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Systematic derivation of reaction-diffusion equations with distributed delays
and relations to fractional reaction-diffusion equations and hyperbolic transport equations:

Application to the theory of Neolithic transition
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We introduce a general method for the systematic derivation of nonlinear reaction-diffusion equations with
distributed delays. We study the interactions among different types of moving individuals~atoms, molecules,
quasiparticles, biological organisms, etc!. The motion of each species is described by the continuous time
random walk theory, analyzed in the literature for transport problems, whereas the interactions among the
species are described by a set of transformation rates, which are nonlinear functions of the local concentrations
of the different types of individuals. We use the time interval between two jumps~the transition time! as an
additional state variable and obtain a set of evolution equations, which are local in time. In order to make a
connection with the transport models used in the literature, we make transformations which eliminate the
transition time and derive a set of nonlocal equations which are nonlinear generalizations of the so-called
generalized master equations. The method leads under different specified conditions to various types of non-
local transport equations including a nonlinear generalization of fractional diffusion equations, hyperbolic
reaction-diffusion equations, and delay-differential reaction-diffusion equations. Thus in the analysis of a given
problem we can fit to the data the type of reaction-diffusion equation and the corresponding physical and
kinetic parameters. The method is illustrated, as a test case, by the study of the neolithic transition. We
introduce a set of assumptions which makes it possible to describe the transition from hunting and gathering to
agriculture economics by a differential delay reaction-diffusion equation for the population density. We derive
a delay evolution equation for the rate of advance of agriculture, which illustrates an application of our
analysis.
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I. INTRODUCTION

The nonlocal, space and time distributed, diffusion
reaction-diffusion processes can be described with the i
gral equations of the continuous-time random walk the
~CTRW @1#! or the generalized master equations~GME @2#!
in which both transition times and transition displaceme
are governed by specified probability distributions. The
two types of equations are equivalent to each other@3#. Un-
fortunately, both types of equations are nonlocal in space
time, and are for this reason very hard to solve for fin
systems. In order to overcome this difficulty, different typ
of approaches have been developed. Hyperbolic diffus
and reaction-diffusion equations~HDE! have been derived
by starting out from extended nonequilibrium thermodyna
ics @4#. A random walk approach@5#, which also leads to
hyperbolic diffusion equations, has been developed in c
nection with the study of the Neolithic transition in Europ
@6#. A separate, complementary approach is based on the
of fractional diffusion equations~FDE @7#!, with the use of
the representation of the nonlocal terms by fractional der
tives in time or space.

Recently, attempts have been made in the literature
extend the to use of delay evolution equations to react
diffusion systems, based on the HDE and FDE approac
Unfortunately both the HDE and FDE approaches are
general than the CTRW and GME theories, because they
accommodate only special types of delay functions. The p
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pose of this paper is the derivation of a generally valid lo
approach for the description of nonlocal diffusion a
reaction-diffusion processes for which the transport com
nent can accommodate any type of delay function. The
proach presented in this study is general and can be app
to the study of a broad class of transport and interact
processes in physics, chemistry, biology and population
namics. Our method is based on the use of the time inte
between two jump events~the transition time! as an addi-
tional random variable. A similar approach has been int
duced by one of us over a decade ago in connection with
computation of correlation functions in semiconductor sta
tics for the case of fast generation-recombination proces
which was based on the use of a system of age-depen
master equations~ADME @8#!. The transport equations pre
sented here are a nonlinear generalization of the ADME.

The structure of the paper is the following. In Sec. II w
derive a system of nonlinear, age-dependent evolution eq
tions, which describe the interaction between the transp
and transformation processes for macroscopic systems m
up of interacting, moving individuals. We transform the
age-dependent master equations into a system of nonli
continuous time and space random walk equations and
nally into a system of nonlinear generalized master eq
tions, and show that they include as particular cases var
types of nonlinear delay equations, some of which have b
discussed in the literature. In Sec. III we derive nonline
age-dependent evolution equations for more complex s
©2002 The American Physical Society08-1
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tems, for which it is still possible to derive nonlinear co
tinuous time and space random walk equations; howeve
general the derivation of nonlinear generalized master eq
tions is no longer possible. Finally, in Sec. IV we illustra
our approach with the Neolithic transition.

II. NONLOCAL, NONLINEAR REACTION-TRANSPORT
PROCESSES

We consider a macroscopic system containing differ
types of individuals~species! which can be atoms, mol
ecules, quasiparticles, biological organisms, etc. We ass
that the different types of individuals interact with each oth
and at the same time are involved in random walk motion
space and time, which can be described by the CTRW
proach. We denote byru(r ;t), u51,2,... the concentration
of the different species at positionr and timet, expressed in
numbers of individuals per unit volume, and assume that
rate of change of the speciesu, Ru(t), can be expressed as
local, nonlinear, non-negative function of the compositi
vectorr(r ;t)5@ru(r ;t)#u51,2,... and of timet

Ru~ t !5Ru„r~r ;t !,…>0,u51,2,... . ~1!

The motion of the speciesu can be described by a CTRW
process characterized by a time homogeneous and gene
space-inhomogeneous propagator:

c̃u~r 8,t8→r ,t !dr dt5cu~r 8→r ,t!dr dt,

with

E E cu~r 8→r ,t!dr dt51. ~2!

Here c̃u(r 8,t8→r ,t)dr dt is the probability that an indi-
vidual from theu species, which has the positionr 8 at time
t8, makes a jump in a time interval betweent andt1dt to a
position betweenr andr1dr . The differencet5t2t8 is the
transition time, that is, the time interval between two succ
sive jumps~the age of the particle in the positionr 8). In
terms of this propagator we can introduce the survival fu
tion of an individual of typeu at the positionr 8

,u~r 8,t!5E
r
E

r 85r

`

cu~r 8→r ,t8!dr dt8. ~3!

The transition rate from the positionr 8 to a position between
r and r1dr at an age betweent andt1dt is

Wu~r 8→r ,t8!dr dt85cu~r 8→r ,t8!dr dt8/,u~r 8,t 8!.
~4!

Now we introduce the notationsju(r ,t;t) for the position
and transition time densities of particles at timet and note
that

ru~r ;t !5E
0

`

ju~r ,t;t !dt. ~5!
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We can derive the following age-dependent balance eq
tions for the loss of individuals of different types

S ]

]t
1

]

]t D ju~r ,t;t !52ju~r ,t;t !E
r8

Wu~r→r 8,t!dr 8.

~6!

We can also derive the boundary condition

ju~r ,t50;t !5Ru„r~r ;t !,t…1E
r8
E

r 8
ju~r 8,t8;t !

3Wu~r 8→r ,t8!dr 8dt8, ~7!

which describes the jump of a particle from other positio
to a position betweenr and r1dr and the interaction of an
individual from the speciesu with the individuals from the
other species. The initial condition for Eq.~6! can be written
as

ju~r ,t;t50!5ru~r ,0!vu
0~tur !, ~8!

wherevu
0(tur ) is the conditional probability of the jump time

for a particle of speciesu placed at positionr at time zero.
Equations~6!–~8! determine completely the time evolutio
of the age-position particle densityju(r ,t;t) and of the total
particle densityru(r ;t). They are nonlinear generalization
of the ADME derived in another physical context@8#. In the
case of the ADME the unknown function is a probabili
density, whereas in our case the unknown function is
age-position particle densityju(r ,t;t); on the other hand, in
our equationsr is a position vector in real space whereas t
ADME depend on an abstract state vector. Another diff
ence is that in the case of ADME the nonlinear term from E
~7! is missing. Nevertheless the mathematical structures
the equations are similar and thus we can generalize the
sults presented in the literature@8# for the study of our non-
linear problem. In the first place it is easy to show that E
~6!–~8! lead to a nonlinear generalization of the integ
equations of the CTRW theory@1#. We integrate Eq.~6!
along the characteristics, resulting in

ju~r ,t;t !5q~ t2t!,u~r ,t!Zu~r ,t2t!1q~t2t !ru~r ,0!

3vu
0~t2tur !,u~r ,t!/,u~r ,t2t !, ~9!

whereZu(r ,t)5ju(r ,t50;t) andq(x) is the Heaviside step
function. By inserting Eq.~9! into the boundary condition~7!
and into Eq.~5! we get an integral equation forZu(r ,t) and
an expression for the population concentrationsru(r ;t),u
51,2,...:

Zu~r ,t !5Ru„r~r ,t !,t…1E
0

tE
r8

Zu~r 8,t2t8!

3cu~r 8→r ,t8!dr 8dt81E
t

`E
r8

ru~r 8,0!

3vu
0~t82tur 8!

cu~r 8→r ,t8!

,u~r 8t82t !
dr 8dt8, ~10a!
8-2
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ru~r ,t !5E
0

t

,u~r ,t!Zu~r ,t2t!dt1ru~r ,0!

3E
t

`

vu
0~t2tur !

,u~r ,t!

,u~r ,t2t !
dt. ~10b!

Equations~10a! and ~10b! determine the time and spac
evolution of the functionZu(r ,t) andru(r ;t); they are non-
linear generalizations of the integral equations of the CTR
approach. Due to the nonlinear termsRu no general analyti-
cal solutions of Eqs.~10a! and~10b! are available. However
these equations can be transformed into a nonlinear gene
zation of the generalized master equation. We use the me
of Laplace transformation in time for eliminating the fun
tions Zu(r ,t) from Eqs.~10a! and ~10b!. The main steps of
the derivation are outlined in Appendix A. After lengthy a
gebraic manipulations we obtain
r
he
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e
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h
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d
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]

]t
ru~r ,t !5I u~r ,t !1Ru„r~r ,t !,t…1E

0

tE
r8

@ru~r 8,t8!

3cu~r 8→r ,t2t8!2ru~r ,t8!

3cu~r→r 8,t2t8!#dr 8dt8, ~11!

where

vu~r→r 8,t2t8!

5Lt2t8
21 H @sc̄u~r→r 8,s!#/F12E

r9
c̄u~r→r 9,s!dr 9G J

~12!

are delayed rate densities,c̄u(r→r 8,s)5Lscu(r→r 8,t) are
the Laplace transforms of the propagators attached to
different species, and
I u~r ,t !5ru
0~r !Lt

21H E
0

`E
t8

` svu
0~t2t8ur !,u~r ,t!e2st8

@12* r 9c̄u~r→r 9,s!dr 9#,u~r ,t2t8!
dtdt8J 2ru

0~r !d~ t !

1Lt
21E

r8
ru

0~r 8!E
0

`E
t

` vu
0~t82t8ur 8!

,u~r 8,t82t8!
Fcu~r 8→r ,t8!2

sc̄u~r 8→r ,s!,u~r 8,t8!

12* r9c̄u~r 8→r 9,s!dr 9
Ge2st8dt dt8dr 8, ~13!
o-

port
in

g

he
sed
wheres is a Laplace variable, and the operatorsLs andLt
21

denote the direct and inverse Laplace transformations,
spectively.I u(r ,t) are terms which express the fact that t
distribution of the transition time and the jump length of
individual at time zero is generally different from the on
given by the propagator~2!. In particular, if at time zero, the
individuals are at the beginning of a waiting period, that is
vu

0(tur )5d(t), then from Eq.~14! it follows that I u(r ,t)
50. The contribution ofI u(r ,t) is a transient effect, which
can be neglected in the analysis of long time behavior. T
transient contribution is similar to the contribution of the fir
jump in the CTRW theory@1#.

We notice that a particular case of Eq.~11! has been re-
cently introduced by Feodotov and Okuda@9#. Their equa-
tion has the following form:

]n

]t
5E

0

tE
2`

1`

@K~x,z,t2s!n~s,z!2K~z,x,t2s!n~s,z!#dzds

1Un~12n!, ~14!

where n(x,t) is a continuous state variable depending
space and time,K(x,z,t2s) is a suitable delay function, an
U is a rate coefficient. This equation has been formally
troduced as a nonlocal generalization of the classical Fis
equation ]n/]t5D]2n/]x21Un(12n). Equation ~14! is
postulated without reference to a transport mechan
e-

f

is

-
er

m

whereas our general equations~11! are derived by combining
the CTRW theory with nonlinear dynamics.

Equations~11! are nonlinear generalizations of the s
called generalized master equation@2#. By considering dif-
ferent particular cases, they lead to various reaction-trans
equations. By performing a Kramers-Moyal expansion
Eqs. ~11! and neglecting the transient termsI u(r ,t),u
51,2,... we come to

]

]t
ru~r ,t !5Ru„r~r ,t !,t…

1E
0

t

(
m51

`

~21!m(
m1

¯(
mm

]m

]r m1
...]r mm

3$Dm1 ...mm

u~m! ~r ,t2t8!ru~r ,t8!%dt8, ~15!

where

Dm1 ...mm

u~m! ~r ,t2t8!5
1

m! Er8
)
N51

m

~r mu
2r mu

8 !

3vu~r 8→r ,t2t8!dr 8, ~16!

are delayed probability diffusion coefficients. By truncatin
the Kramers-Moyal series in Eqs.~15! to terms of order one
and two we come to a nonlinear generalization of t
Fokker-Planck equations with memory, used in conden
8-3
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matter physics@2#. An important example of such equation
corresponds to the case where the delayed drift coeffici
vm

u (r ,t2t8)5Dm
u(1)(r ,t2t8) are generated by a scalar forc

field U(r ):

vm
~u!~r ,t2t8!52(

m8
bmm8

~u!
~ t2t8!@]U~r !/]r m8#, ~17!

wherebmm8
(u) (t2t8) are delayed mobility tensors attached

the different species. The evolution equations become

]

]t
ru~r ,t !5Ru„r~r ,t !,t…1E

0

t

(
m

(
m8

]2

]r m]r m8

3@Dmm8
u~2!

~r ,t2t8!ru~r ,t8!#

1E
0

tH (m (
m8

bmm8
u

~ t2t8!Fru~r ,t8!
]2

]r m]r m8

3U~r !1F ]2

]r m
U~r !G ]

]r m8
ru~r ,t8!GJ dt8. ~18!

We suggest that Eqs.~18! can be used for the study of th
propagation of reaction-diffusion waves in chemical syste
in external force fields, for example in electrochemist
plasma physics or for separation processes in centrifuga
gravitational fields.

An important particular class of cases is one for which
delayed transition ratesvu(r→r 8,t2t8) can be factored into
space-dependent terms,Wu(r→r 8), and time-dependent de
lay termswu(t2t8)

cu~r→r 8,t2t8!5wu~ t2t8!Wu~r→r 8!, ~19!

whereWu(r→r 8) are local~Markovian! transition rates. In
this case the delayed diffusion coefficients are also facto
able:

Dm1 ...mm

u~m! ~r ,t2t8!5wu~ t2t8!Dm1 ...mm

u~m! ~r !, ~20!

whereDm1 ...mm

u(m) (r ) are Markovian probability diffusion coef

ficients and the nonlinear generalized master equations
be expressed as

]ru~r ,t !/]t5Ru„r~r ,t !,t…1wu~ t ! ^ Luru~r ,t !, ~21!

where^ denotes the temporal convolution product and

Lu ...5E
r8

@ ...Wu~r 8→r !dr 82...Wu~r→r 8!dr 8#

5 (
m51

`

~21!m(
m1

...(
mm

]m

]r m1
...]r mm

$Dm1 ...mm

u~m! ~r !...%

~22!

are linear, Markovian transport operators.
We distinguish three important particular subcases of E

~21!. The first subcase corresponds to a delay function h
ing a long tail of the negative power law type:
06190
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wu~ t2t8!;2
~12Hu!

~su!11HuG~Hu!
~ t2t8!2~12Hu!,1.Hu.0,

~23!

whereHu are fractal exponents between zero and one,
su are characteristic time scales attached to the different
cies, respectively. In this subcase Eqs.~22! become fractional
transport equations

]Hu

]tHu
ru~r ,t !5E

0

t ]Hu

]t8Hu
Ru„r~r ,t8!,t8…dt8

1~su!11HuLuru~r ,t !, ~24!

where

]H

]tH f ~ t !5
1

G~12H !

d

dt E0

t f ~ t8!

~ t2t8!H dt8,1.H.0, ~25!

is the fractional derivative of orderH. Equations~24! are
nonlinear generalizations of the fractional diffusion equ
tions recently introduced in the literature@7# for the descrip-
tion of dispersive diffusion.

Another important subcase corresponds to exponential
lay functions

wu~ t2t8!5~su!21 exp@2~ t2t8!/su#. ~26!

Here the transport equations~21! become hyperbolic

S su

]2

]t2 1
]

]t D ru~r ,t !5F11su

]

]t
1su(

u8

]ru8~r ,t !

]t

]

]ru8
G

3Ru„r~r ,t !,t…1Luru~r ,t !. ~27!

A third subcase corresponds to the situation where
delay function is a combination of exponential terms:

wu~ t2t8!5(
v

puv~suv!21 exp@2~ t2t8!/suv#, ~28!

wheresuv are relaxation times andpuv are weight factors. In
this case we can introduce the auxiliary field functions:

Juv~r ,t !5Lt
21FLsru~r ,t !

11suvs G
5E

0

t

ru~r ,t2t8!~suv!21exp@2t8/suv#dt8.

~29!

By using these auxiliary field functions we can reduce E
~21! to a system of evolution equations local in time:

]

]t
ru~r ,t !5Ru„r~r ,t !,t…1 (

v51

m

puvLuJuv~r ,t !, ~30!

suv

]

]t
Juv~r ,t !1Juv~r ,t !5ru~r ,t !. ~31!
8-4
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Equations~30! and ~31! are nonlinear generalizations of te
legrapher’s equations from electrodynamics. By eliminat
the auxiliary fieldsJuv(r ,t) from Eqs. ~30! and ~31! we
come to an evolution equation which contains time deri
tives of high order. We have

)
w51

m

DuwF ]

]t
ru~r ,t !2Ru„r~r ,t !,t…G

5 (
v51

m

puv )
wÞv

N
DuwLuru~r ,t !, ~32!

where

Duw511suw

]

]t
, ~33!

are differential operators. In the particular case of a sin
exponential,v51, Eq. ~34! reduces to the hyperbolic trans
port equation~27!. Another interesting situation correspon
to the case where all relaxation times for a species are eq
su15su25...5sum5su . In this case the delay functio
~28! is replaced by

wu~ t2t8!5
~su!21

~m21!! S t2t8

su
D m21

exp@2~ t2t8!/su#,

~34!

and Eq.~32! becomes

S 11su

]

]t D
mF ]

]t
ru~r ,t !2Ru„r~r ,t !,t…G5Luru~r ,t !.

~35!

A fourth subcase corresponds to a constant delay

wu~ t2t8!5d~ t2t82su!, ~36!

for which the evolution equations~21! turn into integro-
differential equations with constant delays:

]ru~r ,t1su!/]t5Ru„r~r ,t1su!,t1su…1Luru~r ,t !,
~37!

Equations similar to Eq.~37! are used at times in theoretic
biology.

In conclusion, in this section we have introduced a g
eral method for the derivation of transport equations w
distributed time delays for a system containing differe
types of moving individuals. We have assumed that the m
tion of each individual is described by a continuous tim
random walk, whereas the interactions among individual
described by a set of local, nonlinear transformation ra
We have introduced an additional state variable, the tra
tion time, which makes it possible to derive a set of nonl
ear, age-dependent evolution equations which are loca
time. By eliminating the transition time from the evolutio
equations we derive a nonlinear generalization of the ge
alized master equation, which includes as particular ca
various delay reaction-transport equations derived in lite
ture, such as fractional transport equations and hyperb
transport equations.
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III. GENERALIZATIONS OF THE THEORY

The reduction of the nonlinear age-dependent trans
equations to nonlinear generalized master equations is
sible only if the net generation rates of individuals of diffe
ent types are non-negativeRu„r(r ;t),t…>0, Eq. ~1!. How-
ever, for many physical, chemical and biological proces
this condition is not satisfied. In this section we general
the nonlinear, age-dependent transport equations to the
where the net generation rates can be negative. We ass
that the net rate of production of speciesu is the difference
between a generation rateRu

1
„r(r ;t),t…>0 and a consump-

tion rateRu
2
„r(r ;t),t…>0:

Ru„r~r ;t !,t…5Ru
1
„r~r ;t !,t…2Ru

2
„r~r ;t !,t…, u51,2,... .

~38!

Although in Eq.~38! the individual generation and consum
tion rates are non-negative,Ru

6
„r(r ;t),t…>0, their differ-

ences can be positive or negative. Under these circumsta
the evolution equations~6! and ~7! are replaced by

S ]

]t
1

]

]t D ju~r ,t;t !52ju~r ,t;t !E
r8

Wu~r→r 8,t!dr 8

2
ju~r ,t;t !

ru~r ;t !
Ru

2
„r~r ;t !,t…, ~39!

ju~r ,t50;t !5Ru
1
„r~r ;t !,t…1E

r8
E

r 8
ju~r 8,t8;t !

3Wu~r 8→r ,t8!dr 8dt8. ~40!

In Eq. ~39! we have assumed that the rate of disappeara
of the speciesu, Ru

2
„r(r ;t),t… is uniformly distributed for all

ages. This assumption is usually satisfied in physics or ch
istry, because the rate processes are independent of ag
biology, however, this assumption is generally invalid a
Eqs.~39! and ~40! must be replaced by a more general ev
lution equation.

The nonlinear age-dependent equations can be tr
formed into a nonlinear generalization of the CTRW equ
tions, similar to Eqs.~9!–~11! derived in Sec. II. We integrate
Eq. ~39! along the characteristics, and express the initial c
ditions in the form~8!. We obtain

ju~r ,t;t !5q~ t2t!,u~r ,t!

3expF2E
t2t

t Ru
2
„r~r ;t8!,t8…

ru~r ;t8!
dt8GZu~r ,t2t!

1q~t2t !ru~r ,0!vu
0~t2tur !

,u~r ,t!

,u~r ,t2t !

3expF2E
0

t Ru
2
„r~r ;t8!,t…

ru~r ;t8!
dt8G , ~41!

whereZu(r ,t)5ju(r ,t50;t). Now we insert Eq.~41! into
Eq. ~40! and Eq.~5!. We come to
8-5
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Zu~r ,t !5Ru
1
„r~r ,t !,t…1E

0

tE
r8

Zu~r 8,t2t8!cu~r 8→r ,t8!expF2E
t2t8

t Ru
2
„r~r 8;t8!,t…

ru~r 8;t8!
dt8Gdr 8dt8

1E
t

`E
r8

ru~r 8,0!vu
0~t82tur 8!

cu~r 8→r ,t8!

,u~r 8,t82t !
expF2E

0

t Ru
2
„r~r 8;t8!,t8…

ru~r 8;t8!
dt8Gdr 8dt8, ~42!

ru~r ;t !5E
0

t

,u~r ,t!expF2E
t2t

t Ru
2
„r~r ;t8!,t8…

ru~r ;t8!
dt8GZu~r ,t2t!dt1ru~r ,0!expF2E

0

t Ru
2
„r~r ;t8!,t8…

ru~r ;t8!
dt8G

3E
t

`

vu
0~t2tur !

,u~r ,t!

,u~r ,t2t !
dt. ~43!
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Equations ~42! and ~43! are nonlinear integral equation
which determine the time and space dependence of the p
lation densities ru(r ;t) and of the functionsZu(r ,t)
5ju(r ,t50;t); they are nonlinear generalizations of th
CTRW theory for the case of a process with transport a
transformation described by the propagatorc̃u(r 8,t8
→r ,t)dr dt and by the ratesRu

6
„r(r ;t),t…. In the particular

case of a system without generation and consumption
cesses,Ru

6
„r(r ;t),t…50, Eqs. ~42! and ~43! reduce to the

classical evolution equations of the CTRW approach. Un
tunately, due to the exponential dependence on the integ
of the fractionsRu

2/ru , in general Eqs.~42! and~43! can no
longer be reduced to a nonlinear generalization of the ge
alized master equation. Such a reduction if possible ifRu

2

50, u51,2,...; in this case Eqs.~42! and~43! reduce to Eqs.
~9! and ~10! derived in Sec. II.

A more complicated model corresponds to the case wh
the kinetics of the process itself is age-dependent. Suc
situation is commonly encountered in biological populati
dynamics and population genetics, where the generation
consumption rates depend on the ages of the individuals
volved in the process. In general we must make a distinc
among the age of a jump event, the transition timet, and the
ageau of an individual of typeu. We introduce the notation
zu(r ,a,t;t) for the position, age, and transition time den
ties of particles at timet and note that

ju~r ,t;t !5E
0

`

zu~r ,a,t;t !da,

ru~r ;t !5E
0

`E
0

`

zu~r ,a,t;t !dt da. ~44!

An individual of typeu is initially generated at an ageau

50, and then ages as time goes on. We denote byRu
1(0,r ,t)

the rate of generation of individuals of typeu at positionr
and timet. We assume thatRu

1(0,r ,t) is a functional of the
vector of the density functionsz(r ,a,t;t)5@zu(r ,a,t;t)#
which also depends on the vectora5(a1 ,a2 ,... .) of the
ages of the individuals involved in the generation proces

Ru
1~0,r ,t !5Ru

1@a,z~r ,a,t;t !,t#. ~45!
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Similarly, we denote byRu
2(au ,r ,t) the rate of disappear

ance of individuals of typeu at ageau , positionr and time
t and assume that it is given by a nonlinear dependence s
lar to Eq.~45!

Ru
2~au ,r ,t !5Ru

2@au ,z~r ,a,t;t !,t#. ~46!

By using the age-dependent kinetic laws~45! and~46! we
can derive the following nonlinear age-dependent ma
equations for the density functionszu(r ,a,t;t):

S ]

]t
1

]

]au
1

]

]t D zu~r ,au ,t;t !

52zu~r ,au ,t;t !E
r8

Wu~r→r 8,t!dr 8

2d~t!Ru
2@au ,z~r ,a,t;t !,t#, ~47!

zu~r ,au ,t50;t !5E
r8
E

r 8
zu~r 8,au ,t8;t !

3Wu~r 8→r ,t8!dr 8dt8, ~48!

zu~r ,au50,t;t !

5d~t!E
t8
E

a1

E
a2

...Ru
1@a,z~r ,a,t8;t !,t#dadt8.

~49!

By integrating the nonlinear age-dependent master equat
~47!–~49! along the characteristics we can derive a system
nonlinear integral equations for the density functio
zu(r ,a,t;t). These integral equations take two different co
tinuous time walks into account: the first random walk d
scribes the time evolution of the individuals and the seco
one the transport process itself. In general the evolut
equations~47!–~49! cannot be reduced to a nonlinear gen
alized master equation. However, if the transit time, wh
describes the transport process, is related to the age o
individuals, which describes the population kinetics, t
model can be reduced to a nonlinear generalized ma
8-6
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equation. In particular, this is possible in the case of
theory of Neolithic transition, which is discussed in the fo
lowing section.

IV. DISTRIBUTED DELAYS AND THE THEORY OF
NEOLITHIC TRANSITION

For illustrating the theory as a test case we study
transition from hunting and gathering to agriculture econo
ics. For the description of population dynamics we use
nonlinear generalization of Lotka’s theory of stable popu
tion @10#. We consider that the maternity~natality! function
of the population,l, depends only on the agea, l5l(a),
and that the mortality function,m, is made up of two com-
ponents, an age dependent component,m0(a), and a density
dependent component,dm~r!, which is a function of the
population densityr. Under these circumstances, after a tra
sient regime of a few centuries, the population reache
stable regime for which the fraction of individuals with
given age~the age profile!

c~aur ;t !da with E
0

`

c~aur ;t !da51, ~50!

becomes stationary and position independent@10#

cda5cst~a!da

5Z21~r !l ~a!exp~2ra !da independent ofr ,t,

~51!

and the rate of growth is given by a generalized logis
equation:

R~r!5r@r 2dm~r!#. ~52!

wherer, the intrinsic rate of growth, is the unique real root
the transcendental equation

E
0

`

l~a!l ~a!e2rada51, ~53!

the function

l ~a!5expS 2E
0

a

m0~a8!da8D ~54!

is the survival function~the life table! evaluated from the
density-independent component of the mortality funct
m0(a), and

Z~r !5E
0

`

l ~a!exp~2ra !da ~55!

is a partition function attached to the stable Lotka age pro
~51!.

We assume that the migration of the population can
described by a separable CTRW propagator:

c~r 8→r ,t!drdt5c r~r2r 8!drct~t!dt, ~56!
06190
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which can be expressed as the product of a space-depen
component and of a time-dependent component. It has b
suggested@5# that the migration time,t, is closely related to
the time differencea between two successive generation
Denoting bym̄ the number of migration events per gener
tions, we havet5a/m̄. Denoting byg(a)da the probability
that the duration of a generation is betweena anda1da, we
come to

ct~t!dt5dtE d~t2a/m̄!g~a!da5m̄g~m̄t!dt.

~57!

Now we have all elements necessary for building a g
eralized population model similar to the one described
Eqs. ~47!–~49!. We obtain a set of evolution equations fo
the age, position and transit time density functi
z(r ,a,t;t):

S ]

]t
1

]

]a
1

]

]t D z~r ,a,t;t !

52z~r ,a,t;t !E
r8

W~r→r 8,t!dr 82d~t!q~r ,a;t !

3@m0~a!1dm„r~r ;t !…#, ~58!

z~r ,a,t50;t !5E
r8
E

t8
z~r 8,a,t8;t !W~r 8→r ,t8!dr 8dt8,

~59!

z~r ,a50,t;t !5d~t!E
0

`E
0

`

l~a8!z~r ,a8,t8;t !da8dt8,

~60!

where

q~r ,a;t !5E
0

`

z~r ,a,t;t !dt ~61!

is the age-position density of individuals at timet.
In Appendix B we show that, by assuming that the a

profile of the population is given by the stable Lotka for
~51!, it is possible to eliminate the age variablea from the
evolution equations~58!–~60!. We obtain

S ]

]t
1

]

]t D j~r ,t;t !52j~r ,t;t !E
r8

W~r→r 8,t!dr 8,

~62!

j~r ,t50;t !5R„r~r ;t !…

1E
r8
E

t8
j~r 8,t8;t !W~r 8→r ,t8!dr 8dt8, ~63!

where

r~r ;t !5E
0

`

j~r ,t;t !dt ~64!

is the total population density at positionr and timet.
8-7
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Equations~62! and ~63! have the same structure as t
general equations~6! and ~7! derived in Sec. II. It follows
that they can be reduced both to a system of nonlin
CRTW equations as well as to a nonlinear generalization
the master equation. We neglect the inhomogeneous
~13! and use the expressions~56! and~57! for the propagator
c(r 8→r ,t)dr dt. We come to

]

]t
r~r ,t !5R„r~r ,t !…1V~ t ! ^ E

r8
@r~r 8,t !c r~r 8→r !

2r~r ,t !c r~r→r 8!#dr 8, ~65!

where

V~ t !5Lt
21F sḡ~s/m̄!

12ḡ~s/m̄!G ~66!

is a time-dependent frequency factor and

ḡ~s!5E
0

`

exp~2sa!g~a!da, ~67!

is the characteristic function of the probability density of t
time interval between two generations.

Mathematical demography@11# provides two different
evaluations for the probability density of the time interv
between two generations: an Eulerian, transversal~census
type! evaluation, which expresses the distribution of the g
eration length at a given moment in time, and a Lagrang
longitudinal ~cohort type! evaluation, which expresses th
distribution of the generation time for a group of individua
passing through life. Since the CTRW approach uses a
grangian description of motion, we should use the longitu
nal evaluation, which in the case of a stable population le
to

g~a!da5l~a!l ~a!da/E
0

`

l~a!l ~a!da. ~68!

Unfortunately detailed demographic data for ancie
populations are not available and thus Eq.~54! cannot be
used directly. A common practice in mathematical populat
dynamics is the approximation of the delay functions by
superposition of exponentials@12#. For a developed popula
tion g(a) is a bell-shaped curve, which increases fromg
50 for the minimum age of procreation, increases up t
maximum value, and then decreases and reaches agai
value zero for the maximum age of procreation. A be
shaped curve, which approximates such a behavior, ca
easily generated by a combination of exponential functio
A crude representation of the growth and extinction o
generation can be given by a Markov process in continu
time with N11 statesu51,...,N11, where u51 corre-
sponds to a newly created generation,u52,...,N to the pro-
cess of growing and maturation of the generation, and
stateu5N11, which is a trap, corresponds to the extincti
of the generation. We assume that at age zero the system
the stateu51, pu(0)5du1 and that onlyN types of transi-
tions can take place, 1→2, 2→3,...N→N11; we denote the
06190
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rates of these transitionsk1 , k2 ,...,kN , respectively. Under
these circumstances the probability density of the genera
time, g(a), is given by the probability density of the firs
passage time from the state 1 to the stateN11. By using the
theory of Markov processes we can expressg(a) as the
N-fold convolution product of the lifetime probability dens
ties of the different statesku exp(2aku), u51,...,N:

g~a!5 )
u51

N

„ku exp~2aku! ^ …. ~69!

Since we have no detailed observations forg(a), but only an
estimate of the average value of the generation length,^a&
'25 yr @6#, in the following we assume that all transitio
rates are equalk15¯5kN5k. Under these circumstance
the distribution of the generation length is given by a gam
probability density:

g~a!5@~N21!! #21kNaN21 exp~2ka! with ^a&5N/k.
~70!

We assume that the random walk of the population
symmetric and isotropic and thus the moments of order
and two of the components of the displacement vectorDr
5r2r 8 for a migration event are given in two dimensions
^Dr a&50, a51,2; ^Dr aDr a8&51/2daa8^uDr u2&m , a, a8
51,2, wherê uDr u2&m is the dispersion of the displaceme
vector corresponding to a migration event. The numeri
data reported in the literature refer to the dispersion of
displacement vector per generation,^uDr u2&g , which is re-
lated to ^uDr u2&m by a linear relation, ^uDr u2&g
5m̄^uDr u2&m .

In the diffusion approximation the nonlinear generaliz
master equation~65! becomes

]

]t
r~r ,t !1 (

«52

N
~N21!!

«! ~N2«!! S ^a&
Nm̄D «21H ]«

]t« r~r ,t !

2
]«21

]t«21 R@r~r ,t !#J 5R@r~r ,t !#1D¹2r~r ,t !,

~71!

whereR(r)5r@r 2dm(r)# and

D5^uDr u2&g /~4^a&!. ~72!

According to Refs.@5#, @6# we assume that the intrinsic rat
of growth for primitive populations isr'0.03 yr21 and the
diffusion coefficient isD'15 km2/yr. The rate constantk
and the number of statesN should be chosen in such a wa
that the gamma law~70! gives a biologically realistic esti-
mate for the distribution of the generation length. One co
straint results from the estimated value of the generation t
reported in the literature,k/N5^a&'25 yr. A second con-
straint results by choosing biologically realistic figures f
the modal value of the generation time,am . The gamma
probability density~70! has a single maximum for the moda
valuea5am5^a&(N21)/N.
8-8
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We evaluate the average numberm̄ of migration events
per generation compatible with the rate of propagation
agriculture evaluated from archeological studies,v
'1 km/yr @6#. In order to check whether stable wave fron
of the Neolithic transition exist we must linearize Eq.~71! by
considering small perturbations of the formr5exp(lz) near
r50 and, in order to rule out the existence of an oscillato
behavior, require thatl is real. In the following we conside
three particular cases. ForN51 the sum in Eq.~71! disap-
pears and our model reduces to Fisher’s parabolic model@6#,
for which the velocity of propagation isv52ArD . The dis-
tribution of the generation time is exponential and the mo
value of the generation time is equal to zero,am50. In this
case the computed value of the propagation front,v
'1.35 km/yr, is bigger than the observed value and is in
pendent ofm̄.

ForN52 Eq.~71! becomes hyperbolic and the velocity
the propagation front is given by

v54m̄kArD /@r 12km̄# with r ,2km̄. ~73!

From Eq.~73! it follows that the mean number of migratio
events per generation compatible with the observed velo
is m̄'0.55, that is one migration event occurs in about t
generations and the average migration time is^t&'45 yr. In
this case the modal value of the generation time isam
5^a&/2'12.5 yr.

In the limit N→` the gamma probability density~70!
tends towards a delta function

g~a!5d~a2^a&!, ~74!

the modal value of the generation time is equal to the av
age valueam5^a&'25 yr, and the evolution equation~71!
becomes a differential-delay equation

m̄

^a& H rS t1
^a&
m̄ D2r~ t !J

5
m̄

^a& E0

t H RFrS t81
^a&
m̄ D G2R@r~ t8!#J dt81D¹2r.

~75!

Fort and Méndez @5# have shown that a delay-differenc
equation similar to Eq.~75! can be approximated, with
high degree of accuracy, by a hyperbolic differential eq
tion for which the velocity of wave fronts can be eas
evaluated. With our notations the velocity of the wave fro
is given by

v52ArD /@11~r ^a&!/~2m̄!# with ^a&r ,2m̄. ~76!

Equation ~76! leads tom̄'1 and ^t&'25 yr; that is one
migration occurs in about one generation.

Our systematic derivation of reaction diffusion equatio
shows that the dynamics of the neolithic transition depe
strongly on the shape of the distribution of the generat
time. The parabolic approximationN51 has serious limita-
tions because it corresponds to an exponential distributio
the generation time and overestimates the value of the ve
06190
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ity of wave front propagation. Under the assumption of
gamma distribution for the waiting times, the hyperbolic a
proximation N52, leads toam'12.5 yr, and tom̄'0.55;
such small values are not consistent with the qualitative id
of the neolithic transition@6#. Better results are obtained i
the limit N→`, which corresponds to the Fort and Me´ndez
model @5#, for which am'25 yr and m̄'1. However, this
limit corresponds to a delta distribution of the generati
time, which cannot be exact in a real biological populatio
but can be a good approximation. Probably a more reali
model would correspond to large, but finite values ofN for
which the modal and average values of the generation t
are close, but not identical. The choice ofN is a difficult task
because demographic data for ancient populations are m
ing.

V. CONCLUSIONS

In this paper we have derived a systematic method for
derivation of nonlinear delay transport equations for intera
ing particles involved in random motions described by t
CRTW approach. Our method can be used for describ
various nonlinear reaction-transport processes in phys
chemistry, and biology. As a test case of our approach
have discussed the problem of Neolithic transition in pop
lation genetics.
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APPENDIX A

In this appendix we show the main steps of the derivat
which leads to the elimination of the transit timet from the
nonlinear CTRW equations~10a! and ~10b!. We apply the
Laplace transform to Eqs.~10a! and ~10b!. We come to

r̄u~r ,s!5 ,̄u~r ,s!Z̄u~r ,s!1Āu~r ,s!ru~r ,0!, ~A1!

Z̄u~r ,s!5Ls@Ru„r~r ,t !,t…#1E
r8

Z̄u~r 8,s!c̄u~r 8→r ,s!dr 8

1E
r8

ru~r 8,0!Ūu~r 8→r ,s!dr 8, ~A2!

where the overbar denotes the Laplace transformation

f̄ ~s!5E
0

`

exp~2st! f ~ t !dt,

with

f ~ t !5ru~r ,t !,,u~r ,t !,Zu~r ,t !,cu~r 8→r ,t ! ~A3!

and
8-9
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Āu~r ,s!5E
0

`E
t

`

exp~2st!vu
0~t2tur !

,u~r ,t!

,u~r ,t2t !
dt dt,

~A4!

Ūu~r 8→r ,s!5E
0

`E
t

`

exp~2st!vu
0~t82tur 8!

cu~r 8→r ,t8!

,u~r 8,t82t !

3dt8dt; ~A5!

other symbols have the same significance as in Sec. II.
We eliminate the functionsZ̄u(r ,s) from Eqs. ~A1! and

~A2!, resulting in
ion
le

06190
sr̄u~r ,s!2ru~r ,0!5 Ī u~r ,s!1Ls@Ru„r~r ,t !,t…#

1E
r8

@ r̄u~r 8,s!v̄u~r 8→r ,s!

2 r̄u~r ,s!v̄u~r→r 8,s!#dr 8, ~A6!

where

v̄u~r→r 8,s!5@sc̄u~r→r 8,s!#/F12E
r9

c̄u~r→u9,s!dr 9G ,
~A7!
Ī u~r ,s!5ru~r ,0!E
0

`E
r 8

` svu
0~t2t8ur !,u~r ,t!e2st8

@12* r 9c̄u~r→r 9,s!dr 9#,u~r ,t2t8!
dt dt82ru~r ,0!1E

r8
ru

0~r 8!E
0

`E
t

` vu
0~t82t8ur 8!

,u~r 8,t82t8!

3Fcn~r 8→r ,t8!2
sc̄u~r 8→r ,s!,u~r 8,t8!

12* r9c̄u~r 8→r 9,s!dr 9
Ge2st8dt dt8dr 8. ~A8!
-
ty

of
ble
By applying the inverse Laplace transform to Eqs.~A6!–
~A8! we come to Eqs.~11!–~13!.

APPENDIX B

In order to eliminate the age structure from the evolut
equations~54!–~56! we introduce the conditional age profi

c~aut,r ;t !5
z~r ,a;t;t !

*daz~r ,a,t;t !
5

z~r ,a,t;t !

j~r ,t;t !
. ~B1!

We insert Eq.~B1! into Eqs.~54!–~56!, resulting in

c~aut,r ;t !S ]

]t
1

]

]t D j~r ,t;t !1j~r ,t;t !

3S ]

]t
1

]

]a
1

]

]t D c~aut,r ;t !

52c~aut,r ;t !j~r ,t;t !E
r8

W~r→r 8,t!dr 8

2d~t!E
0

`

c~aut8,r ;t !j~r ,t8;t !

3@m0~a!1dm„r~r ;t !…#dt8, ~B2!

c~aut50,r ;t!j~r ,t50;t !

5E
r8
E

r 8
c~aut8,r 8;t !j~r 8,t8;t !W~r 8→r ,t8!dr 8dt8,

~B3!
c~a50ut,r ;t !j~r ,t;t !

5d~t!E
0

`E
0

`

l~a8!c~a8ut8,r ;t !j~r ,t8;t !da8dt8.

~B4!

By integrating Eqs.~B2! and ~B3! over age froma50 to a
5` and using Eq.~B4! we get the following evolution equa
tions for the transit time-position population densi
j(r ,t;t):

S ]

]t
1

]

]t D j~r ,t;t !52d~t!E
0

`E
0

`

@l~a8!2m0~a!

2dm„r~r ;t !…#c~a8ut8,r ;t !j~r ,t8;t !

3da8dt82j~r ,t;t !

3E
r8

W~r→r 8,t!dr 8, ~B5!

j~r ,t50;t !5E
r8
E

r 8
j~r 8,t8;t !W~r→r ,t8!dr 8dt8.

~B6!

Now we take into account that, after a transient regime
a few centuries, the age profile tends towards the sta
Lotka form ~51! and thus

z~r ,a,t;t !;cst~a!j~r ,t;t !, c~aut,r ;t !;cst~a!.
~B7!

We insert Eqs.~B7! into Eqs.~B5! and ~B6! resulting in
8-10
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S ]

]t
1

]

]t D j~r ,t;t !5d~t!r~r ;t !@^l&2^m&#

2j~r ,t;t !E
r8

W~r→r 8,t!dr 8,

~B8!

j~r ,t50;t !5E
r8
E

r 8
j~r 8,t8;t !W~r 8→r ,t8!dr 8dt8,

~B9!

where

^l&5E
0

`

l~a8!cst~a8!da8, ~B10!

^m&5E
0

`

@m0~a8!1dm„r~r ;t !…#cst~a8!da8 ~B11!

are average natality and mortality functions, respectiv
These two average vital functions can be easily evalua
We have

^l~a8!&5Z21~r !E
0

`

exp~2ar !l ~a8!l~a8!da851/Z~r !

~B12!

and

^m~a!&5E
0

`

cst~a!†m0~a!1dm@r~r ;t !#‡da

5E
0

`

cst~a!m0~a!da1dm@r~r ;t !#. ~B13!
tl

t.
ys

06190
y.
d.

The last integral in Eq.~B13! can be evaluated in a numbe
of steps. We get

E
0

`

cst~a!m0~a!da

5
1

Z~r !
E

0

`

exp@2ra#
]

]aH 2expF2E
0

a

m0~a8!da8G J da

5
1

Z~r ! F12E
0

` H ]

]a
exp@2ra#J @2 l ~a!#daG

5
1

Z~r !
2r . ~B14!

By collecting these results and inserting them into Eqs.~B5!
and ~B6! we come to

S ]

]t
1

]

]t D j~r ,t;t !5d~t!r~r ;t !@r 2dm„r~r ;t !…#

2j~r ,t;t !E
r8

W~r→r 8,t!dr 8,

~B15!

j~r ,t50;t !5E
r8
E

r 8
j~r 8,t8;t !W~r 8→r ,t8!dr 8dt8.

~B16!

We include the delta-dependent term in Eq.~B15! in the
boundary condition~B16!, resulting in Eqs.~62! and ~63!.
t.
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