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We introduce a general method for the systematic derivation of nonlinear reaction-diffusion equations with
distributed delays. We study the interactions among different types of moving indivi@iatas, molecules,
quasiparticles, biological organisms, et€he motion of each species is described by the continuous time
random walk theory, analyzed in the literature for transport problems, whereas the interactions among the
species are described by a set of transformation rates, which are nonlinear functions of the local concentrations
of the different types of individuals. We use the time interval between two juigstransition timgas an
additional state variable and obtain a set of evolution equations, which are local in time. In order to make a
connection with the transport models used in the literature, we make transformations which eliminate the
transition time and derive a set of nonlocal equations which are nonlinear generalizations of the so-called
generalized master equations. The method leads under different specified conditions to various types of non-
local transport equations including a nonlinear generalization of fractional diffusion equations, hyperbolic
reaction-diffusion equations, and delay-differential reaction-diffusion equations. Thus in the analysis of a given
problem we can fit to the data the type of reaction-diffusion equation and the corresponding physical and
kinetic parameters. The method is illustrated, as a test case, by the study of the neolithic transition. We
introduce a set of assumptions which makes it possible to describe the transition from hunting and gathering to
agriculture economics by a differential delay reaction-diffusion equation for the population density. We derive
a delay evolution equation for the rate of advance of agriculture, which illustrates an application of our
analysis.
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[. INTRODUCTION pose of this paper is the derivation of a generally valid local
approach for the description of nonlocal diffusion and
The nonlocal, space and time distributed, diffusion orreaction-diffusion processes for which the transport compo-
reaction-diffusion processes can be described with the intaaent can accommodate any type of delay function. The ap-
gral equations of the continuous-time random walk theoryproach presented in this study is general and can be applied
(CTRW [1]) or the generalized master equatid@®ME [2])  to the study of a broad class of transport and interaction
in which both transition times and transition displacementgrocesses in physics, chemistry, biology and population dy-
are governed by specified probability distributions. Thesenamics. Our method is based on the use of the time interval
two types of equations are equivalent to each ofBgrUn-  between two jump event&he transition timg as an addi-
fortunately, both types of equations are nonlocal in space antional random variable. A similar approach has been intro-
time, and are for this reason very hard to solve for finiteduced by one of us over a decade ago in connection with the
systems. In order to overcome this difficulty, different typescomputation of correlation functions in semiconductor statis-
of approaches have been developed. Hyperbolic diffusiotics for the case of fast generation-recombination processes,
and reaction-diffusion equation®&IDE) have been derived which was based on the use of a system of age-dependent
by starting out from extended nonequilibrium thermodynam-master equationfADME [8]). The transport equations pre-
ics [4]. A random walk approach5], which also leads to sented here are a nonlinear generalization of the ADME.
hyperbolic diffusion equations, has been developed in con- The structure of the paper is the following. In Sec. Il we
nection with the study of the Neolithic transition in Europe derive a system of nonlinear, age-dependent evolution equa-
[6]. A separate, complementary approach is based on the usiens, which describe the interaction between the transport
of fractional diffusion equation$FDE [7]), with the use of and transformation processes for macroscopic systems made
the representation of the nonlocal terms by fractional derivaup of interacting, moving individuals. We transform these
tives in time or space. age-dependent master equations into a system of nonlinear
Recently, attempts have been made in the literature teontinuous time and space random walk equations and fi-
extend the to use of delay evolution equations to reactionnally into a system of nonlinear generalized master equa-
diffusion systems, based on the HDE and FDE approache$ions, and show that they include as particular cases various
Unfortunately both the HDE and FDE approaches are lesg/pes of nonlinear delay equations, some of which have been
general than the CTRW and GME theories, because they catiscussed in the literature. In Sec. Il we derive nonlinear,
accommodate only special types of delay functions. The purage-dependent evolution equations for more complex sys-
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tems, for which it is still possible to derive nonlinear con- We can derive the following age-dependent balance equa-
tinuous time and space random walk equations; however, itions for the loss of individuals of different types
general the derivation of nonlinear generalized master equa-

tions is no longer possible. Finally, in Sec. IV we illustrate Jd 4 N ) , ,
our approach with the Neolithic transition. gt t g fh = —&(n Ty r,WU(r_" )dr’.
(6)
Il. NONLOCAL, NONLINEAR REACTION-TRANSPORT . .
PROCESSES We can also derive the boundary condition
We consider a macroscopic system containing different N _ .

types of individuals(species which can be atoms, mol- Eu(r,7=0;t)=Ry(p(r;t),t)+ g r,§u(f 7' t)
ecules, quasiparticles, biological organisms, etc. We assume ’ o
that the different types of individuals interact with each other XWy(r'—r,7")dr’d7’, (7)

and at the same time are involved in random walk motions in ) . ) .
space and time, which can be described by the CTRW a[y_\lhlch describes the jump of a particle from other positions
proach. We denote by,(r:t), u=1,2,... the concentrations to a position between andr +dr and the interaction of an
of the different species at positionand timet, expressed in  individual from the species with the individuals from the
numbers of individuals per unit volume, and assume that th@ther species. The initial condition for E@) can be written
rate of change of the speciasR,(t), can be expressed as a 35

local, nonlinear, non-negative function of the composition e 0

vectorp(r;t)=[ py(r;t)Ju=1.. and of timet &ulr, mt=0)=pu(r.0vy(7]r), ®

R,(H)=Ry(p(r;t),)=0u=1,2,.... (1) wherev(7|r) is the conditional probability of the jump time
for a particle of species placed at positiom at time zero.

The motion of the speciascan be described by a CTRW Equations(6)—(8) determine completely the time evolution
process characterized by a time homogeneous and generafy the age-position particle densigy(r, 7;t) and of the total

space-inhomogeneous propagator: particle densityp,(r;t). They are nonlinear generalizations
of the ADME derived in another physical contd®i. In the
P (r' t'—r tydr dt= g, (r' —r,7)dr dr, case of the ADME the unknown function is a probability
density, whereas in our case the unknown function is the
with age-position particle density,(r,7;t); on the other hand, in

our equations is a position vector in real space whereas the
ADME depend on an abstract state vector. Another differ-
f f py(r'—r,r)drdr=1. (20 ence s that in the case of ADME the nonlinear term from Eq.
(7) is missing. Nevertheless the mathematical structures of
~ 4 ; " . the equations are similar and thus we can generalize the re-
Here g,(r’,t —r,)dr dt is the probability that an indi sults presented in the literatuf8] for the study of our non-
linear problem. In the first place it is easy to show that Egs.
(6)—(8) lead to a nonlinear generalization of the integral
equations of the CTRW theorjl]. We integrate Eq(6)
along the characteristics, resulting in

vidual from theu species, which has the positioh at time
t’, makes a jump in a time interval betwetandt+dt to a
position betweem andr +dr. The differencer=t—t’ is the
transition time, that is, the time interval between two succes
sive jumps(the age of the particle in the positiari). In
terms of this propagator we can introduce the survival func- Y et R _
tion of an individual of typeu at the positiorr’ &, 1D = d(t= D1, D Zy(rt= D)+ Hr=Dpy(r,0)
Xvd(T—t|r) €y (r, )€ y(r,7—1), 9
tu(r’,n= f, fr/:r‘ﬂ”(r —r,r)drdr’. ®) whereZ,(r,t)= &,(r,7=0;t) and9(x) is the Heaviside step
function. By inserting Eq(9) into the boundary conditio(¥)
The transition rate from the positiari to a position between and into Eq.(5) we get an integral equation fa(r,t) and
r andr+dr at an age betweenand r+dr is an expression for the population concentratigngér;t),u
=1,2,....
Wy(r'—r, 7" )drd7" = ¢, (r'—r,7")drd7'[€,(r",7").
4

Now we introduce the notationg,(r,r;t) for the position

Z,(r,t)=Ry(p(r,t),t)+ f;ﬁ,zu(r"t_ 7

and transition time densities of particles at timand note . o o ,
that Xgu(r'=r,7drid e+ | pul(r,0)
r
p (r't)=fm§ (r,mtdr (5) X v ’—t|r’)Mdr’d ' (109
ulls o 7,y . v\ T fu(r’r’—t) T,
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t 9 :
Pu(r,t)=JO€u(r,r)Zu(r,t—r)dr+pu(r,0) SEPuD=1u(r D +Ry(p(r,t), D+ JOJ,[F’U“""')
. ey(r, )t
Xf ”S(T“'”ﬁdr- (10b) Xihy(r' =1 t=t") =py(r,t")
o Xgy(r—r',t=t")]dr'dt’, (11)

Equations(10a and (10b) determine the time and space where
evolution of the functiorZ,(r,t) andp,(r;t); they are non-

A
linear generalizations of the integral equations of the CTRW wy(r—=r',t=t")

approach. Due to the nonlinear teriRg no general analyti- _ _

cal solutions of Eqs(10g9 and(10b) are available. However, =£tlt,{ [sipy(r—r',s)]/| 1— f"z//u(r—w”,s)dr”H
these equations can be transformed into a nonlinear generali- '

zation of the generalized master equation. We use the method (12)

of Laplace transformation in time for eliminating the func-

tions Z,(r,t) from Eqgs.(10a and (10b). The main steps of are delayed rate densitieg,(r—r’,s)= Ly, (r—r',7) are

the derivation are outlined in Appendix A. After lengthy al- the Laplace transforms of the propagators attached to the
gebraic manipulations we obtain different species, and

o (oo Of -t €(r, —s7’
lu(r,t)=pﬂ(r)/~‘t1U f Svi(T mnéyr.ne deT’}—pg(r)ﬁ(t)
0 T’[1_fr”lpu(r*)r”:s)dr”]gu(r-T_T,)

+ L0 fpu( )f FU T_T“){%(rum')—S"b”(r__)r’s)g“(r ’T)]e—ST’deT’dr’, (13)

Cu(r',r'=1") 1—fnip,(r' —r",s)dr"”

wheres is a Laplace variable, and the operatdgsand£;*  whereas our general equatiofid) are derived by combining
denote the direct and inverse Laplace transformations, réhe CTRW theory with nonlinear dynamics.

spectively.l ,(r,t) are terms which express the fact that the Equations(11) are nonlinear generalizations of the so-
distribution of the transition time and the jump length of ancalled generalized master equati@]. By considering dif-
individual at time zero is generally different from the one ferent particular cases, they lead to various reaction-transport
given by the propagatd®). In particular, if at time zero, the equations. By performing a Kramers-Moyal expansion in
individuals are at the beginning of a waiting period, that is, ifEgs. (11) and neglecting the transient termig(r,t),u
vi(7|r)=48(7), then from Eq.(14) it follows that I,(r,t)  =1,2,... we come to

=0. The contribution ofl ,(r,t) is a transient effect, which
can be neglected in the analysis of long time behavior. This
transient contribution is similar to the contribution of the first
jump in the CTRW theory1].

1%
Epu(r:t): Ru(P(rut):t)

m

We notice that a particular case of H§1) has been re- E 1 mE
cently introduced by Feodotov and Okuf#. Their equa- ozl (= n [ o'?rﬂ
tion has the following form: ' m
X{DYM , (rt—t)py(r,t)}dt’, (15
t [+
=f f [K(x,z,t—s)n(s,z)—K(z,x,t—s)n(s,z)Jdzds  where
0J—=
l m
+Un(1—n), 14 iy — e
(1-n) (14 D™, (it t)_ﬁfmgl(r“u r)
where n(x,t) is a continuous state variable depending on Xwy(r'—r,t—t")dr’, (16)

space and time&K (x,z,t—s) is a suitable delay function, and

U is a rate coefficient. This equation has been formally in-are delayed probability diffusion coefficients. By truncating
troduced as a nonlocal generalization of the classical Fishehe Kramers-Moyal series in Eq&L5) to terms of order one
equation dn/gt=Da?n/9x>+Un(1—n). Equation (14) is and two we come to a nonlinear generalization of the
postulated without reference to a transport mechanisnfrokker-Planck equations with memory, used in condensed

061908-3



M. VLAD AND J. ROSS PHYSICAL REVIEW E66, 061908 (2002

matter physic$2]. An important example of such equations (1—Hy) -
corresponds to the case where the delayed drift coefficients@y(t—t")~— W(t_t/)_( ~1>H,>0,
vU(r,t—t")=D"Y(r t—t’) are generated by a scalar force (ou) (Hu)

3 “ (23)
field U(r):

whereH,, are fractal exponents between zero and one, and
viL“)(r,t—t’) == b(“),(t—t’)[aU(r)/ar#/], (17) oy are characteristic time scales attached to the different spe-
He cies, respectively. In this subcase E(@2) become fractional
) N transport equations
where bw,(t—t’) are delayed mobility tensors attached to

the different species. The evolution equations become g t g e
mpu(r,t): WRu(p(r,t ),t )dt

J t 7 0
EPU(r’t):RU(p(r’t)’t)—i_J'()% % —&rM&rM, +(Uu)1+HuLuPu(r,t). (24)
X[DU2)(r =t ) py(r,t)] where
t P P 1 d jt f(t")
U=t ! —f(t)= — ~—rdt’,1>H>0, (25
+fo[§ 2 bt )L’u(” Voot U P e N (29
92 J is the fractional derivative of order. Equations(24) are
XU(r)+|-—=U(r)|=—py(r,t’)[1dt’. (18)  nonlinear generalizations of the fractional diffusion equa-
# # tions recently introduced in the literatufé] for the descrip-

We suggest that Eq$18) can be used for the study of the t|or'16\of t(:]|sp¢r3|vetd|f;fu5|gn. ds t tial d
propagation of reaction-diffusion waves in chemical system?a fﬂﬁcti%rn'gnpor ant subcase corresponas to exponential de-
in external force fields, for example in electrochemistry, y
plasma physics or for separation processes in centrifugal or ou(t—t")=(0oy) " Lexd — (t—t")o]. (26)
gravitational fields. ! ! !

An important particular class of cases is one for which theHere the transport equatiofia1) become hyperbolic
delayed transition rates,(r—r’,t—t’) can be factored into

! i 2
space-dependent term&/,(r—r’), and time-dependent de- d B P apy(rt) @
lay termse(t—t') ouzz T oo pu(r )= 1+O'UE+0'U§ B
Pu(r—=r' t=t") =g (t—t" Wy(r—r’), (19 XRy(p(r,t),t)+ Lypy(r,t). 27

whereW,(r—r') are local(Markovian transition rates. In
this case the delayed diffusion coefficients are also factorizae
able:

A third subcase corresponds to the situation where the
lay function is a combination of exponential terms:

DY, (rt—t)=g,(t=t)D4™ , (1), (20 <pu<t—t')=§vl Tuo(Tw) " texd — (t—t)/oy,], (28)
u(m) ; i f ; _ . . .
V_VhereDMl---#m(r) are_Markowan pr_obab|I|ty diffusion (_:oef whereo, are relaxation times angl,, are weight factors. In
ficients and the nonlinear generalized master equations caRjs case we can introduce the auxiliary field functions:
be expressed as
Lepy(r,t)

Ipy(r, D)/ at=Ry(p(r,1),+ e (D)@ Lypy(r,t), (21 EuU(r’t):‘C;l T"US

where® denotes the temporal convolution product and t
= [purt=t)0) texi—ta, Jav
0

Lu___:Jr,[__,wu(r’—w)dr’—...Wu(r—>r’)dr’] (29)

- am By using these auxiliary field functions we can reduce Eq.

— _ - (m) . . M

_mzzl ( 1)mz E ar ar {Dil...um(r>---} (21) to a system of evolution equations local in time:

Iz Hm Py O

(22) d " _

, _ —PuLD=Ry(p(r,0,0+ 2 my, LyEy,(r,b),  (30)

are linear, Markovian transport operators. v=1
We distinguish three important particular subcases of Eqgs. 5

(21). The first subcase corresponds to a delay function hav- = = _ 1

ing a long tail of the negative power law type: Tuw gt Fu(0+ 20, (1D =py(1,1). 3
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Equations(30) and (31) are nonlinear generalizations of te-
legrapher’s equations from electrodynamics. By eliminating

the auxiliary fields=,,(r,t) from Egs.(30) and (31) we

come to an evolution equation which contains time deriva

tives of high order. We have

m

J
H Dyw Epu(rat)_ Ru(p(r,t),t)
w=1

m N
= 7w ] Duwlupu(r b), (32)
=1 W#uv

v

where

J
D=1+ O'UWE, (33)

PHYSICAL REVIEW B6, 061908 (2002

Ill. GENERALIZATIONS OF THE THEORY

The reduction of the nonlinear age-dependent transport
equations to nonlinear generalized master equations is pos-

sible only if the net generation rates of individuals of differ-
ent types are non-negativi,(p(r;t),t)=0, Eq. (1). How-

ever, for many physical, chemical and biological processes
this condition is not satisfied. In this section we generalize
the nonlinear, age-dependent transport equations to the case
where the net generation rates can be negative. We assume
that the net rate of production of speciess the difference
between a generation ral; (p(r;t),t)=0 and a consump-

tion rateR, (p(r;t),t)=0:

u=1,2,.

Rulp(r;), =Ry (p(r;1),) =R, (p(r;1),1), =
(39

are differential operators. In the particular case of a singléAlthough in Eq.(38) the individual generation and consump-
exponentialp =1, Eq.(34) reduces to the hyperbolic trans- tion rates are non-negativ®®, (p(r;t),t)=0, their differ-

port equation(27). Another interesting situation corresponds ences can be positive or negative. Under these circumstances
to the case where all relaxation times for a species are equahe evolution equationé) and (7) are replaced by

o= 0=...=oyn=0,- In this case the delay function
(28) is replaced by
o (O_U)*l (t_tl m—1 ,/
pu(t t)_(m——l)! . exf—(t—t")/oy],
(34)
and Eq.(32) becomes
a\™ g
1+0’uﬁ Epu(ht)_Ru(P(rut),t) =Lypy(r,t).
(35

A fourth subcase corresponds to a constant delay
e (t—=t)=68(t—t' — o), (36)

for which the evolution equation§1) turn into integro-
differential equations with constant delays:

apy(r,t+o)lat=Ry(p(r,t+o,),t+oy)+L,p,(r,t),
(37)

Equations similar to Eq.37) are used at times in theoretical

biology.

] ——— .
—+(7— gu(r,r,t)——§u(r,r,t)fr/wu(r—>r ,7)dr

at T
éu(rvT;t) _ .
Ty Ruen.o, (39
e =00 =R} 0.0+ | [
XW,(r'—r,7)dr'd7’. (40)

In Eq. (39) we have assumed that the rate of disappearance
of the speciesl, R, (p(r;t),t) is uniformly distributed for all
ages. This assumption is usually satisfied in physics or chem-
istry, because the rate processes are independent of age. In
biology, however, this assumption is generally invalid and
Egs.(39) and(40) must be replaced by a more general evo-
lution equation.

The nonlinear age-dependent equations can be trans-
formed into a nonlinear generalization of the CTRW equa-
tions, similar to Eqs(9)—(11) derived in Sec. II. We integrate

In conclusion, in this section we have introduced a genEd- (39 along the characteristics, and express the initial con-

eral method for the derivation of transport equations withditions in the form(8). We obtain
distributed time delays for a system containing different

types of moving individuals. We have assumed that the mo-
tion of each individual is described by a continuous time
random walk, whereas the interactions among individuals is
described by a set of local, nonlinear transformation rates.
We have introduced an additional state variable, the transi-

Er,m)=T(t—1)l(r,7)

tion time, which makes it possible to derive a set of nonlin-
ear, age-dependent evolution equations which are local in
time. By eliminating the transition time from the evolution
equations we derive a nonlinear generalization of the gener-
alized master equation, which includes as particular cases
various delay reaction-transport equations derived in litera-

t R (p(t")t)
Xexp[‘fuw‘“ antmn
€y(r,
+a(r—t)pu(r,0)v8(r—t|f)€(r(%)t)
tRy (p(r;t"),t)
XEX%—JOW“ @

ture, such as fractional transport equations and hyperboliwthereZ (r,t) = &,(r,7=0;t). Now we insert Eq(41) into

transport equations.
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+ ! A ’ ’ _ ! RJ(p(rl’t,)’t) ’ r At
Zy(r,tH)=R, (p(r,t),t)+f0fr/zu(r A=)y (r'—r, 7 )exr{ ft—f/—pu(r';t') dt }dr dr
o Pu(r’ r,r) ~(tRulp(rist)ty
f f pu(r",0vy (7" —t|r ) 0T =1 ex Jo—pu(r';t’) dt’ |dr'd7’, (42

R” Y ’
t u(P(rvt )1t )dt,:|

[ [t RI(it)t) B B
pu(r,t)—fofu(l’,T)eX[{ ftﬁ pol1:0) dt’ |Z,(r,t r)dr+pu(r,0)exp{ fo (120

* o €y(r,7)
Xft vy(7 tll’)md'ﬂ (43

Equations(42) and (43) are nonlinear integral equations Similarly, we denote byRr, (a,.r,t) the rate of disappear-

which determine the time and space dependence of the poptnce of individuals of typa at agea,, positionr and time

lation densities p,(r;t) and of the functionsZ,(r,t) tand assume that it is given by a nonlinear dependence simi-

=¢&u(r,7=0;t); they are nonlinear generalizations of the lar to Eq.(45)

CTRW theory for the case of a process with transport and

transformation described by the propagataf,(r’,t’ Ry (ay,r,t)=R,[a,,{(r,a,7t),t]. (46)

—r,t)dr dt and by the rate®; (p(r;t),t). In the particular

case of a system without generation and consumption pro- By using the age-dependent kinetic la@) and(46) we

cessesR; (p(r;t),t)=0, Egs.(42) and (43) reduce to the can derive the following nonlinear age-dependent master

classical evolution equations of the CTRW approach. Unforequations for the density functiordg(r,a, 7;t):

tunately, due to the exponential dependence on the integrals

of the fractionsR, /p,, in general Eqs(42) and(43) can no ( J
ot

longer be reduced to a nonlinear generalization of the gener-
alized master equation. Such a reduction if possibIRf
=0,u=1,2,...; in this case Eq$42) and(43) reduce to Egs. , ,
(9) and (10) derived in Sec. II. = —€u(f'au'T?t)Jr,Wu(Hf ,7)dr

A more complicated model corresponds to the case where
the kinetics of the process itself is age-dependent. Such a —o(7)Ry[ay.{(r.a,t),t], (47)
situation is commonly encountered in biological population
dynamics and population genetics, where the generation and
consumption rates depend on the ages of the individuals in- du(r,ay,7=0;t) = f , f Lu(r’ay, 7'
volved in the process. In general we must make a distinction rer
among the age of a jump event, the transition timand the XW,(r' —r,7)dr'd7’, (48
agea, of an individual of typeu. We introduce the notations
{y(r,a,;t) for the position, age, and transition time densi- 24(r,a,=0,7t)
ties of particles at timé and note that a

J
— r it
Jay, 077')§U( ,a,,7t)

) =0 .Ry[a(ra,7;t),t]dad 7.
éu(r,r;t)=Jo Lu(r,a,mt)da, (T)Lfal . [a¢(r,a,7';t),t]dadr

(49

pu(r;t)=f f {y(r,a,mt)ydrda. (44) By integrating the nonlinear age-dependent master equations

0Jo (47)—(49) along the characteristics we can derive a system of
L o nonlinear integral equations for the density functions
An individual of typeu IS initially generated at an age, Zu(r,a,7;t). These integral equations take two different con-
=0, and then ages as t|m_e goes on. We denotR[bQQ_,r,t) tinuous time walks into account: the first random walk de-
the rate of generation of |nd+|V|duaIs. of typeat positionr  geribes the time evolution of the individuals and the second
and timet. We assume thak,, (Or,t) is a functional of the  one the transport process itself. In general the evolution
vector of the density functiong(r,a,7t)=[{,(r.a,7t)]  equationd47)—(49) cannot be reduced to a nonlinear gener-
which also depends on the vectar(a;,a,,....) of the  gajized master equation. However, if the transit time, which

ages of the individuals involved in the generation process describes the transport process, is related to the age of the
N . individuals, which describes the population kinetics, the

Ry (Or,t)=R,[a{(r,a,7t),t]. (459 model can be reduced to a nonlinear generalized master

061908-6



SYSTEMATIC DERIVATION OF REACTION-DIFFUSION . .. PHYSICAL REVIEW B6, 061908 (2002

equation. In particular, this is possible in the case of thewhich can be expressed as the product of a space-dependent
theory of Neolithic transition, which is discussed in the fol- component and of a time-dependent component. It has been

lowing section. suggested5] that the migration timer, is closely related to
the time differencea between two successive generations.
IV. DISTRIBUTED DELAYS AND THE THEORY OF Denoting bym the number of migration events per genera-
NEOLITHIC TRANSITION tions, we haver=a/m. Denoting byg(a)da the probability

) i that the duration of a generation is betweesnda+da, we
For illustrating the theory as a test case we study thegme to

transition from hunting and gathering to agriculture econom-
ics. For the description of population dynamics we use a _
nonlinear generalization of Lotka’s theory of stable popula- y(r)dr=dr | &(7—a/m)g(a)da=mg(m7)dr.

tion [10]. We consider that the maternityatality) function (57)
of the population\, depends only on the age A=\ (a), o
and that the mortality functiory, is made up of two com- Now we have all elements necessary for building a gen-

ponents, an age dependent compongg(a), and a density  €ralized population model similar to the one described by
dependent componentju(p), which is a function of the EdS.(47)—(49). We obtain a set of evolution equations for

population density. Under these circumstances, after a tran-the age, position and transit time density function
sient regime of a few centuries, the population reaches &(r.a,7;t):

stable regime for which the fraction of individuals with a

given age(the age profilg J

J Jd
+—+ —) {(r,a,T;t)

ot ga it
c(alr;t)yda  with fo c(alr;t)da=1, (50) =—g’(r,a,r;t)J Wr " m)dr — () 9(r.act)
I,I
becomes stationary and position independé&gt X[ mo(@) + Su(p(r;t))], (58)

cda=cg(a)da
g(r,a,r=0;t)=j f L’ a, 7 )W —r, 7 )dr'dr’,
r! 7_7

=Z"Yr)l(a)exp(—ra)da independent off,t, 59

(51)

and the rate of growth is given by a generalized logistic {(r,azo,r;t):b‘(r)f f N@')¢(r,a',m';t)da’dr’,
equation: 070

(60)
R(p)=plr—2ou(p)]. (52 \here
wherer, the intrinsic rate of growth, is the unique real root of "
the transcendental equation ﬁ(r,a;t)zf l(r,a,7;t)dr (61)
0
f Na)l(a)e "?da=1, (53 is the age-position density of individuals at tirhe
0 In Appendix B we show that, by assuming that the age
the function profile of the population is given by the stable Lotka form
(51), it is possible to eliminate the age varialddrom the
a evolution equation$58)—(60). We obtain
I(a)zexp(—f ,uo(a’)da’) (54)
0

(9 (9 . . ! !
(a—t+5—7)g(r,r,t)=—g(r,a-,t)jr,W(r—w ,T)dr’,

is the survival function(the life table evaluated from the

density-independent component of the mortality function 62
Ho(a), and E(r,7=0;t)=R(p(r;t))
Z(r)zfO [(a)exp(—ra)da (55 +j f Er' T OW(r' —r,7)dr'dr’, (63
r! T,

is a partition function attached to the stable Lotka age profil@vhere
(51).

We assume that the migration of the population can be p(r't)=fw§(r rt)dr (64)
described by a separable CTRW propagator: ’ o

Y(r'—r,7)drdr= o (r—r")dry(7)dT, (56) is the total population density at positiorand timet.
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Equations(62) and (63) have the same structure as therates of these transitiors, k,,... ky, respectively. Under
general equationgs) and (7) derived in Sec. Il. It follows these circumstances the probability density of the generation
that they can be reduced both to a system of nonlineatime, g(a), is given by the probability density of the first
CRTW equations as well as to a nonlinear generalization opassage time from the state 1 to the stdtel. By using the
the master equation. We neglect the inhomogeneous tertheory of Markov processes we can expregsl) as the
(13) and use the expressiof&6) and(57) for the propagator N-fold convolution product of the lifetime probability densi-

Y(r'—r,7)dr d7. We come to ties of the different statels, exp(—ak,), u=1,...N:
J , , N
Ep(r,t)—R(p(r,t)H—Q(t)@fr,[p(r at)(//r(r _>r) g(a):lgl (kuexq—aku)(g)_ (69)
—p(r, ) (r—r")]dr’, (65) , _ _
Since we have no detailed observationsga), but only an
where estimate of the average value of the generation length,
_ ~25yr [6], in the following we assume that all transition
Q)=rt sg(s/m) (66  rates are equaki=---=ky=k. Under these circumstances
' |1-g(s/m) the distribution of the generation length is given by a gamma

. . probability density:
is a time-dependent frequency factor and

B g(@)=[(N—1)!T"*kNaN"Texp —ka) with (a)=N/k.
E(s):jo exp(—sa)g(a)da, (67) (70

We assume that the random walk of the population is
is the characteristic function of the probability density of thesymmetric and isotropic and thus the moments of order one
time interval between two generations. and two of the components of the displacement veator

Mathematical demographj11] provides two different =r—r’ for a migration event are given in two dimensions by
evaluations for the probability density of the time interval (Ar y=0, a=1,2; (Ar Ar,.)=1/26,,{|Ar|?m, a o'
between two generations: an Eulerian, transvefsahsus =12, where(|Ar|?),, is the dispersion of the displacement
type) evaluation, which expresses the distribution of the genvector corresponding to a migration event. The numerical
eration length at a given moment in time, and a Lagrangiangata reported in the literature refer to the dispersion of the
longitudinal (cohort type evaluation, which expresses the displacement vector per generaﬂqu|2>g, which is re-
distribution of the generation time for a group of individuals jated to (|Ar|?),, by a linear relation, (|Ar|?),
passing through life. Since the CTRW approach uses a La=m(|Ar|?),,.

grangian description of motion, we should use the longitudi- |n the diffusion approximation the nonlinear generalized
nal evaluation, which in the case of a stable population leadfaster equatio65) becomes

to
N _
. J (N=1)! ((a)y\* 1 o*
g(a)da=x(a)l(a)da/f0 Na)l(a)da. (68 AR v v BER P L
e—1
Unfortunately detailed demographic data for ancient —?R[p(l’,t)]]=R[p(r,t)]+DV2p(r,t),

populations are not available and thus E§4) cannot be at

used directly. A common practice in mathematical population (71

dynamics is the approximation of the delay functions by a

superposition of exponential¢2]. For a developed popula- whereR(p)=p[r—du(p)] and

tion g(a) is a bell-shaped curve, which increases frgm

=0 for the minimum age of procreation, increases up to a D=(|Ar[%4/(4(a)). (72
maximum value, and then decreases and reaches again the

value zero for the maximum age of procreation. A bell- According to Refs[5], [6] we assume that the intrinsic rate
shaped curve, which approximates such a behavior, can i growth for primitive populations is~0.03 yr ! and the
easily generated by a combination of exponential functionsdiffusion coefficient isD~15 kn?/yr. The rate constank

A crude representation of the growth and extinction of aand the number of statéé should be chosen in such a way
generation can be given by a Markov process in continuouthat the gamma law70) gives a biologically realistic esti-
time with N+1 statesu=1,..N+1, whereu=1 corre- mate for the distribution of the generation length. One con-
sponds to a newly created generatios; 2,...N to the pro-  straint results from the estimated value of the generation time
cess of growing and maturation of the generation, and theeported in the literaturek/N=(a)~25 yr. A second con-
stateu=N+1, which is a trap, corresponds to the extinctionstraint results by choosing biologically realistic figures for
of the generation. We assume that at age zero the system istine modal value of the generation tima&,,. The gamma
the stateu=1, p,(0)= 5,1, and that onlyN types of transi- probability density(70) has a single maximum for the modal
tions can take place, %2, 2—3,..N—N+1; we denote the valuea=a,=(a)(N—1)/N.
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We evaluate the average numbarof migration events ity of wave front propagation. Under the assumption of a
per generation compatible with the rate of propagation ofyjamma distribution for the waiting times, the hyperbolic ap-
agriculture evaluated from archeological studies, proximationN=2, leads toa,~12.5yr, and tom~0.55;
~1 km/yr [6]. In order to check whether stable wave fronts such small values are not consistent with the qualitative ideas
of the Neolithic transition exist we must linearize E@l1) by  of the neolithic transitiorf6]. Better results are obtained in
considering small perturbations of the fops exp(\2) near  the limit N—c, which corresponds to the Fort and Mizz
p=0 and, in order to rule out the existence of an oscillatorymodel [5], for which a,,~25 yr andm~1. However, this
behavior, require that is real. In the following we consider limit corresponds to a delta distribution of the generation
three particular cases. Fof=1 the sum in Eq(71) disap- time, which cannot be exact in a real biological population,
pears and our model reduces to Fisher’s parabolic niédel but can be a good approximation. Probably a more realistic
for which the velocity of propagation is=2rD. The dis- model would correspond to large, but finite valuesh\ofor
tribution of the generation time is exponential and the modatvhich the modal and average values of the generation time
value of the generation time is equal to zeag,=0. In this  are close, but not identical. The choiceMfs a difficult task
case the computed value of the propagation fromt, because demographic data for ancient populations are miss-
~1.35 km/yr, is bigger than the observed value and is indeing.
pendent ofm.

ForN=2 Eq.(71) becomes hyperbolic and the velocity of V. CONCLUSIONS

th tion front is gi b
© propagation front 1s given by In this paper we have derived a systematic method for the

v=4mk\rD/[r+2km] with r<2km. (73)  derivation of nonlinear delay transport equations for interact-
ing particles involved in random motions described by the
From Eq.(73) it follows that the mean number of migration CRTW approach. Our method can be used for describing
events per generation compatible with the observed velocityarious nonlinear reaction-transport processes in physics,
is m~0.55, that is one migration event occurs in about twochemistry, and biology. As a test case of our approach we
generations and the average migration timéris~45yr. In  have discussed the problem of Neolithic transition in popu-
this case the modal value of the generation timeajs lation genetics.
=(a)/2~12.5yr.
In the limit N—c the gamma probability density70) ACKNOWLEDGMENTS

tends towards a delta function _ _
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age valuea,=(a)~25yr, and the evolution equatid@l)  peen supported by the National Science Foundation.
becomes a differential-delay equation

m (p(H@)—p(t)

(a) m
“@hite

Fort and Madez [5] have shown that a delay-difference
equation similar to Eq(75) can be approximated, with a
high degree of accuracy, by a hyperbolic differential equa-
tion for which the velocity of wave fronts can be easily
gva!uated. With our notations the velocity of the wave front +f pu(t OU(r' —1,8)dr’, (A2)
is given by r'

APPENDIX A

In this appendix we show the main steps of the derivation
which leads to the elimination of the transit timmdrom the
}—R[p(t’)]}dt’-f—DVZp. nonlinear CTRW equation&l0g and (10b). We apply the

t'+ —
Laplace transform to Eq$10g and(10b). We come to

m

(79 Bu(1,8) = (o(1,9)Zu(1,9) + Ay(r.S)pu(r.0), (AL

zu(r,s)=£s[Ru(p(r,t),t)]+fr,fu(r’,S)Eu(r’—ms)dr’

U:z\/ﬁ/[lﬂr(a))/(zm)] with (a)r<2m. (76) where the overbar denotes the Laplace transformation

Equation (76) leads tom~1 and{7)~25yr; that is one — o
migration occurs in about one ge§1e>ration. f(s)= fo exp(—syf(t)dt,
Our systematic derivation of reaction diffusion equations
shows that the dynamics of the neolithic transition dependgyith
strongly on the shape of the distribution of the generation
time. The parabolic approximatidd=1 has serious limita- f(t)=py(r,t),€,(r,0),Z,(rt), s (r'—r,t)  (A3)
tions because it corresponds to an exponential distribution of
the generation time and overestimates the value of the veloand
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€y(r,7)
rs)—f f exp(—stv (r—t|r) u(r,r—t)det
(A4)
xdr'dt; (A5)

other symbols have the same significance as in Sec. Il.

We eliminate the functiongu(r,s) from Egs.(Al) and
(A2), resulting in

(r—1'|r)

)€, (r,7)e "

PHYSICAL REVIEW E66, 061908 (2002

$pu(r,9) = pu(r,0=1,(r,8) + L Ry(p(r,1),1)]
+J',[E,(r’,s)5u(r’—>r,s)
—pu(r,S)o,(r—r',s)ldr’, (A6)

where

f”%(rau”,s)dr”},
(A7)

Eu(r—w’,s)=[s$u(r—>r’,s)]/ 1-

i =)

14(r,9)=py(r,0)
g j fr [1- frnzpu(r—w” s)dr”]€y(r,7—17")

S’ —r,9) 0, (r',7")
1= [ ip(r' —r",s)dr”

X lﬁn(rlﬂr,T')_

By applying the inverse Laplace transform to E¢&6)—
(A8) we come to Eqs(11)—(13).

APPENDIX B

In order to eliminate the age structure from the evolution
equationg54)—(56) we introduce the conditional age profile

{(roa;mt)
fdal(r,a,7;t)

_4(ra,mt)
&r,mt)

c(alr,r;t)= (B1)

We insert Eq.(B1) into Egs.(54)—(56), resulting in

c(a| T,I’;t)(%‘f‘ %_ Er,m)+E&r,Tt)

J
ot

= —c(a|r,r;t)§(r,7-;t)f,W(r—>r’,1-)dr’

g d
—+—+—

2l o c(alr,r;t)

—5(7)f:c(alr’,r;t)g(r,r’;t)

X[ mo(@)+ u(p(r;t))]dr’, (B2)

c(alr=0r;7)¢(r,7=0;t)
:fff/C(a|T"r'?%(f’,r';t)W(r'ﬂr,T')dr’dT’,

(B3)

]e—ST’deT'dr'.

drdr’—pu(r,0>+f p8<r'>f f
r’ 0o Jt €,(r'

7 =7")

(A8)

|
c(a=0|7,r;t)&(r,mt)

=6(7) f: f:)\(a’)c(a’h’,r;t)g(r,r’;t)da’dr’.
(B4)

By integrating Egqs(B2) and (B3) over age froma=0 to a
= and using Eq(B4) we get the following evolution equa-
tions for the transit time-position population density

&(r,mt):

PR o ==,
i §(r,r,t)——5(T)J'0 fo [A(@") = uo(a)

—ou(p(r;)le@@’|7',rH&(r, 7'5t)
xda'dr' —&(r, )

XJ'W(I‘—H'/,T)CII’,, (B5)

§(r,r=0;t)=f f Er' 7 OW(r—r,7")dr'd7’.
r‘I r/

(B6)
Now we take into account that, after a transient regime of

a few centuries, the age profile tends towards the stable
Lotka form (51) and thus

c(al7,r;t)~cgla).
(B7)

g(rva! T;t)NCSt(a)f(r,T;t),

We insert Eqs(B7) into Egs.(B5) and (B6) resulting in
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(%Jr %) &(r,mt)=8(7)p(rHIN) — ()]
—§(r,r;t)f,W(Hr’,T)dr’,
| (B8)

Er,m=0;t)= Jr,Jrrg(r’,r’;t)W(r’—>r,7-')dr’d7-’,
(B9)

where

<k>=f:>\(a’)cst(a’)da’, (B10)

(w)= f:[no(a’) +Su(p(r;t))]cg(a’)da’ (Bl

are average natality and mortality functions, respectively. J
These two average vital functions can be easily evaluated. (

We have

()\(a’)>=Z‘1(r)f: exp(—ar)l(a’)\(a’)da’=1/Z(r)
(B12)

and

<M(a)>:f:cst(a)[ﬂo(a)+5M[P(r;t)]]da

= f:cst(a)uo(a)daJr Sulp(r;t)].  (B13

PHYSICAL REVIEW B6, 061908 (2002

The last integral in Eq(B13) can be evaluated in a number
of steps. We get

J:cs&aw(a)da

1 ® J a
= — _ _ _ O/q7 ’
Zn fo exd —ra] aa{ exr{ Jo,u (a’")da

1 =g
1

Z(r)

faa

(B14)

By collecting these results and inserting them into EBS)
and (B6) we come to

&r,mt)=o(7)p(r;v)[r—ou(p(r;t))]

_Jf__
ot or

—g(r,r;t)ﬁ,W(rer’,r)dr’,

(B15)
E&(r,7=0;t)= jr,frrg(r’,r’;t)W(r’—>r,q-’)dr’da-’.
(B16)

We include the delta-dependent term in EB15) in the
boundary conditior{B16), resulting in Eqs(62) and (63).

[1] E. W. Montroll and G. H. Weiss, J. Math. Phy.167 (1965;
J. W. Haus and H. W. Kehr, Phys. Relb0, 263 (1987 and
references therein.

[2] V. M. Kenkre and R. S. Knox, Phys. Rev.835279(1974; U.

Landmann, E. W. Montroll, and M. F. Shlesinger, Proc. Natl.

Acad. Sci. U.S.A74, 430(1977).

[3] V. M. Kenkre, E. W. Montroll, and M. F. Shlesinger, J. Stat.
Phys.9, 45(1973; W. J. Shugard and H. Reiss, J. Chem. Phys.

65, 2877(1976.

[4] M. Al-Ghoul and B. C. Eu, Physica M0, 119 (1996 and
references therein.

[5] J. Fort and V. Madez, Phys. Rev. Let82, 867 (1999; Phys.
Rev. E60, 5894(1999.

[6] A. J. Ammerman and L. L. Cavalli-Sforzahe Neolithic Tran-

sition and the Genetics of Population in EuropRrinceton
University Press, Princeton, NJ, 1984

[7] R. Metzler and J. Klafter, Phys. Re@39, 1 (2000, and refer-
ences therein.

[8] M. O. Vlad, V. T. Popa, and E. Segal, Phys. LatB0A, 387
(1984; M. O. Vlad, J. Phys. 20, 3367(1987; Phys. Rev. A
45, 3600(1992; M. O. Vlad and Amalia Pop, J. Phys. 22,
3945 (1989; Z. Phys. B: Condens. Mattefs, 413 (1989;
Physica A155 276(1989; M. O. Vlad and J. Ross, Phys. Lett.
A 184, 403 (1994).

[9] S. Fedotov and Y. Okuda, Phys. Rev6E 021113(2002.

[10] M. O. Vlad and V. T. Popa, Math. Bioscr6, 161(1985; M.

0. Vlad, J. Theor. Biol126, 239(198%; Math. Biosci.87, 173
(1987.

[11] N. Keyfitz, Applied Mathematical Demography2nd ed.

(Springer-Verlag, Berlin, 1985

[12] N. MacDonald, Biological Delay Systems: Linear Stability

Theory(Cambridge University Press, New York, 1989

061908-11



