently bound or adsorbed to th& the absence of an external membrane potential and lateral
membrane. The membranes are fluid and often tend to phasension[15,26]. Here,O[ (r/L)®] stands for terms of sixth or
separate and form domains or “rafts” with different molecu- higher order irr/L. The prefactor of the leading term in Eq.
lar compositions. In biological membranes, the presence ofl) was first 12, and later corrected td 86], see also Refs.
domains has been linked to specific functions in signalind19,20,25,30 Since the distanck has to be larger than the
[3], budding[4], or cell adhesior5,6]. In some cases, the inclusion diameter 2, this term is only a fraction of the
domain formation is caused by a separation of the lipid bithermal energykgT. However, higher-order terms i /L)
layer into phases with different lipid compositiofig8]. In  might be relevant at small inclusion separations, and thus
other cases, the phase separation of the membrane appearsatatribute to the phase behavior of a membrane with many
be driven by attractive interactions between membrane incluinclusions. Deducing the phase behavior of such a membrane
sions[9]. is also complicated by nontrivial multi-body interactions

Besides direct interactions such as van der Waals or ele¢27].
trostatic forces, membrane inclusions are subject to indirect In this paper, it is shown numerically that membrane-
interactions that are mediated by the membrane. Some ehape fluctuations indeed lead to the aggregation of rigid
these membrane-mediated interactions stegic, i.e., they inclusions. The phase behavior of a discretized membrane
arise from local perturbations of the bilayer structure orwith rigid inclusions is considered in Monte Carlo simula-
shape around the inclusions. Transmembrane proteins thtbns. The membrane consists of quadratic patches with lin-
exhibit a hydrophobic mismatch with respect to the lipid ear extensiora, which corresponds to the smallest possible
bilayer cause a perturbation of the bilayer thickness. Thisvavelength for bending deformations. Computer simulations
thickness perturbation has been found to induce attractivef molecular membrane models indicate that this length scale
interactions between the proteifs0—13. Similar interac- is about 6 nm for a lipid bilayer with a thickness of about 4
tions due to membrane thickness perturbations have alsom [34]. Above a critical valu&* for the stiffness modulus
been proposed for adsorbed partid&4]. Membrane inclu-  of the inclusions, the membrane is found to separate into an
sions with conical shapgl5-21 or membrane-anchored inclusion-rich and an inclusion-poor phase. The aggregation
polymers[22,23 cause local perturbations of the membranetendency of the inclusions strongly increases with the Qze
curvature, which induce attractive or repulsive interactions.which is reflected in a decrease of the critical stiffn&Ss

Other indirect interactions amynamic i.e., they are me- with the inclusion size. Large inclusions also aggregate al-
diated by shape fluctuations of the membrane. In this papeready at relatively small inclusion concentrations. Here, qua-
rigid membrane inclusions are considered, which interactiratic inclusions with a siz® of 2xX 2, 3X 3, or 4X4 mem-
due to the suppression of membrane shape fluctuations

[15,24-3(), see Fig. 1. Fluctuation-induced interactions have
also been found for specific receptors or stickers that locally
bind opposing membranes during adhediab—33.

The fluctuation-induced pair interactions of rigid mem-
brane inclusions have been studied intensiy&$;19,20,24 —

*Electronic address: Thomas.Weikl@mpikg-golm.mpg.de FIG. 1. Rigid inclusion in the lipid bilayer.
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FIG. 2. A membrane segment containing inclusions with the
size of one lattice site. The segment consists Bf45membrane
patches that are labeled by the lattice sitedMembrane patches
with black inclusions correspond to occupation numbeyrs 1,
while gray patches without inclusion have occupation numbers
=0. The local deviation of the membrane from the white reference
plane is denoted bl .

brane patches are considered, which extends previous resu
on smaller inclusions with the size of a single p&t28]. For
these inclusions, the critical stiffness is found to decrease
according to the power lakK* ~Q° with exponentc=
—0.70.

Il. GENERAL MODEL FIG. 3. Top view of membrane segments with inclusions of size
Q=1, 2x2, 3%X3, and 4x4, respectively. The inclusions are

The configurations of a fluctuating membrane with inclu- )
shown in black.

sions can be described by a fidldor the membrane shape
and a concentration field for the inclusions[35]. For a The grand-canonical Hamiltonian of a membrane contain-
membrane that is on average planar, the membrane shape. is . gre X . X . .

: o ing inclusions with the size of one lattice site can be written
usually given by the deviatio(x,y) from a reference plane

: ; .. as

with coordinatesx andy. Here, the reference plane is dis-
cretized into a square lattice with lattice constanwhich
corresponds to the smallest possible wavelength for bendingHq-1{l,n}= 2 {(1- ni)é‘i’\"(l )+ ni[Ei'(I ) =] +V(ID},
deformations. The inclusion positions are then given by oc- : 6
cupation numberg;=0 or 1, wheren;=1 denotes the pres- (6)

ence (_)f an inclusion at the lattice sitef the reference plane, where x is the relative chemical potential of the inclusions
see Fig. 2. . . . . . andV(l;) is the external membrane potential. For lattice sites
In the ab§enc§ of mclusmn_s, the discretized bending eny;iih occupation numbers;=1 indicating the presence of
ergy per lattice site can be written as inclusions, the elastic energy is given BY(l). For lattice
5?A(|)=%32Ko(0i S y)z, ) sites_ v_vith _ni=0, the elastic energy is the energy'(l) of
’ ’ the lipid bilayer.
where k, is the bending rigidity of the lipid bilayer, and  The larger inclusions considered here have an areQ of
3(Cix+Ciy) is the local mean curvature of the membrane=2x2, 3x3, or 4X4 membrane patches or lattice sites,
[36]. Here, see Fig. 3. The elastic energy at every lattice site of an in-
clusion is given by Eq(5). The larger inclusions thus can be
Cix=(lxraytlx-ay=2lyy)/a? (3)  seen as quadratic arrays of small inclusions with the size of
one lattice site. The grand—canonical Hamiltonian for a
Ciy=(lxyratlxy-a—2lxy)/a (40 membrane with larger inclusions can be formally written as

o . - [32]
are the discretized curvatures xandy directions at the

lattice sitei with coordinatesX,y). The rigid inclusions here Q
are characterized by the elastic energy per site, Holl,n}=2 1M +n, 21 [Elq(D—ERMDT—u
i q=
gi(h=3a%K(c? +c?)), (5)

with the stiffness modulu& [37]. For K—, such inclu- V(I')] <.2,> Wining ™

sions are completely rigid and suppress any local curvature

at the inclusion position similar to the rigid disks or rods where{il, ... .iQ} denotes quadratic arrays @=2Xx2,
studied in Refs[15,25,26,30 In contrast, inclusions with 3X3, or 4X4 lattice sites. The position of an inclusion
increased bending rigidity as considered in RE2,27,29  given byn;=1 corresponds to one of the lattice sites occu-
only suppress fluctuations of the total curvatefg+c; ,, pied by the inclusion, e.g., the center of an inclusion with
but not saddle-type fluctuations with ,=—¢; , . size Q=3X3. The hard-square interaction
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Wij=00f0rj in AlQ K 500 * Q:]_ *
=0 otherwise (8) — = 1 ’
Ko 400 . .
prevents any overlap of inclusions. He? denotes the 350 3 y
exclusion area of an individual inclusion with sigeat lat- 560
tice sitei. ” i
In the following, the external potential of the membrane is 250 .
taken to be the harmonic potential 200 Wy
) 0 0.2 0.4 0.6 0.8 1
V(I;)=mlf/2 9
(I)=ml; 9 2007 0_sxs °
with potential strengtim. The harmonic potential introduces 180 |o - .
an additional length scale, the correlation length 160 .
= (4a’k,/m)Y* for the deviation field, see, e.g., Ref24]. 1401 o L
Membrane fluctuations on length scales larger than the cor- o0
relation length¢ are suppressed by the harmonic potential, '. .'
while fluctuations on smaller scales are governed predomi- 10, % y
nantly by the elastic energy of the membrane. 80 Vo x ere®
The membrane model defined by E@8)—(7) has four 60
characteristic dimensionless parameters, as can be shown be o 02 Bk 05 Ui 1
introducing the rescaled deviation field 120 Y
b Q=3x%x3 L
z=(l/a) Vro /I (kgT). (10 100 .
\4 ¢
These parameters are the raiox, of the inclusion modu- 80 e .
lus and the bare membrane rigidity, the dimensionless chemi- . .
cal potentialu/(kgT) for the inclusions, the rescaled poten- 60 9 4
tial strengthm=ma? «,,, and the inclusion siz®. 40 Yo e e e ot
lll. MONTE CARLO SIMULATIONS @ 92 0% 498 OF 1
a?X

To deduce the phase behavior from Monte Carlo simula-
tions, the inclusion concentratiot= Q(n;)/a? is determined FIG. 4. Phase diagrams for inclusions with sQe=1, Q=2
as a function of the chemical potentjalfor various values X2, andQ=3X 3 as function of the inclusion concentrati¥rand
of the inclusion stiffnes, sizeQ, and the rescaled potential stiffnessK in units of the bare membrane rigidity, . The rescaled
strengthm. A first-order phase transition is reflected in a potential strength isn=0.01. Inside the shaded coexistence re-
discontinuity of X(w) at a certain chemical potential,, . gions, the membrane separates into an inclusion-rich and an
The two limiting values ofX(u) at u, are the inclusion inclusion-poor phase With'(_:oncen'trations given by the lines of
concentrations of the coexisting phases, an inclusion-ricfionte Carlo points. The critical points are represented by stars.

and an_inclusion-poor phase. To determine the i_nclusi_on CONsion sizeQ, which is reflectedi) in a strong decrease of the
centrationX at a given value oft, Monte Carlo simulations  ¢ritical stiffnessk* and(ii) in an increase of the width of the
are performed with up to Y0Monte Carlo steps per lattice coexistence region with the inclusion size. For inclusions

site on a lattice with 128120 sites and periodic boundary with sizeQ=3x 3, the membrane phase separates already at
conditions. Each Monte Carlo step consists in attempted loyery small inclusion concentrations.

cal moves of the rescaled deviation fiedddand of the con- The external harmonic potential(9) suppresses
centration fieldn on all lattice sites. For rescaled potential membrane-shape fluctuations for length scales larger than the
strengthsm=0.01 as considered here, the correlation lengtrcorrelation length=a(4/m)¥*. Since the phase separation
of the membrane is much smaller than the lateral extensionf the membrane is driven by the fluctuations, the critical
of the lattice, and finite size effects are negligible. stiffnessK* increases with the rescaled potential strength
In Fig. 4, phase diagrams as a function of the inclusionsee Fig. 5. For weak potentials with small valuestofthe

modulusK are shown for inclusions with siZQ=1, 2X2,  ¢\jico stiffness is rather independentrafand tends towards
and 3x3. The rescaled potential strengthris=0.01. At 3 |imiting value, since the correlation lengghthen is much

points (X,K) inside the shaded two-phase coexistence retarger than the average distance between neighboring inclu-
gions, the membrane separates into an inclusion-rich and aions.

inclusion-poor phase. The inclusion concentrations in the co- | the absence of an external potential, i.e.,ifor 0, the
existing phases are given by the lines of Monte Carlo datgritical stiffnessk* of the inclusions only depends on the
points, the critical points are represented by stars. The extefi{clusion sizeQ. Since the increasing correlation length
of the two-phase regions strongly increases with the incluteads to finite size effects in Monte Carlo simulations with
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FIG. 5. Critical inclusion stiffnes&* as a function of the res- FIG. 6. Scaling plot for the critical inclusion stiffness® as a
caled potential strengtn for inclusions with sizeQ=2X2. The  fynction of the sizeQ in the limit of the rescaled potential strength
critical stiffnessK* is given in units of the bare membrane rigidity M—0, see also Table I. The straight line has the slop@.70
Kk, and increases witim since the harmonic potential suppressesyhich corresponds to the exponenin Eq. (11).
membrane fluctuations.

~ ~ in the absence of an external potential, i.e.,rfor 0. Here,
m=0, the critical stiffnes* for m—0 is determined here AF; (K,Q) is the difference in the dynamic interaction free
by extrapolation, see Table 1. For the inclusion sizes consitenergy of the inclusions, which is induced by the shape fluc-
ered in this paper, the functional dependence of the criticajuations of the membrane, ands,,,i,(K,Q) is the difference
valuesk* for m—0 on the sizeQ can be approximated by in the entropy of mixing.

the power law The second term in Eq12) is dominated by the entropy
of mixing in the homogeneous state. For small area concen-
K*~Q°, (1) trationsX=Q(n;)/a? of the inclusions, this entropy of mix-
_ ) ing is proportional to the number of inclusions, an®,,y
with exponentc= —0.70+ 0.01, see Fig. 6. scales as
IV. SCALING ANALYSIS AS,i(Q)~1/Q. (13

Large inclusions with siz€>1 can be seen as quadratic ) )
arrays of small inclusions with the size of one lattice site.Equation(13) simply results from the fact that the number of

These inclusions aggregate at much smaller values of th@clusions is proportional to @ for given area concentration
stiffnessK than inclusions with siz&Q=1, see above. In X Of the inclusions. , _ ,

order to understand this behavior, it is instructive to consider '€ termAF; (K, Q) is dominated by the interaction free
the free energy differencAF between the two membrane €N€rgy of the inclusions in the aggregated state. @orl,
states: The uniform state in which the inclusions are more ofh® |nclus!onszare rather densely packed in this state with an
less homogeneously distributed throughout the membran@fé@ fractiora®X larger than 0.9see Fig. 4, and have con-
and the phase-separated state in which the inclusions are dg§¢t With neighboring inclusions almost along the whole cir-
gregated. IfAF is negative, the membrane will be in its cumference of length 4Q. If one assumes that the interac-
homogenous state; iAF is positive, the membrane will tion free energy in the aggregated state is proportional to the
phase separate. For a given area concentratiof the in-  atio of the inclusion circumference\® and the are®, the
clusions, the free energy difference between the uniform angcaling form of the interaction free energy difference can be
the aggregated state can be written as estimated as

AF(K,Q)=AF;,(K,Q)—TAS,«(Q) (12) AF, (K, Q)=f(K)/YQ~K™Q, (14)
TABLE |. Critical valuesK*/«, of the inclusion stiffnesK in presupposing power law form fdi(K). According to this

units of the bare mer_nbrane “gld"% for various 'ndu_s'on S'Z_eQ estimate, the interaction free eneify¥;,; decreases with the
and rescaled potential strengtirs Values forK*/«, in the limit inclusion sizeQ proportional tonlIZ following the de-

m— 0 are obtained by extrapolation from the critical values at finitecrease of the “surface-to-area” ratio of the inclusions. The

m shown in the columns 2-4. critical stiffnessK* obtained fromAF=0 then scales as
m=1 m=01 m=001  m—0 K* ~Q~vm), (15)
Q=1 300=10 225:10 205-10 198+10 ] .
Q=2x2 100+ 2 81+ 2 77+ 2 76+2 Comparing with the exponert=—0.70 from the Monte
Q=3x3 55+ 2 44+ 2 43+ 2 42.9+2 Carlo simulationgsee Fig. , one obtains
Q=4X4 37+2 29+2 28+2 27.9-2
m= —1/(2¢)=0.71. (16)
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Thus, for the stiffness valuds and inclusion size® con-  studied here. Inclusions with increased bending rigidity do
sidered here, the dynamic interaction free eneidy,,, of  not interact in the absence of an external membrane poten-

the inclusions appears to increase proportionaf$d™ tial, since local fluctuations of the total curvature at different
membrane sites are not correlated in the free membzdie
V. DISCUSSION Such correlations are only induced by the external potential

of the membrane. The fluctuation-induced interactions be-

In summary, | have considered the dynamic phase behavween inclusions with increased bending rigidity attain a
ior of a discretized membrane with rigid inclusions usingmaximum at a certain nonzero potential strength, but are
Monte Carlo simulations. The phase behavior strongly dealways considerably weaker than those of rigid inclusions
pends on the inclusion size. For inclusion sizes ranging frongharacterized by Eq5), see Ref[29]. Intermediate cases
Q=1 to Q=4Xx4 lattice sites or membrane patches, thepetween these two types of inclusions can be studied by us-
critical stiffnessK* decreases with the size 6§ ~Q~%"°in  ing an elastic energy with two moduli for the inclusidi28].
the absence of an external potential, see Fig. 6. The lateral Rigid inclusions may also be subject to other membrane-
extension of a membrane patch, the lattice spaeingprre-  mediated interactions if they perturb the bilayer thickness or
sponds to the cutoff length for membrane-shape fluctuationsiave a conical or wedgelike shape, see the Introduction. In
which has been estimated as 6 nm for a membrane with general, dynamic fluctuation-induced interactions can be as-
thickness of about 4 nm34J. In biological or biomimetic sumed to be additive to static interactions arising from per-
membranes, rigid objects with an extension larger than 6 nnurbations of the equilibrium membrane structure, as long as
may correspond to large transmembrane proteins, aggregatgéfese perturbations do not affect the elastic moduli of the
of proteins and other macromolecules, or, more generafnembrane. The variety of membrane-mediated indirect inter-
membrane domains with increased elastic moduli. Colloidahctions often complicates the interpretation of experimental
particles adsorbed on membranes suppress membrane flyesults. The dynamic phase separation of a fluctuating mul-
tuations similar to rigid inclusions. In general, membraneticomponent membrane in contact with a substrate has been
inclusions and membrane-adsorbed particles may have a veecently reported in Ref.40]. The membrane contains an-
riety of shapes and, therefore, orientational degrees of freezhored polymers and appears to phase separate into domains
dom[20,26,28. Here, | have only considered quadratic ob-with different separation from the substrate, which might re-
jects on a square lattice. At high area concentratiaf$  sult from different effective bending rigidities for the do-
>0.8, the phase behavior of the membrane with quadratigains since the fluctuation-induced Helfrich repulsjdi]
inclusions of sizeQ>1 is complicated by the packing tran- between membrane and substrate depends on the rigidity.
sitions of the hard-square lattice gig&8,39, which are not  Fluctuation-induced interactions may also contribute to the
considered here. These transitions are induced by the hardggregation of latex spheres adsorbed to vesicles reported in
square interactiong8) of the inclusions, but do not depend Ref. [42]. Lateral phase separation has also been observed
on the inclusion stiffness in contrast to the dynamic phaseluring the adhesion of biomimetic membranes with specific
separation. receptors or stickers that bind to ligands in a supported mem-

The inclusions considered here suppress fluctuations dfrane[9]. Phase separation during membrane adhesion may
the local curvatures; , andc; , in x andy directions at the be induced by membrane fluctuatidi32,33 or by an effec-
inclusion sites, see Eq&3)—(5). In contrast, inclusions with tive barrier in the interaction energy between the membranes
increased bending rigidity studied in Ref24,27,29 only  [33,43,44. In the first case, the aggregation tendency of the
suppress fluctuations of the total curvatarg+c; ,, but not  stickers strongly increases with the sticker size, similar to the
“saddle-type” fluctuations withc; ,=—c¢; ,, which seems rigid inclusion considered hef@2]. The fluctuation-induced
somewhat less realistic. The phase behavior of these incluateractions between bound stickers are also enhanced if the
sions is remarkably different from that of the rigid inclusions stickers are more rigid than the surrounding membi{&3g
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