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Linear stability analysis of retrieval state in associative memory neural
networks of spiking neurons
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We study associative memory neural networks of the Hodgkin-Huxley type of spiking neurons in which
multiple periodic spatiotemporal patterns of spike timing are memorized as limit-cycle-type attractors. In
encoding the spatiotemporal patterns, we assume the spike-timing-dependent synaptic plasticity with the asym-
metric time window. Analysis for periodic solution of retrieval state reveals that if the area of the negative part
of the time window is equivalent to the positive part, then crosstalk among encoded patterns vanishes. Phase
transition due to the loss of the stability of periodic solution is observed when we assumaeftemttion for
direct interaction among neurons. In order to evaluate the critical point of this phase transition, we employ
Floquet theory in which the stability problem of the infinite number of spiking neurons interactingawith
function is reduced to the eigenvalue problem with the finite size of matrix. Numerical integration of the
single-body dynamics yields the explicit value of the matrix, which enables us to determine the critical point
of the phase transition with a high degree of precision.
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[. INTRODUCTION networks[22—-29, state variables of neurons are assumed to
represent their firing rate. In neural networks of phase oscil-
Synchronized firing of neurons is a ubiquitous phenom-ators, phase variables are used to represent synchronized
enon in real nervous systems, and capability of synchronicityiring of neurons. The synaptic connections of Hermitian per-
of neurons for information processing has been the subject dfits networks of oscillators to memorize spatiotemporal pat-
many research papef&—11]. It has been revealed that re- terns of phase differences. Since some theoretical techniques
peating firing patterns of pyramidal neurons appear in shar'® available for the anaIyS|s of phase oscn!ators,. the prop-
waves of rat hippocampugl2]. This result of experiment erties of networks of oscillators have been investigated ex-
suggests the possible role of spatiotemporal patterns of spikgNSively[30-33. Even in the presence of white noise as
timing in encoding information in a real nervous system well as heterogeneity of oscillators we can derive the storage
Associative memory neural networks that memorize spagaﬁ)\l"’lc'tyt?]f ?etwork:ts of l(()sm]l‘lator.fl atnalyucaﬂg]. iblv off
tiotemporal patterns of spike timing are essential for under- evertheless, networks of osciliators may possibly ofier a

standing this information processing of spike timin distorted interpretation of synchronized firing in the real ner-
9 P g P 9. vous system unless interactions among neurons are suffi-

Much of the fundamental concepts of assom_atlve memo.n(:iently weak. To provide a real understanding of the infor-
neural networks have been developed by replica calculatiop,  tion processing of spike timing, we must adopt more

of Ising spin neural networks with the energy functid8—  yogically plausible models of neural networks. For this
15]. In these neural networks, the standard type of Hebb ruley,nose, neural networks of spiking neurons are considered
is assumed to define symmetric synaptic connections, whict pe sujtable models for investigation, though it remains an
bring about fixed-point-type attractors. These fixed-point-ynsolved problem to find adequate learning rule for spa-
type attractors are, however, useless for encoding spatioterfiotemporal patterns of spike timing. Since asymmetric syn-
poral patterns. Asymmetric synaptic connections play a sigaptic connections bring about sequential firings of spiking
nificant role in encoding spatiotemporal patterns, and themeurong 36,37, one may consider that asymmetric synaptic
the question arises about the learning rule that defines asymennections are essential for associative memory neural net-
metric synaptic connections so that the network functions asvorks of spiking neurons. In fact, incorporating asymmetric
associative memory for spatiotemporal patterns. When weynaptic connections, Gerstner al. have succeeded in en-
assume synchronous update rule for the dynamics of spicoding a few spatiotemporal patterns in networks of spiking
neural networks, a simple extension of the Hebb rule readilyneurons with discrete time dynamifgs].
realizes associative memory for spatiotemporal pattelés The spike-timing-dependent synaptic plasticity found in
Nevertheless, the problem becomes rather difficult when welectrophysiological experiments excites a good deal of in-
assume asynchronous update rule for spin neural networkgerest in this connection. It has been revealed that the modi-
Complicated learning rules are required to control the confication of excitatory synaptic weight depends on the precise
tinuous transition of network state in sequential retrieval oftimings of presynaptic and postsynaptic firinf@8—44Q.
spatial pattern§17,18. Synaptic weight is found to increase if firing of a presynaptic
In spin neural networkg19—-21], as well as analog neural neuron occurs in advance of firing of a postsynaptic neuron,
and to decrease otherwise. The spike-timing-dependent syn-
aptic plasticity is described by the time window with the
*Electronic address: myosioka@brain.riken.go.jp negative part as well as the positive péftg. 1), and this
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0.04 tion to other neuron models, such as the FitzHugh-Nagumo
neurons and the Hodgkin-Huxley neurons, seems to be lim-
0.02 ited.
\ In the present study, we employ two theoretical tech-
3 0 niques to reduce the size of the matrix for Floquet theory. We
s first take the limit of the infinitely large number of neurons,
\ which reduces the stability problem &f neurons into the
-0.02 problem of Q sublattices. Then, we define some additional
variables for each sublattice and evaluate the infinite long-
-0.04 time influence ofx function with the finite size of the matrix.
-150 -100 -50 0 50 100 150 The explicit value of the matrix is calculated from the nu-
At [msec] merical integration of the single-body dynamics. Therefore,

i i _ we can explicitly obtain the eigenvalues of the matrix, which
FIG. 1. The shape of the time windoW(At) with 7w:  enaples us to determine the critical point of the phase tran-

=25 msec andry,=2.5 msec. The modification of synaptic gjiinn with a high degree of precision, even when we assume
weight is written asAJcW(At), whereAt=ty,s—t, denotes the networks of Hodgkin-Huxley neurons

time difference between the postsynaptic and presynaptic firings. The present paper is organized as follows. In Sec. II, we

asymmetric shape of the time window has been attracting R'€S€nt the dynamics of neural networks of spiking neurons,
and then introduce the spike-timing-dependent learning rule

growing interest of reseache$1-4§. Since the asymmet- S . ;
ric time window brings about asymmetric synaptic connec-for associative memory. _In_Sec. III,_ vv_e_derlve the retrieval
tions, the spike-timing-dependent synaptic plasticity isState analytically in the limit of the infinite number of neu-

thought to be advantageous to encode spatiotemporal pd@"S- After that, the stability of this retrieval state is analyzed

terns. In a previous study, we have studied associativ@y Floduet theory in Sec. IV. In Sec. V, we illustrate the

memory neural networks of spiking neurons in which thetyPical behavior of network in the process of memory re-

asymmetric time window of the spike-timing-dependent syn_trieval. The results of numerical simulations are presented,

aptic plasticity is used to encode multiple periodic spatiotem@nd compared with the theoretical results. In Sec. VI, we
poral patterns of spike timinfl0]. We have assumed net- discuss the phase transition due to the loss of the stability
works of the Hodgkin-Huxley neurons interacting through based on the stability analysis in Sec. IV. In Sec. VII, we

direct synaptic interaction, as well as indirect synaptic inter\nvestigate the case of slow function, with which we find
action intermediated by firings of interneurons. In the pro-WO Separated retrieval phases. In one of these retrieval

cess of memory retrieval, the indirect interactions bringP1@ses, neurons obtain the large size of the oscillatory inhibi-

about the oscillatory inhibitory electric currents, which regu-(Ory Synaptic electric currents, which well regulate the spike

late spike timings of neurons as in the case of gamma animng of neurons. Finally, in Sec. VIII, we give a brief sum-

ripple oscillationg49-51. In order to elucidate the station- Mary and discuss the biological implication of the present

ary properties of these retrieval state we have derived thatudy.

periodic solution for retrieval state analytically, and then we

have shown that if the area of the negative part of the time !l. ASSOCIATIVE MEMORY NEURAL NETWORKS

window is equivalent to the positive part, crosstalk among OF SPIKING NEURONS

encoded patterns vanishes. This theoretical result implies the

outstanding nature of the spike-timing-dependent synaptic )

plasticity for encoding multiple spatiotemporal patterns. In a real nervous system, many regions such as the neo-
In our previous study, however, we did not carry out acortex and hippocampus are found to comprise a large num-

stability analysis for the retrieval state, and hence it remaine&€r of pyramidal neurons as well as interneurons. Our inter-

unclear whether the derived retrieval states are stable or nd@sSt in the present study lies in spike timing of pyramidal

We investigate the same models of neural networks also if€urons, and we denote the dynamicsNopyramidal neu-

the present study, but we assume that dhfunction of the ~ fons by a set of nonlinear differentail equations of the form

direct interaction decays much faster than the previous one.

A. Network dynamics

Then, we find the phase transition due to the loss of the vi=f(i,Wig, .. Win) +1i, @
stability of retrieval state. In order to evaluate the critical .

point of this phase transition we consider employing Floquet Wit =0i(vi Wit - - - Wip),

theory. Nevertheless, the degree of freedom of the present )

system is infinite, and the naive application of Floquet theory I=1,...n, i=1,...N 2

yields the eigenvalue problem with the infinite size of ma-
trix. Furthermore,a-function we assume here exhibits the
infinite long-time influence, and its treatment may also re- li=1pp;+lp+lextis (3)
guire the infinite size of matrik52]. Without calculating the ’

explicit form of the matrix, Bressloff and Coombes have wherev; denotes membrane potential and auxiliary variables
investigated the stability of some periodic solutions in net-w;; are used to describe gating of ion channels. Synaptic
works of integrate-and-fire neurof33], though its applica- electric currents; denote interaction among neurons, and the

with
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definitions of three currents included in will be given  that the inhibitory currents,, are induced in all pyramidal
later. For the dynamics f(vi,Wij;, ... W;,) and neurons immediately after one pyramidal neurons figsg.
9i(vi Wiz, ... Wiy), many authors assume the integrate- The currentl gxr; in |; is used to control initial firings of
and-fire equation, the FitzHugh-Nagumo equatif$,559,  neurons. For the initial condition of the network, we set all
the Hodgkin-Huxley equatior{$6], and so on. In the present state of neurond(;,{w;}) to be at the stable fixed point of
study we choose the Hodgkin-Huxley equations, which arehe dynamicg1) and(2) with 1;=0. Since all neurons keep
summarized in Appendix A. quiescent without any external stimuli, we use the pulsed
The synaptic electric currehgp; in |; expresses the direct form of the external electric curremtyr; to invoke initial
interaction among pyramidal neurons. We define spike timfirings, which act as a trigger for information processing of
ing of neuroni as the time when the membrane potential  the present model. The detailed definitionlggr; will be
exceeds the threshold valge=0. Denotingk-th spike tim-  given in Sec. V. Note that the curreltyr ; is applied only in
ing of neuroni by tj(k), we define the currertp; as the beginning of the dynamig4) and(2). In the theoretical
analysis below we always shtyr ;=0 because we focus on

N the stationary state in this analysis
lopi=Arp2, i 2 Sedt=ti(K)], (4)
B. Spike-timing-dependent learning rule
where J;; represents the synaptic weight, andfunction We investigate associative memory neural network mod-
Spe(t) is defined as els that memorize multiple periodic spatiotemporal patterns
of spike timing. P periodic spatiotemporal patterns to be
0 for t<0, memorized are generated randomly according to the equation
Spt) = 1 ~
PF( ) —(e_t/TPP,l— e—t/Tpp’z) for 0=<t. Siu:SIM‘i' kT,
PP, TPP,2
(5 _ 5 _ L
k=...,-2-1012..., wu=1,...P, i=1,... N,
The constanpp is used to control the intensity of the cur- 8)

rentlpp; . In the following section, we will investigate the i,

case of the fastr function Spg(t) with 7pp ;=3 msec and

Tpp7~0.3 msec as well as the slow function Spg(t) with T

Tpp =20 MSeC andpp =2 Msec. Si"=6qi", 9
The synaptic electric currenis in |; expresses the indi-

rect interaction among pyramidal neurons that is intermediyhereQ is a natural number controlling the degree of dis-

ated by firings of interneurons. Since the threshold value fog gteness of spatiotemporal patterns, and random intger

firing of interneurons is rather small, we assume that whenrg .hosen from the intervdl0,Q) with equal probability.T

one pyramidal neuron fires, interneurons surrounding the firg,\qtas the period of the spatiotemporal patterns. W& set

ing pyramidal neuron immediately fire. Then, these firings of _ 250 msec an® = 10 in what follows.

interneurons bring about inhibitory synaptic electric currents Let us consider the problem of encoding the spatiotempo-

in all pyramidal neurons, because interneurons are connected ~0u _ L

to pyramidal neurons via inhibitory synapses. This inhibitoryral patternss” so that the networks function as associative

synaptic electric currenfp, which is independent of index memory. The recent results of the ele_c_trophysmloglcal ex
periments have revealed that the modification of a synaptic

is written as : . . 4
weight depends on the precise timing of presynaptic and
postsynaptic spikeg38—40. Such modification of synaptic

le=Ap> KX Selt—t;(k)], (6)  weightAJ is approximately written in the form
] K
AJocW(AL)
where « function Sp(t) is defined as
_ At/my 1 A7y for At<0
0 for t<O, Tw,1—Tw,2(e ¢ )
Se(t)= —_1 (e Vmri—e~Y7r2 for Os<t. —1 (e 4wi—e 4wz for O<At,
Tip,1™ TIP,2 w1~ Tw,2
(7 (10)

We setK=1/N for proper scaling. The constaAip is used  \yith

to control the intensity ofp, and the constantse ; and7p ,

are always taken to be 10 msec and 1 msec, respectively. At=tposr tpre, (11)

The functionS;p(t) takes a negative value so as to represent

the inhibitory nature of the connection. Note that we neglecwhere t,.g;andt, denote spike timing of presynaptic and
the detailed dynamics of interneurons and simply assumpostsynaptic neurons, respectively. The asymmetric shape of
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the time windowW(At) is described in Fig. 1, where we set function of T. Comparing the evaluated firing pattern with
Tw,1= 25 msec andry,;=2.5 msec as we set in what fol- the substituted firing patterfi4), we can determine the pe-

lows. , - . riod T self-consistenthf10].

‘We encode the spatiotemporal pattesfisaccording to W follow the almost same scheme as above, although we
this spike-timing-dependent synaptic plasticity. In our previ-make a slight detour for the convenience of the calculation
ous study{10], we have introduced the learning rule below. We first consider the solution of the form

1 P
Ji=y 2, Wist=sf), (12 (k) =tq(K),
where, to take into account the periodicity of the present k= ... —2-1012 icUq, g=0,...0-1,
spatiotemporal patternq“ we defineT-periodic function (15)

W(At) of the form
where the set of indiced is defined as

[

t)= >, W(At+KT)

k==er Ug={i lai=a}. (16)
_ 1 e 8w e (T780/ We term a cluster of neurons that belongUg sublatticeq.
Twi™ Tw2 1—e Trwa In the solution(15), neurons belonging to the same sublattice
are assumed to behave in the same manner. It will be shown
e AUtwa_ @~ (T-AD/7w,2 that the dynamic§l)—(3) has the solution of the forrfl5) in
- 1_e o ' the limit of N—o if P is finite [8]. We will evaluate the

Q-body dynamics for these sublattices, which has important
O<At<T. (13) implication for the stability analysis in Sec. IV. After that, to
this Q-body dynamics of sublattices, we substitute the solu-
This learning rule is applied also to the present neural nettion of the form
works. As will be shown in the following sections, the spa-
tiotemporal patterns encoded with this learning rule are re- T -
trieved successfully in the network dynamids—(3). tg (k)= 6Q+ KT,

ll. PERFECT RETRIEVAL STATE k= ...-2-1012..., q=0,...0-1. (17)

Here we investigate the stationary properties of retrieval
state of the network in the limit of infinite number of neu- Then, we obtain the period for the perfect retrieval state
rons. In the present analysis, we focus on the retrieval stat@4).
of the form In the analysis below, we always assume firittand fi-
~ nite Q. Asterisks are used to indicate the variables in the

T = stationary state.
tr (k)= 5 ai+kT, Y
. A. Dynamics of sublattices
k=...,—-2-1012..., i=1,... N, (14

In order to evaluate the dynamics@fsublattices, we first
where we suppose pattern 1 as the retrieved pattern. We tergvaluate the currenitpp; in the limit of N—o under the
the retrieval stat¢14) perfect retrieval state since no spike condition(15). Assuming that neuronbelongs to sublattice
timing is allowed to deviate from the encoded pattern in thisg, we substitute Eqs(12) and (15) into Eq. (4). Then, we
retrieval state. Note that the peri&din Eq. (14) is different  have
from the periodT, which is assumed in generating the spa-

Q-1
tiotemporal pattern , that is, the period of the retrieval — . —t,
process is different from the period of the encoded pattern. InIPP APPq20 JEEU 32 Sedt=ty ()]
the present section, we aim to evaluate the pefipavhich
determines the form of the periodic solution for the perfect  _ E’ i E W{I(q—q’)}E Sedt—tg(K)]
retrieval state. The stability of the periodic solution is exam- Q q" Ngr iUy Q T a
ined by a linear stability analysis in Sec. IV.

One possible way to determine the peribé substituting n AiP 2 -
Eq. (14) into Egs.(4) and (6) so as to obtain the periodic Q =1 e Ng
synaptic electric currert=Ipp;+1p in the limit of N—oc.

Then, the current; is evaluated as a function &f, and X D Spdt—tgr(K)]
hence we obtain the periodic firing patternddheurons as a K a

2 W[—m. )
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A T
Arp < . s _Dres s LYY
“q 2 Jaa 2 Seet=tg (k)] iUq, (18) lPra= g qE Joar 2 Spv[t (Qq +kT
wherLiNq denot_es the number of membersUy, and vari- = A%P 2 jqq,"épp(t_ %q’), (26)
ablesJ,q andW are defined as q’
T B where theT -periodic functionSpHt) is defined as
Jqq/:W{a(q—q’) +(P-1)W, (19 3 3
spp(t):Zk Spe(t+KT)
Q-1 o
— 1 ~ (T 1 T
W=6 qgo W(—q)=6qz_OC W(aq) (20 B 1 e Urppa e Umpp2
- Tpp 1~ Tppg 1—e~ V/7PP1 11—~ T7Ppal’

Equation(18) shows that the currentp; is independent of _
indexi in the limit of N—. Thus, we define the sublattice 0=<t<T. (27)

variablelpp as ) )
In the same manner, E(R2) is rewritten as

| i=1 = Jaa’ t—ty (K y A ~ T
PPj PPg Q % qq ; SPF[ q ( )] Il*P:g 2 Slp(t_ aq,)' (29)
q!
leUq, 09=0,...Q-1 (21 \where theT-periodic functiond(t) is defined as
Following the same scheme, we rewrite the curignin Eq. ~ ~
(6) in the form S|p(t)=2k Sp(t+KkT)
Ap -1 e U1 e~ tUnp2
lp=—= Splt—tg (k) ]. 22 = -
" Q % Ek Pt (0] 22 TPa~ Tip2| 1—e VPt 1—e T/TR2)’
Equations(21) and (22) imply that the synaptic electric 0<t<T. (29)

currentl;=Ipp;+1p; depends only org, that is, neurons

belonging to the same sublattice obtain the same amount Gf,erefore, theT-periodic solution for the perfect retrieval
synaptic electric current. Therefore, the dynamits—(3) state ¢* {w*}) obeys the dynamics of the form

has the solution in which neurons belonging to the same g Tl
sublattice behave in the same manner, as we have assumed in

"k * * * *
Eqg. (15). Such dynamics of sublattices is expressed as vq=f(vg War, .. Wan) F1g., (30
ME * ok *
vq=Ff(vq,Wqa, - - - Wgn) +1q, (23) Woi=01(vg W1, - - - Wop),
_ I=1,...n, g=0,...Q-1, (31
Wq|:g|(vqlwal R qun)l
where
[=1,...n, gq=0,...0-1 (24) 5=+ . @2
with As shown in Eqs(26) and(28), I’F‘,Pq andl; are functions of
P 25) gandT, and alsdj is a function ofq andT. Hence, we can
q— 'PPg " TIPy calculate the behavior of each sublattice as a functioq of

ndT from the dynamicg30)—(32).

a
where @4,{wq}) represents the common state of neurons Noting Egs.(19), (26), and(28), we obtain

that belong to sublatticg. The common synaptic electric
currentl in Eq. (25) is defined by Eqgs(21) and(22).

t-i—I H—i ’) 33
Qq Qq . (

Let us find the periodic solution for the perfect retrieval It means that every synaptic electric curréfitis identical,
state(17) in the dynamics of sublattice®3)—(25). Substi- except that it exhibits the time shift accordingdpand the
tuting Eqg.(17) into Eq. (21), we have behavior of all sublattices in Eq$30)—(32) are evaluated

* *
1% M

B. Derivation of perfect retrieval state
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from the time shift of sublattice 0. Therefore, we focus ONThe functiongpp(t) always takes the positive value. Hence,

the analysis of sublattice 0 in what follows. _ asP increasesZ* exhibits an increase or a decrease depend-

We can calculate the behavior of sublattice 0 in the dy-. . — . .

: ) ~ o ing on the sign ofV, until the perfect retrieval state breaks at
namics(30)—(32) for the arbitrary value of. In the stability

S . ; ; the critical number of pattern8= P€.
analysis in Sec. IV, we will show that if the dynamids—(3) Let us tak i o ing in Ea(39). Th
has the stable perfect retrieval state, then the dynaf@@s- et us take notice ofV appearing in Eq(39). The quan-

L PRI tity W, which is defined by Eq(20), is the average of the
(32) also has the stable periodic solution &t T+, where a8 |\ o \wiat). For the time windowW(At) defined
T* denotes the solution of the period now under consider

_ - . o by Eq.(10), one can easily show
ation. In almost every case, fdrthat is sufficiently close to

T*, sublattice 0 in the dynamid80)—(32) exhibits the pe- _
riodic firing motion, and hence the spike timing of sublattice W=0. (41)
0 in the stationary state is written gH0]

In this case, the crosstalk terdf vanishes, and hence we
can encode the arbitrary number of patterns in the limit of

However from Eq.{(17), we obtain the spike timing of sub- N— as far asP is finite. It turns out that the present form
' of the time windowW(At), which is found in experiments,

to(K)=kT+r(T), k=...,-2-1,012... (39

lattice O as, -
is of great advantage to reduce the sizepfand also the
T* - - crosstalk among encoded patterns.
t’5(k)=60+kT*=kT*, k=...,—2-10,12....

(39 IV. STABILITY OF THE PERFECT RETRIEVAL STATE

Comparing Eq(34) with Eqg. (35), we obtain the condition Although we have derived the periodic solutions for the

perfect retrieval state in the preceding section, it still remains
unclear whether the derived periodic solutions are stable in
As shown in our previous studiL0], we can easily evaluate the network dynamic§l)—(3). In some cases, the derivation

the explicit form of the functiorr(T) numerically by inte- of pe_riodic solutions in the preceding secti_on yields unstable
grating the single-body dynamics of sublattice O in Eqs solutions, and the network cannot settle into such unstable

- retrieval state. In the present section, we employ a linear
(_30) _@2)' Once V\,/e evaluatg tDe explicit form Of the func- stability analysis for the perfect retrieval state we have de-
tionr(T), we obtain the solution™ from the condition36).  rjyed in the preceding section. That is the application of Flo-
quet theory, which yields an eigenvalue problem with the
C. Optimal form of the time window W(At) to encode finite size of the matrix.
multiple spatiotemporal patterns

In gen(?ral, the properties of the network ?epend on the A. Decomposition of the problem: Stability of sublattices
number of stored patterris We can encode a large number and stability of the perfect retrieval state in the dynamics

r(T*)=0. (36)

of patterns when a network exhibit_s a weak dependence on of sublattices (30)—(32)
P. To see to what extent the properties of the network depend ) N T o
on P, we decompost’ =%+ 1} defined by Eqs(26) and In a linear stability analysis, infinitesimal perturbation is
(28) into the form assumed in the initial condition, and then the time evolution
of the deviation from the target solution is investigated to the
|;:M; +15+2* (37 first order in Taylor series expansion. When we apply Flo-
. quet theory to the present system, the spike timing of neuron
with i that belongs to sublatticg is written in the form
App ~[T r P( T ) ti(k)=tg (k) + &t (k),
Mi=— > W =(g—q')|Sps t— =q' |, 38
— k=...,-2-1012..., ieU,, g=0,...0Q-1,
Z* = ApeP— 1) WSp 1), (39 ! (42)
where

where we suppose pattern 1 as the retrieved pattern. We as-
1t T , 1 T , sume that the initial condition is correlated only with pattern
6 - Sp Haq :6 2 Spe t+ 54 1 and the correlation with other patterns does not arise in the
a’=0 = (40) time evolution of the network dynamics, that is, we assume
6t (k) is correlated only withsj1 (j=1,... N). Substituting
We termZ* the crosstalk term since this term appears in EqQEQs.(12) and(42) into Eq.(4), we obtainl pp;(i € U,) of the
(37) as a result of encoding multiple spatiotemporal patternstorm

Spet) = 0
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A 1
I pp; = PPE W[—m q>}2 2 sltty (k) oty W+ —> > > — >
Q quE Q q° Kk w>1 quJEUq’
~|T
xWa(q{‘— Sp t—t5, (k) — t; (k)]
_Aep 1 [T
EW[—m q)}E 2 Sed t—t;, (k) — &<k>]+ 2 2 2 ( > vv[—(q#—q;*))
Q Nq/ JE qr ]EUq Q
l *
X N—Wg}q’ Se t—t7,(K) é)‘tj(k)])
APP

Nq/ JE q’

where we utilize the assumption that;(k) is correlated

only with si=(T/Q)q; (j=1,...N). Since Eq. (43

shows thatl pp; depends only o, we are allowed to define

sublattice variablépp, as

A
IPPJ IPP,q PPE qq 2 N E, SPI{t_t;/(k)

JeU
—ot;(k)], ieUq. (44)

Performing a truncated Taylor series expansion of #g),
we have

lppg=1ppgt dlppg (45

with

Slppa=— EP 2 Jgq 2 Spdt—t5,(K) 18t (K),
q’

(46)
where the derivative 08p4t) is written as
0 for t<O,
! — — 1 e_t/TPPvl e_t/TPP,l
See() — for O<t,
PP, TPP,2\ TPP,1 TPP,2
(47)
and the sublattice variablét_q(k) is defined as
1
Sta(k) =1 2 (k). (48)
q ie U

Following the same scheme B, we obtain the devia-

tion of I ,p in EqQ. (6) as
||p:|ikp+ 5||p, (49)

with

anqE— E Sed t—t, (k) — at;(K)],

iqu, (43

A _
5|,P=—§§; 2k Silt—tq (K)18tg(k),  (50)
q

where the derivative 08p(t) is written as

0 for t<0,

S{P(t): 1 e_t/TIPVl—e_t/TIPYZ for O<t.
TipA— TiP2\ TP, TIp,2

(51

We represent deviation appearing in the state of neuron
by

vi=vg+ v, (52
Wi =Wg,+ 6wy
I=1,...n, ieUy, @g=0,...Q-1. (53
Noting Eq.(44), we safely replacé =Ipp;+ 1 pin Eq. (1) by
sublattice variablé ;= lppy+1p. Then, we perform a trun-

cated Taylor series expansion of E¢b. and(2) and obtain
the dynamics of the form

. of of
Svi=—| v+, —| dwi+dlg, (54)
Jv K aWI,
4 q
. J 14
é\N“:& 5l)i+ i b\N”r,
Jv q )’ (9W|, q
I=1,...n, ieU,, g=0,...Q-1 (55
with
5|q:5|ppq+5||p, (56)

where we introduce abbreviations such a#/dv|,
= af/(90|(vs Y{ng}) .
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From the definition of spike timing, we ha\m[tg(k)
+6ti(k)]=6 (i eUy), which yields

suiltg (k)]

Sti(k)=— . ieUq, (57
where constant is defined as
c=v§[t§(k)]. (58)

Note that constant is independent off andk. Now we can
evaluate the time evolution of5¢; ,{ Sw; }) from Egs.(54)—
(57). To solve this dynamics we need to calculat,
=6lppyt dlip, in which dty(k) are required at timet
=t;(k) (k=...,—2,—1,0,1,2...) asshown in Eqs(46)
and(50). We can evaluatét,(k) from {v;[t5 (k)]} by use
of Egs.(48) and (57).

PHYSICAL REVIEW E 66, 061913 (2002

Now we obtain theQ-_body dynamicg61)—(64). Calculation

of 4lg requires {6ty (K)}, which are obtained from
{6vq [ty (k)]} together with Eq.(64). To this Q-body dy-

namics we will apply Floquet theory in Sec. IV B.

The stability of the periodic solution in th@-body dy-
namics(61)—(64) is the necessary condition for the stability
of the retrieval state in the original dynamid9—(3), but not
the sufficient condition. Therefore, we must investigate the
behavior of the following variables:

80i=vi—vq=dv;— dvq, (65)
O\X/n:Wil_WqFéWn_é\/_th
I=1,...n, ieUy, 9=0,...0-1 (66)

If the perfect retrieval state is stablefi(; ,{ w; }) converges

It is a hopeless task to apply Floguet theory directly to thénto the fixed point (40}). Subtracting Eqs(61) and (62)
N-body dynamics54)—(56) since that gives the eigenvalue from Eqgs.(54) and(55), respectively, we obtain

problem with the infinite size of matrix. For the purpose of
reducing the degree of freedom, we define the following sub-

lattice variables

— 1
=— i 59
Uq Nq iqu vi ( )
— 1
Wq = W; ,
ql NqiEUq il
I=1,...n, q=0,...Q-1. (60)

Then, from Eqs(54) and(55), we have

Souma s 5o S 2 s+ a
S—— vi=—1| Sv _ , ,
a NqiEUq : dv q q 1’ (9W|r al a
(61)
— 1 | — | —
W=~ > oW =—1| dvq+t>, — ,,
al Nq iEUq I 1% q a |’ (7W|r q al
1=1,...n, g=0,...0Q-1, (62)

where, from Eqs(46) and(50), 6l in Eq. (61) is written as

5|q:6| PP,C]+ (5||p
APP 3 ’ * o
-3 > Jqq,Zk Spe t—t7,(K) 15t (K)
qf

_Ae

0 (63

> Ek Sl t—tq (k) 1t (k).
q!
In addition, substituting Eq:57) into Eq. (48), we have

Sug[tE (k)]

Stg(k)=———

(64)

-~ of] - of ~
Svi=—| Svi+> —| owy, (67)
&Uq )’ ﬁwl,q
<~ J9| ~ 9| ~
1=, | vt — il
q |’ &W|/q
I=0,...n, ieUy, q=0,...Q-1. (69

For the stable perfect retrieval state, the fixed poinf@{, is
necessary to be stable in the dynami6%) and (68). Note
that N deviations ¢v;,{w;}) appearing in the dynamics
Eqgs.(67) and(68) do not interact with each other since this
dynamics includes no interaction term lik, . This stabil-

ity problem is thus a single-body problem, which is easily
evaluated numerically.

The stability problem of the perfect retrieval state in the
dynamics (1)—(3) is now decomposed into two stability
problems: the stability of the perfect retrieval state in the
Q-body dynamics(61)—(64) and the stability of the fixed
point (0{0}) in the single-body dynamic$67) and (68).
What are the implications of these two stability problems? It
is straightforward to see that the former problem is equiva-
lent to the stability problem of the perfect retrieval state in
the Q-body dynamics of sublattice®3)—(25). Hence, we
conveniently call the former problem the stability of the per-
fect retrieval state in the dynamics of sublattices. In the dy-
namics of sublattice®3)—(25) we neglect the distribution of
spike timing of neurons in each sublattice, and this distribu-
tion of spike timing is treated in the latter problem. We thus
term the latter problem the stability of sublattices.

It is of interest that a truncated Taylor series expansion of
Egs. (300 and (31) with fixed Ia‘ gives the same stability
problem as Eq967) and(68). This result implies that if the
periodic solution ¢g ,{wg}) is stable in the dynamio80)—
(32), then the stability of sublattices is ensured. We evaluate
the periodic solution 1(; ,{W§|}) by the numerical integra-
tion of the dynamic$30) and(31), and hence it is impossible
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to obtain the unstable periodic solution of the dynantg3

PP QO ~ , —
and(31). In other words, the numerically evaluated periodic Olpp = — Ko} > Jogr Spd t— tg, (K)]18tq: (k)
solution g ,{wg}) is always stable, and also the stability of q
sublattices is always ensured. Therefore, further investigation + 61, Jt(K)]e™ [t—t5 (1 mpp1
on the stability of sublattice is unnecessary, and we focus on L
the sta_bility_ of the perfe_ct retrieyal state in the dynamics of + 5|Zo[tg(k)]ef[t—tg(k)]/fpp,zl
sublattices in the following section. '
ty (k) <t<ty(k+1), (74)
B. Floquet theory for the perfect retrieval state in the
dynamics of sublattices where
Here we apply Floquet theory to th@-body dynamics
(61)—(64). In the evaluation of this dynamicsit,(k) are 5|10[t0(k)]___ 2 Jog’
required at time=tg (k) (k=...,-2,-1,0,1,2...). One
may thus consider it convenient to define the vector _e—[tg(k)—t;,(k')]/fppyl .
_ _ _ x X — Stgr(K"),
Oxq(K) = (Bu [t} (K)], OWqa[th (K], . . . ,OWqulth (K)]). &)=t TPPATPRI TP
69
(69) 75
The vector 6x4(k) represents the deviation at time
=_t§(k). Since the vectorax_q(k) includes the variable Slodty(k)]=——= E Jog’
5vq[t§(k)], we can calculatét 4(k) from 6x,(k) by use of
E.q..(64). Let us consider the problem qf c;alculating the de- e—[té(k)—t;f(k’)llfpp,z N
viation éxo(k+1) from the past deviationsix,(k’) (q X > Stgr(k').
. Q—1, k'<k+1). (k) <t (k) Tpp A TPP 1~ TPP 2
The « functions SpHt) and Sip(t) give an infinite long- K
time influence after the activation, and the derivatives of (76)

thesea functions appearing in Eq$46) and (50) also have
an infinite long-time influence. It means that long past devia-

tions 5tq(k ) and alsodx,(k’) are necessary in the evalua- op . _
tion of the present value afl . It is again a hopeless task to Olp=— Q > Siplt—tg, (k) ]6tq: (K)
consider Floguet theory based on the vecsay(k) since a’
that still gives an eigenvalue problem with the infinite size of
matrix.

For the further reduction of the size of matrix, we define * —[t—t* (K)]/ 7
the variables + 8l dtg (Jer (ol es

In the same way, we rewrite E¢0) as

+ol3dtg (k)Je [t () 7ip s

_ t* (k) <t<t¥(k+1), 7
Ape 2 ~ e [t (k)= 5tqr (K pp 1 o) olk* D) (77
7 J ,
" Q q ) <t TPp,1” TPP,2 where
(70) P
5'3,({t3(k)]:_6 >
* — , q’
App < ~ — e lttg (k) = dtg () 7pp 2 .
l20="5 > e 2 — : e (50—t (impy
q’ t;,(k’)<t PRI 7PP.2 X E — Sty (K'),
(72) t;,(k’)<t3(k) TP A(TIP1™ TiP2)
* ’ o ’ (78)
Ap — eIt tg (k) = otg (K mp
5= g 2 |, X — , (72 Ap
Q" (K<t P TIP2 Sladts(0]=-5 2
q ’ Q py
* T * * ’
A e [t-t (k") = tgr (K] 7p 5 _e—[to(k)—tq,(k Ntpa
= 2 > - . (73 x> - Stgr(K').
q’ t (K<t Tip1— TIP,2 t;,(k’)<t’5(k) TlP,2(7'|P,1 7'|P,2)
(79
Then, for the specific form a& function (5), we can rewrite
Eq. (46) as In Egs.(74) and(77), 8lpppanddl p (i (k) <t<tg(k +1))
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are evaluated only frorﬁ&t_q,(k)} and{dl o t5 (k)]}. Solv-
ing the dynamicg61) and (62) with 8ly=lpp gt Sl \p de-
fined by Eqgs. (74 and (77) under the condition
(5vo[t (K71, {5\N0|/[to(k)]}) we obtain the next deviation

PHYSICAL REVIEW E 66, 061913 (2002

(volth (k+1)].{dwo [t (k+1)]}) as a function of
{otq (K)}, Suoltg (K)1, {owo [t5 (K)1}, and
{8lg dt5(k)]}. Hence, we are allowed to define the func-
tions

dvolth (k+1)]1=R({8tq (K)}, dvo[t§ (K)],{ oo [t (K) T} {8l o[ 1§ (K)]}), (80)
owo[th (k+1)]1=S({ tq (K)}, dvolt§ (k) ].{ oy [t (K) T} {81 5 (10T},
I=1,...n. (82)
Because of the form of the dynami@®l) and(62), we obtain
_ . JR JR R JR
R 5 ’ 5 5\Nf 5' ’ - ’ — 5 — 5\Nf 5' ’ 82
({8t} v, {ow) } {8l }) qE o dtq +d(5v) v+|2 PETRES +§ R (82
S — 9 — d _ S,
S({8tg}, v, 6wy} {8ls}) qE a(at—q,)(stqr-f—(?(av_)ﬁv-i‘; o) |,+§ TR
l=1,...n. (83
Note that every coefficient in Eq§32) and(83) is a constant, which is independent @5@},61;_,{6%,},{& s'})-
Meanwhile, from Eq(75), we obtain
. APP —e — [ty (k+1)— t (K] 7pp 1 .
ol dtg(k+1)]=— Q %Joq, P P—— 5t (k) + 681, Jt5 (k)]e Timp, (84

It means thatsl,  tg(k+1)] is a function of{b‘t_q,(k)} and 61, t5(k)]. We obtain the similar relation for the rest of
{ols dt5(k+1)]}, and they are also functions 8t (k)} and él o tg (k)].

Now, we define the vector
Xq(K) = (Sv[t5 (K) ], oWqa[t§ (K], . . . oW,
k= ...

Then, noting Eq.64), we can summarize Eq$80)—(84),
and so on in the form

0-1

Sxo(k+1)= 2, Ag%q(K)+B xo(k), (86)
q=1

where the definitions of the matricég, andB are given in
Appendix B. Furthermore, we define the vectors
..... o(K)),

SX(0)=(8%q-1(K), 8%q—2(K) 87)

SX(1)=(Xo(k+1),8%q_1(K) 8%1(K)).

Then, the relation betweefiX(0) and 6X(1) is written as

(88)

SX(1)=M 8X(0), (89)

where

anlts (K1, 81 o[ t5 (KT, - ...
—2-101.2...

Sl aglth (0,

., g=0,...Q-1. (85)
[
E 0 0 0
M=| 0 E 0 o (90)
0 0 E 0

Because of the symmetrical properties of the present system,

we have
SX(2)=M 8X(1)=M25X(0), (91)
where
SX(2) = (%1 (k+1), 8%o(k+1),8%g-1(K), . . . ,57<2(k)8q.2)
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Following the same scheme, we obtain the vectors of theients in Eqs(82) and(83) are obtained by numerical inte-
form gration of the single-body dynami¢€1)—(C5). In general,
the matrix derived in Floquet theory always has the eigen-
SX(n)=M"6X(0), 1s=n, (93 value\ ;=1 with the eigenvector corresponding to the time
shift in the periodic solution. The matrik also has the

where 6X(n) represents the deviations in the future. eigenvaluen,= 1 with the eigenvector

Now the stability problem of the periodic solution is re-
ducgd into the §|genvalue problem w@h the finite size of the 5Xo=(8Xo, - - . 10%o) (94)
matrix M. As will be shown in Appendixes B and C, we can
easily evaluate the matrikl numerically since the coeffi- with

SXo= It (KT WELtE (K1, ... W [th (11T Lt (K1, ... d5dtE (D), (95)

where we define(ig‘vo[tg(k)]} by substituting&t_q,(k’)=0 whether the retrieval of pattern 1 is re_alized_in Ei@)?_we
(k=...,-2-1,012...,9'=0,...Q-1) into the replot the same result of numerical simulation in Fi¢o)2
derivatives of Eqs(70—(73). If the periodic solution is Where the vertical axes is set to represght In this figure,
stable, the absolute value of other eigenvalpgg (1<m)

must be less than 1. Therefore, we can determine the stability (a)

of the perfect retrieval state by numerical computation of the 8000
eigenvalues oM.

In the following sections, we will apply the present analy- 6000
sis to evaluate the stable perfect retrieval state for the various
values of parameters. As will be shown, the present analysis
is powerful enough to draw the phase diagrams.

4000

neuron

2000
V. RETRIEVAL PROCESS

In this section, we illustrate the typical behavior of net- 0
work in the process of memory retrieval. In what follows, we 0 20 40 60 80 100
always assum& =10, which brings about discrete type of t [msec]
firing pattern of memory retrieval. For the initial condition of
the network, we set all states of neuran {w;}) to be at 0]
the stable fixed point of the dynami¢$) and (2) with I 10
=0. To evoke the retrieval of pattern 1, we give the external
stimuli of the form

T
EXTqil) for OgtiaEXTTEXT,

0 otherwise,

| EXT,i—

(96)

o N A O O
.
.

where §(t) represents the delta function, and the parameters 0 20 40 60 80 100
AexT, Text, andagyt are chosen so that the initial part of t [msec]
the pattern 1 is forced to be retrieved. In the present study,

we setAgyr=30, Texr~1, and agyx7<0.1. Note that the
external stimulil gx7; is applied only in the beginning of the
networ,k dynamics. ) . . N=8000.(a) Spike timings of neurons are plotted by closed circles

In Fig. 2a), we describe the result of the numerical Simu- 5 4 fynction of time. The initial firings of the neurons are evoked
lation with P=3 and N=8000. The initial firings of the py the external electric currenitxr;, while other firings are
neurons are evoked by the external electric curieny;, brought about by the synaptic electric currégt; +1,p. (b) Setting
while other firings are brought about by the synaptic electriahe vertical axis representing we replot the same result of the
currentl pp; + I p. The firing pattern in Fig. @), which looks  numerical simulation. The neurons belonging to the same sublattice
like vertical bars, indicates the synchronized firing of a nu-exhibit synchronized firing, which is expressed as overlapped
merous number of neurons. Since it is difficult to seeclosed circles.

FIG. 2. The retrieval process of pattern 1 observed in the nu-
merical simulation with App=30000, 7pp ;=3 msec, 7pp,
=0.3 msec,Ap=250, 7pp =10 msec,7pp ~1 msec,P=3, and
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@ we obtainT/Q as a function ofAp, which is plotted in Fig.

100 VI — ] 4(a). As Ap increases, the period of the retrieval procéss
becomes longer since each neuron obtains a large amount of
inhibitory synaptic electric currentp with the large value of
Ajp. Figure 4b) describes the absolute eigenvalues of the
matrix M. Size of the matrixM is 80X 80, and the largest
two absolute eigenvalues are plotted in Figh)4 With Ajp
=500 the largest absolute eigenvalue is 1, while it exceeds 1
with 500<Ap, that is to say, the stability of the perfect
; : : retrieval state is lost beyond the critical poif,~ 500.
0 50 100 150 200 To observe this phase transition in numerical simulations,
t [msec] we calculate the interspike interval$Sls) of all neurons
changing the value of\p, as described in Fig.(d). Note
(b) that the ISIs we calculate here are based on spike timing of
100 | ‘ ' ' all neurons. When neuranand neurorj fire sequentially at
timet; andt;, respectively, we calculate the time difference
t;—t; to obtain the ISIs of all neurons. By means of these
ISIs, we can evaluate the gaps in spike timing appearing in
Fig. 2(@), which corresponds t3/Q. The theoretical result
in Figs. 4a) and 4b) explains ISIs in Fig. &) well, al-
though we see some fluctuations due to the finite number of
neurons near the critical poil, . In Fig. 4(d), we calculate
-100 | . . . the ISls in the dynamics of sublatticé23)—(25), in which
-100  -50 0 50 100 we have taken the limit of the infinite number of neurons.
t [msec] The theoretically evaluated critical poirtj, explains the
loss of the stability observed in Fig(d) with a high degree
FIG. 3. (a) The behavior of a neuron witty' =0 observed in the  of precision.
numerical simulation in Fig. 2. The membrane potentiahnd the In Fig. 5, we drawAp-App phase diagram, which is evalu-
synaptic electric currerit are plotted as a function of timé) The  gted by the theoretical analysis. We find the stable perfect
result of the theqretical ana!ysis for the ;tationary state of the nelatrieval state in the region represented by PR.AAs de-
ron, which explains the stationary behavior of the neurofain creases, the range 8§, for the stable perfect retrieval state
becomes narrower since a large amounitgpfis required for

we clearly see the successful retrieval of pattern 1, in whichhe successful memory retrieval under the strong inhibition.
the neurons belonging to the same sublattice exhibit synchro-

| [uA/cm?] and V [mV]

50
ot

50 | H

| [uA/em?] and V [mV]

nized firing. VIl. TWO SEPARATED PERFECT RETRIEVAL PHASES
The dynamical behavior of the neuron wigfi=0 is de- APPEARING WITH THE SLOW  a FUNCTION
scribed in Fig. 8a). After the transient behavior, the neuron Ser(t)

settles into the stationary state, where the neuron exhibits
periodic firing. In Fig. 3b), we describe the periodic solution
for retrieval state obtained from E(B6). In order to examine

the stability of this solution, we calculate the explicit valuefaster tharSs(t). In order to examine the role of the decay

of the matr'XM nume_ncally. In the present case, the Iargesttime constants irw functions, we investigate the case of the
absolute eigenvalue is 1, and the theoretically evaluated pef;

fect retrieval state in Fig.(B) is stable. The good agreement slow o function Sp(t) with 7pp =20 msec andSee,

: L - =2 msec. For this slowr function SpHt), we describe
between Figs. @) and 3b) implies the validity of the . R PR T
present analysis. It is also worth noting that the theoretic ip-App phase diagram in Fig. 6. The distinctive feature of

I, o his phase diagram is the perfect retrieval phase appearing in
result in E'g' .$b) IS mdepe.ndent. oP bgcagse .Of Eqal). the region with the large value &. In the case of the fast
We setP=3 in the numerical simulation in Fig.(d, and function Sp(t), the strong inhibition with the large value
this result of numerical simulation is well explained by the gf A tends to s, ress thg erfect retrieval. as dgescr'bed in
P-independent solution in Fig.(8). We will see the same P upp P ieval, : !

result of numerical simulation even with the larger value ofF'g'. > Neverthele_ss, In Fig. .6’ we see two sepgrated perfect
P, as far asP/N is sufficiently small. retrieval phases in the region with 40 G885<70 000,

while these two retrieval phases merge with each other in the
region with 70 006 App.
One example of the retrieval process in the region with
the large value ol is illustrated in Fig. 7. As a result of the
Here we investigate the effect of inhibitory synaptic elec-large value ofAp, the neuron obtains a large amount of the
tric currentl,p, which is controlled byAr. From Eq.(36),  inhibitory electric currentp, which oscillates with the pe-

In the previous sections, we assurBgg(t) with 7pp
=3 msec andrpp 7~=0.3 msec as well a§p(t) with 7p,
=10 msec andrp,=1 msec, whereSpt) decays much

VI. PHASE TRANSITION DUE TO THE LOSS OF THE
STABILITY OF THE PERFECT RETRIEVAL STATE
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FIG. 4. (3 '~I'/Q obtained from Eq(36) is plotted as a function ofs. (b) The largest two absolute eigenvalues of the mattiare
plotted as a function oAp. One of the absolute eigenvalues exceeds 1 beyond the critical Apin600, which is represented by the
vertical lines in all four figures. The perfect retrieval state we have evaluat@l im stable only below the critical poirtj;. (c) Changing
the values ofAx, we observe the ISls of all neurons in the numerical simulations RitlL andN=8000. See text for the definition of the
ISIs we calculate herdd) We observe the ISIs also in the dynamics of sublatti@@—(25). The critical pointA}; evaluated in@ and (b)
explains the phase transition observeddnand(d) well, although we see some fluctuations nagrowing to the finite number of neurons
in the case of(c). Beyond the critical pointAf, the network settles into another stationary state. The values of parametergpare

=3 msec,7pp ;= 0.3 msec,App=30 000, 7p ;=10 msec, andp ,=1 msec.

riod '~I'/Q. In the retrieval proces€) sublattices emerge ex- Then, neurons in the next sublattice cannot fire until this

hibiting synchronized firing of neurons, as described in Fig.mh'bItory _electrlc current_ decay_s W't_h the tlmg constant

7(a). When one firing of sublattice occurs, all neurons obtain™.1- IN this way, the oscillatory inhibitory electric current

a large amount of the inhibitory synaptic electric currgpt | p regulates the spike intervals of subINattlces, and hence the
memory retrieval with the long period is realized. The

60000
80000
40000 |
o 60000 |
<
20000 | & 40000
<
0 . . . , 20000 ¢
0 200 400 600 800 1000
Ar ) . .
0 500 1000 1500 2000
FIG. 5. Ap-App phase diagram obtained by the theoretical Ap

analysis. The stable perfect retrieval state is found in the region
denoted by PR. The values of parameters aggl=3 msec, FIG. 6. The same as Fig. 5, except thab ;=20 msec and

7pp,— 0.3 msec,7p ;=10 msec, andpp ;=1 mMsec. Tpp,7= 2 MSeC.
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@ 10 ' ' ' . which we fix 7pp 7=0.17pp 1. In the region with the long
Tpp,1, We find two separated retrieval phases. In this case,
stable and unstable solutions of E§6) are found only in-
side the perfect retrieval phase, as described in Fig. 8. One
might thus conceive that the stability analysis is not neces-
sary for the purpose of determining the phase boundary.
However, with the shortpp 5, we find the unstable solution
of Eq. (36) outside the perfect retrieval phase, as described in
Fig. 4. The stability analysis is hence indispensable to deter-
mine the boundary of the perfect retrieval phase, particularly

0 200 400 600 800 1000 with the shortrpp ;.
t [msec]

o N A O @

VIII. DISCUSSION

) , , . , We have investigated associative memory neural net-
100 | works of spiking neurons memorizing periodic spatiotempo-
ral patterns of spike timing. In encoding the multiple spa-
tiotemporal patterns, we assume the spike-timing-dependent
synaptic plasticity with the asymmetric time winddi(At)
in Fig. 1. Encoded periodic spatiotemporal patterns of spike
timing are reproduced successfully in the periodic firing pat-
tern of neurons in the process of memory retrieval. In this
retrieval processQ) sublattices(clusters of neuronsexhibit

50 ¢

| [uA/em?] and V [mV]
o

Ly

-100 . . A . synchronized firing, and the oscillatory inhibitory electric
0 200 400 600 800 1000 currentlp, which is supposed to come from interneurons,
t [msec] regulates the spike timing of sublattices.

In order to investigate the stationary properties of the sys-
FIG. 7. The retrieval process of pattern 1 in the case of the slowiem, we have derived the periodic solution for the retrieval
a functionSp(t) with 7pp ;=20 msec andpp ;=2 msec under the  state analytically in the limit of infinite number of neurons.
strong inhibition withA;p=1500. () Spike timings of neurons ob- From this analysis, we have shown that if the average of the
served in the numerical simulations witf=3 andN=8000 are  time window W(At) takes the value of zero, the crosstalk
pllotted as a function of time. Note that the vertical axis representgmong encoded patterns vanishes. This result implies that the
gi . (b) The membrane pptential_ and the synaptic el_ectric current present form of the time windowV(At), which is found in
I; are plotted as a function of time for a neuron wiff=0. The  gyperiments, has a great advantage in encoding a large num-
values of parameters ampp=65 000, 7p ;=10 msec, andrp , ber of spatiotemporal patterns.
=1 msec. To elucidate the stability of the derived periodic solution
, ) i o we have employed a linear stability analysis. In this linear
long-time influence of the slow function Sp(t) is indis-  gapjlity analysis we have to evaluate the time evolution of
pensable for this memory retrieval since the time gaps Ofnfinitesimal deviation so as to obtain the matrix for Floquet
firings of sublatticegi.e., T/Q) are considerably large. theory, although the naive application of Floquet theory
In Figs. 8a) and 8b), we describe the result of our analy- yields infinite size of matrix. In order to reduce the size of
sis with App=65 000, where we see two separated perfectnatrix, we have employed some decomposition of the stabil-
retrieval phases. Near the boundary of the retrieval phasegy problem, by which the original stability problem witk
Eq. (36) yields two different perfect retrieval states, which neurons is reduced into the stability problem w@hsublat-
are indicated by §” and “u” in Fig. 8(a). As described in tices. Then, to take into account the infinite long-time influ-
Fig. 8b), the largest absolute eigenvalue of the malfifor  ence of @ functions, we have introduced the variables
the stateu exceeds 1, while that for the stat@lways takes {lg 4}, which enable us to obtain the finite size of matvix
1. This result implies that the state s is stable and the statefor Floquet theory. The explicit form dfl is computed by
is unstable. The ISIs observed in the numerical simulationshe numerical integration of the single-body dynan{icg)—
are plotted as a function @&p in Fig. 8(c). To obtain these (C5), and the stability of solutions is evaluated from the ei-
ISIs, we slowly change the value @, both fromA,;=0 genvalues oM.
and fromA;p=2000. In the present case, neurons cease fir- Based on these methods of analysis, we have investigated
ing between the critical pointd{5(1) andAf(2). ThelSIs  the stationary properties of retrieval state in the case of the
observed in the dynamics of sublatticgx8)—(25) are also fast a function Spdt) with 7pp =3 msec and 7pp,
plotted in Fig. 8d). The phase transitions observed in Figs.=0.3 msec. In Fig. &), we have obtained periodic solutions
8(c) and 8&d) are well explained by the theoretical analysis in for the retrieval state for various value Afp by solving Eq.
Figs. 8a) and 8&b). (36). Then, in Fig. 4b), we have employed the stability
In order to investigate more details about decay time conanalysis of these periodic solution to obtain the critical point
stants, we describé\p-7pp 1 phase diagram in Fig. 9, in Aj,. The phase transition observed in the numerical simula-
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FIG. 8. (a) For the case of the slow function SpH(t) with 7pp ;=20 msec andpp ;=2 msec, we plofi/Q obtained from Eq(36) as
a function ofAjp. Near the boundary, we find two solutions of Eg6), which are represented bys™and “ u.” (b) The largest absolute
eigenvalue of the matri¥ is plotted as a function okp. The eigenvalues for stageand statai are represented by, and\,, respectively.
This result implies that stateis stable, while state is unstable. The two critical poim,(1) andAf(2) obtained from the theoretical
analysis(a) and(b) are represented by the vertical lines in all four figufesThe ISls observed in the numerical simulations wats 1 and
N=8000. We slowly change the values Af, both from Ap=0 andA;=2000. (d) The ISIs observed in the dynamics of sublattices
(23)—(25). The phase transitions observed in the numerical simulationand (d) are well explained by the critical pointf,(1) and
Af(2). In(c) and(d), all neurons cease firing betweAfl,(1) andAj(2). Thevalues of parameters afgp=65 000, 7p ;= 10 msec, and
Tip»=1 msec.

tions in Fig. 4c) and 4d) is well explained by this critical and additional four degrees of freedom are required to evalu-
point Ajs. The condition for the successful memory retrieval ate the infinite long-time influence ef functionsSp«(t) and

is summarized a#\p-App phase diagram in Fig. 5. Sip(t). In the present study we s@=10 andn=23, which
Meanwhile, with the slowa function Spe(t) with 7pp,  Yi€lds the matrix with the dimension of 80. Although one
=20 msec andpp =2 msec, we have found two separated 20

retrieval phases, as shown in Fig. 6. The behavior of neurons
in the memory retrieval with the large value 8§y is de-
scribed in Fig. 7, where we see the large size of oscillatory
inhibitory synaptic electric current regulating the spike
timing of neurons. The result of the theoretical analysis is
illustrated in Eq.(4), where the stability analysis is used to
choose the stable solution from the multiple solutions of Eq. 57

PR

(36).

The heart of the present stability analysis lies in the exact 0 : . .
reduction of the size of the matrix for Floquet theory. Since 0 500 1000 1500 2000
Q sublattices arise in the stationary state, we have to evaluate Arp
the matrix with the dimension of (£n+4)Q, where k+n . FIG. 9. Ap-mpp 1 phase diagram obtained by the theoretical
corresponds to the degree of freedom of the neuron dynam|(§]a|ysi37 where we fixpp = 0.170p . The values of parameters are
f(vi, Wiz, ... wip) andg(vi, Wi, ... Wi,) (I=1,...)0), App=65 000, 7jp ;= 10 msec, and-"p,2=1 msec.
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might conceive that the size of this matrix is somewhat largesystem. It is well known that the hippocampus is the impor-
the critical points obtained from this matrix well explain the tant tissue for short term memory. In CA3 region of hippoc-
result of numerical simulations with a high degree of preci-ampus, we see dense recurrent connections among pyramidal
sion, as demonstrated in Figs. 4 and 8. In other networkeurons, and hence the short term memory is thought to be
models[52,5], only a few sublattices emerges and the size ofstored in the CA3 region of hippocampus. Memory stored in
matrix becomes small. hippocampus should be transfered into other regions such as
The spatiotemporal patterns to be memorized are assumegocortex so that it is stored as the long term memory. Re-
to be periodic in the present study for ease of analysis. It igently, some experimental results begin to suggest that this
worth noting that learning rule based on the spike-timing-memory transfer process takes place when sharp waves
dependent synaptic plasticity is applicable to a wide class ofSPW appear in hippocampu$8]. In SPW, fast periodic
spatio-temporal patterns of spike timing. The periodicity offirings of interneurons{200[Hz]) bring about oscillatory
spatiotemporal patterns is not crucial, and it is almost obviinhibitory synaptic electric currents in pyramidal neurons,
ous that spike trains generated by independent Poisson prand these oscillatory electric currents regulate occasional fir-
cess are also well encoded by use of the time windowngs of pyramidal neurong0]. Nadasdyet al. have investi-
W(At). In the case of Poisson process, the firing rate ingated these occasional firings of pyramidal neurons and re-
Poisson process must be adequately low since the refractosrealed that repeating firing patterns of pyramidal neurons are
ness of neurons is expected to prevent retrieval of Poissopresent in SPW12]. These results of experiments indicate
trains with high firing rate. that spike timing of pyramidal neurons of SPW represent
It is of interest to consider the effect of noise in the some kind of memory that should be transfered into neocor-
present model. With the large value Afs, neurons obtain tex. Also in the gamma oscillation, we observe oscillatory
the large size of oscillatory inhibitory electric currdpp as  inhibitory synaptic electric currents due to periodic firing of
described in Fig. 7, and the effect like stochastic resonance isterneurons, although its frequency is somewhat low
expected to occur in the presence of noise. The evaluation ¢20—80[Hz]). Buzs&i and Chrobak have hypothesized that
the effect of noise, however, seems to be difficult in thethe firing patterns of pyramidal neurons in the gamma oscil-
present scheme of analysis since we are required to calculak&tion are stored in the recurrent connections of the CA3
the distribution of spike timing of neurons in this evaluation. region of hippocampus, and then these stored firing patterns
With the largeAp and the shortpp ; the basin of attrac- are replayed in the firing patterns in SPW in a time com-
tors for spatiotemporal patterns are found to be narrow in th@ressed manne51]. Our theoretical model explains this
present mode(data not shown In the initial condition, the time compressed replay of firing patterns.
inhibitory synaptic electric currertip is taken to be the value Some aspects of our theoretical model are, however, still
of zero. With the shortrpp, firing of the first sublattice, biologically implausible. For example, the learning ride)
which is induced by gxr,i, brings about firing of the second gives either negative or positive synaptic weights by chance
sublattice immediately since some accumulation of inhibi-although synaptic weights among pyramidal neurons are
tory synaptic electric currentsp is necessary to control the found to be positive in experiments. More precise modeling
next firing. For these reasons, the first few firings of sublat-of interneurons might be needed to acquire a deeper under-
tices take place quite rapidly. These rapid firings of sublatstanding of the time compressed replay of firing patterns.
tices give rise to too much accumulation of inhibitory elec-Solving these problems will be part of our future study.
tric currentl p, and then terminate firings of all neurons. The
core of the prOblem in this phenomenon is too rapid ﬁringSAppENDlx A: THE HODGKIN-HUXLEY EQUATIONS
of interneurons. To avoid this problem, more sophisticated
modeling of interneurons is needed so as to realize adequate The Hodgkin-Huxley equations are the ordinary differen-
control of interspike intervals of interneurons. When we asdial equations with four degrees of freedom, which have been
sume that interneurons exhibit periodic firing independentlydeveloped to describe the spike generation of the squid’s
of pyramidal neurons, the inhibitory synaptic electric currentgiant axon[56]. In the present study, for the dynamics
| p takes the form f(v,wyq, ... w,) andg(v,wq, ... ,w,) (I=1,...n), we
assume the Hodgkin-Huxley equations of the form

lp=A Sp(t—kTp), 9 — —

" |sz el e ©7 Crnf (0, W1, - . . W3) = OnaWiW1(Vna— ) + GxWa(vk— )
whereT » represents the period of firings of interneurons. We +0u (v —v), (A1)
can investigate the case of this periodic inhibitory electric

currentl p following the almost same scheme of the present 91(v, Wy, ... Wa)=a(1—W;)— BW;, (A2)

analysis.

Finally, we discuss the biological implication of the
present study. The result of the present study strongly sug-
gests the possibility of the concept of temporal coding, in
which information is assumed to be processed based on spike g3(v,Wy, ... W3)=a3(1—Ws)— Baws, (Ad)
timing of neurons. The question then arises about where we
can find this kind of information processing in a real nervouswith

02(v,Wq, ... W3)=a(1—W,)— B,w,, (A3)

061913-16



LINEAR STABILITY ANALYSIS OF RETRIEVAL . .. PHYSICAL REVIEW E 66, 061913 (2002

10—v APPENDIX B: DEFINITION OF THE MATRICES
a1=0.01(10—v)/ {exr{ 0 )— ] (A5) A4 AND B
From Egs.(64), (80)—(84), and so onA, in Eq. (86) is
written as
B1=0.125 exp—v/80), (A6)
1 JR
s — o ... O
254 d(dtg)
C &_q) .
Bo=4 exg —v/l18), (A8) 1 s,
- — — 0o ... O
C 3(5ty)
as= 0.07 exm_ 0/20), (A9) Aq: _API:joqe_ (?_q:i-/Q)/TPP,l 0 0 ’
CQ7pp A Tpp,1~ TPP,)
Appdoge” (T-aTIQ ez
30-v — 0
Bs=1 ex -1t (A10) cQ7pp 4 Tpp,r~ TPp,2
10 Ane (T-aTQ)/7p 1
1P 0
CQ7p A Tip1— Tip,2)
wherev represents the membrane potential, andandw, —Ape (T7aTQ/7p 2 0
the activation and inactivation variables of the sodium cur- _
CQ7p A Tip 1~ Tip,2)

rent, andw, the activation variable of the potassium current.
The values of parameters arey,=50 [MmV], vk=

~77[mV], v =544 [mV], gy.=120[mSfcn?], gy 9=1,...Q-1 (B1)
=36 [mS/cnt], g, =0.3[mS/cnt], andC,=1 [uF/cn?].  In the same way, we obtai® in Eq. (86) as

1 IR N JR IR JR

Ca(dty) d(dv) d(éwy) (W)

1 &Sl + 581 (981 &Sl

Co(dty) a(dv) a(ewy)  a(owy)

LS | 0SS S,

Co(sty) a(dv) aowy)  a(owy)

B=|  _A.Tge Treea . B . C (B2)

cQ7pp A Tpp,r~ TPp,2

'A‘F’gOOei’-hTPP'2 0 0
cQ7pp 4 Tpp,r~ TPp,2

~TIr

Ape 1P, 0 0
CQTpA(Tip1— TipD)

_AIPe*T/T“::’Z 0 O

CQTp A Tip,1— Tip,2)
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with
f@PqZ Jog Serlt—t}, (k) — 8tq: (k)]
IR IR IR IR
* [t— t (K] 7
a8l a(dl,)  a(Slg)  A(dly) 0]+ dto () Te i
95, ISy S S +{|zo[to K)]+ Sl Jt§(k)]re” [t-t} a1/ 7pp 2
A ) A0 L £ (k) <t<t8 (k1) 4
| s S, FI S, and
a8l a(dl,) Al adly | - A .
ei?/fim ’ 2 ) 3 04 ||P:§ % Splt—tg, (k) = 8ty (k)]
0 e w2 0 0 HIE Lt (K) 1+ 8l 5 d t5 (k) Jre (T tamen
~Tlmpy %
° 0 e N IS ()] 81, g (k) T} e TG00V meg
0 0 0 e Tmp2
(B3) ty (k) <t<tg(k+1). (CH

In our analysis, we have to evaluate the eigenvaluéd of From Egs. (70—(73), we obtain the explicit form of
numerically, and hence the numerical evaluatiodgandB {1 [t7(k)]} as follows:
is required. The coefficients appearing in E@2) and(83)

are evaluated in Appendix C. Except fogy, ... by, ele- e~ (T-a'TIQ)/7pp,

PP
ments inA, and B are determined by use of the values of 11t (k)]= 6 2 Jog! (Tpp— 7 2)(1_(34/7,3,3‘1)’
coefficients obtained in Appendix C, while we set g PPL PP, (o)
big, ..., b,, so thatM has the eigenvalug; =1 with eigen-
vector (94). A _ o (T-9'TIQ)/mpp »

PP O ~ e :

13415 (]=5 2 Joy P T
APPENDIX C: NUMERICAL EVALUATION OF THE q’ (7pp, i~ Tppd(1—€ 77PP)
COEFFICIENTS IN THE FUNCTIONS (€7
R({6Tg},6v.{8W, }.{5l5}) AND ; e (- TIQip,
SL({oT g} av.{ow, }. {4l s} |§0[tz;(k)]_—2 =,
- . . ' QY (rpi—mp)(l—e TPy
In order to evaluate the coefficients in the functions (C8)

R[---]andS[---] (I=1,... ), we consider the single-

body dynamics of the form e (T-a'TIQ)/7p,

3t k]= 2 > -
vo=f(vo,Wor, - . . Won) + 1o, (CY . 0w (e med(1me TR (C9
Woi=81(0,Wor, - - . Won), We solve the dynamic€C1)—(C5) under the condition
I=1,...n (C2 volts (K) ]=vg[t5 (k) ]+ dvolts (K)], (C10
with Woilt5 (k) ]=wg[t5 (k) ]+ dwo[tg (K)],
To=TppgtTip, (C3 I=1,...n. (C1y
where Then, we obtain the functions
|
volt§ (k+1)]=F {5ty (K}, ol th (K)],{owoi [t () 1} {8l s o[ t5 (KT}, (C12
Wol 5 (k+ l)]=G|({5t_qr(k)},5v—o[tz§(k)],{5wm/[t’é(k)]},{ﬂ sdto(K)I), 1=1,...n. (C13
It is straightforward to show
- F({edty},edv.{edw, } {edl o)) —vi[th (k+1
RUSto} 80,4 oW} {81} = lim ({edtq} edv,{eow } {€dls}) —vg[ty (K+ )]’ (14

e—0 €
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(C19

S({6tg},6v.{ow ), {6l s}) = im

.o,
€

where O<e§t_0. The explicit value ofF[-- -] andG[ - - - ] is easily computed by the numerical integration of the dynamics
(C1)—(C5). We obtainR[---] andS|[ - - -] by evaluatingF[---] andG,[ - - - ] for sufficiently smalle.
Once we obtairR[ - - -] andS|[ - - - ], we can easily evaluate the coefficients appearing in 8§5.and(83). For example,

substituting {0},1{0},{0}) into Eq. (82), we have

R({0},1{0},{0})=

Hence dR/d(5v) is calculated fronR({0},1{0},{0}), which is
manner, we obtain every coefficient in E¢82) and (83).

(C16

J
d(ov)

computed by EqC14) with sufficiently smalle. In the same
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