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Stiffening of fluid membranes due to thermal undulations:
Density-matrix renormalization-group study

Yoshihiro Nishiyama*
Department of Physics, Faculty of Science, Okayama University, Okayama 700-8530, Japan

~Received 2 September 2002; published 18 December 2002!

It has been considered that the effective bending rigidity of fluid membranes should be reduced by thermal
undulations. However, recent thorough investigation by Pinnow and Helfrich revealed the significance of
measure factors for the partition sum. Accepting the local curvature as a statistical measure, they found that
fluid membranes are stiffened macroscopically. In order to examine this remarkable idea, we performed ex-
tensiveab initio simulations for a fluid membrane. We set up a transfer matrix that is diagonalized by means
of the density-matrix renormalization group. Our method has an advantage, in that it allows us to survey
various statistical measures. As a consequence, we found that the effective bending rigidity flows toward strong
coupling under the choice of local curvature as a statistical measure. On the contrary, for other measures such
as normal displacement and tilt angle, we found a clear tendency toward softening.
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I. INTRODUCTION

Amphiphilic molecules in water segregate spontaneou
into flexible extended surfaces called fluid~lipid! membranes
@1,2#. The fluid membranes are free from both surface t
sion and shear modulus, and the elasticity is governed o
by bending rigidity@3,4#. The Hamiltonian is given by the
following form:

H5E dAS k

2
J21k̄K D . ~1!

The mean curvatureJ is given by the summation of two
principal curvaturesJ5c11c2, whereas the Gaussian curv
tureK is given by their productK5c1c2. The corresponding
two moduli k and k̄ are called the bending rigidity modulu
and Gaussian-curvature modulus, respectively. The inte
tion *dA extends over the whole membrane surface. He
after, we drop the Gaussian-modulus term (k̄50), because
this term is topologically invariant@1,2#, and we restrict our-
selves to a fixed topology~planar surface!.

Contrary to its seemingly simple form, the Hamiltonia
~1! brings about perplexing problems: As a matter of fa
under an actual representation with differential geometry@for
instance, see Eq.~3! explained afterwards#, it turns out that
membrane’s undulations are subjected to complicated mu
scatterings. Therefore, it is expected that the effective be
ing rigidity for macroscopic length scales differs from th
bare rigidity owing to the thermally activated undulation
Aiming to clarify this issue, a number of renormalizatio
group analyses have been reported so far@5–7#. The results
are summarized in the following renormalization-gro
equation,

k85k2a
kBT

8p
ln M , ~2!
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with renormalized bending rigidityk8, temperatureT, and
the number of decimated moleculesM. Literature agrees tha
the numerical prefactor in the above equation isa53. ~A
more detailed account of the historical overview would
found in Ref.@8#.! Because ofa.0, the effective bending
rigidity is reduced by thermally activated undulations. Th
conclusion might be convincing, because the membr
shape itself should be deformed by thermal undulations. A
matter of fact, it has been known that the orientational c
relation is lost for long distances@9#. It is quite natural to

FIG. 1. ~a! On the square lattice, we consider scalar fieldhi j

denoting normal displacement of a membrane with respect t

reference plane. Step variable~gradient field! sW5a]Wh is defined at
each link.~b! The local statistical weightsr @Eq. ~7!# and D @Eq.
~8!# are represented by shaded and open squares, respectively
statistical weightr has several variants so as to take account
other integration measures such as curvature~11! and tilt angle~12!.
~c! From these local statistical weights, we construct a strip wh
row-to-row statistical weight yields the transfer-matrix eleme
This transfer matrix is subjected to the DMRG diagonalization, a
shown in Fig. 2.
©2002 The American Physical Society07-1
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anticipate that membranes become flexible for length sc
exceeding this correlation length.

Recently, however, Pinnow and co-worker@8,10# obtained
a remarkable conclusiona521(,0). The key ingredient
of their new argument is that they considered the role
measure factors for the partition sum. They insist that
local mean curvatureJ should be the right statistical measu
rather than other measures such as normal displace
h(x,y) and local tilt angleu(x,y). @The variableh(x,y) de-
notes the normal displacement of the membrane from a b
~reference! plane. We will explain it in the following sec
tion.# After an elaborated calculation of the variable repla
menth(x,y)→J(x,y) and succeeding renormalization-grou
analysis, the authors reach the conclusion ofa521.

In order to examine their remarkable scenario, we p
formed first-principles simulation for a fluid membrane. O
simulation method has an advantage, in that we cover v
ous integration measures in a unified way. In addition,
simulation does not rely on any perturbative treatmen
Hence, it would be meaningful to complement the analyti
perturbative treatment. We employed a transfer-ma
scheme, which is diagonalized by means of the dens
matrix renormalization group@11–14#. It is to be noted that
recently, such elastic~bosonic! systems came under thoroug
investigation by means of diagonalization after the adven
the density-matrix renormalization group@15–20#.

It has to be mentioned that the Monte Carlo method
been utilized successfully in the studies of membranes
vesicles@1,2#. For the Monte Carlo method, however, a tet
ered~polymerized! membrane rather than a fluid membra
is more suitable@21#, because a membrane is implemented
a computer as an assembly of molecules and junctions b
ing close resemblance to a tethered membrane. Howe
Gompper and Kroll succeeded in simulating fluid me
branes by the Monte Carlo method, allowing reconstructi
r
d
o

a

06190
es

f
e

ent

se

-

r-
r
ri-
r

s.
l
x
y-

f

s
d

-

n
ar-
er,
-
s

of junctions during simulation~dynamical triangulation!
@22#. They succeeded in observing the variation of the to
logical index with respect to the change of membrane c
centration and temperature. In fairness, it has to be m
tioned that their Monte Carlo data indicate softening for lip
vesicles.

The rest of this paper is organized as follows. In the f
lowing section, we explain our transfer-matrix formalism f
a fluid membrane. We also explicate the density-ma
renormalization group with which we diagonalized the tran
fer matrix. In Sec. III, we calculate the effective bendin
rigidity. For that purpose, we introduce a scheme of coa
graining. Our data clearly support membrane stiffening un
the choice of mean curvatureJ(x,y) as a statistical measure
For other measures, on the contrary, we observed a tend
toward softening. In Sec. IV, we present summary and d
cussions.

II. TRANSFER-MATRIX FORMALISM AND ITS
DIAGONALIZATION THROUGH THE DENSITY-MATRIX

RENORMALIZATION GROUP

In this section, we present our numerical simulation te
nique. First, we explain our transfer-matrix formalism. Se
ond, we introduce the density-matrix renormalization gro
with which we diagonalize the transfer matrix. A demonst
tion of the algorithm is also presented.

A. Transfer-matrix formalism

In order to describe the shape of membranes, it is con
nient to use the Monge gauge@23#. In this frame, membrane
deformation is described by a normal displacement~defor-
mation! h(x,y) from a base~reference! plane parametrized
by Cartesian coordinates (x,y). In terms of this representa
tion frame, the mean curvatureJ(x,y) is given by
J~x,y!5
~]x

2h1]y
2h!@11~]xh!21~]yh!2#22]xh ]yh ]x ]yh2]x

2h~]xh!22]y
2h~]yh!2

@11~]xh!21~]yh!2#3/2
~3!
the
a
ugh
-

a-
in,
adja-
at
the

m-
explicitly. Similarly, the infinitesimal areadA is given by

dA5@11~]xh!21~]yh!2#1/2dx dy. ~4!

Putting these together into the Hamiltonian~1!, we obtain an
explicit expression in terms of the displacement fieldh(x,y).

Now, we are led to a two-dimensional scalar-field theo
h(x,y). However, the theory is afflicted by very complicate
interactions. The aim of this paper is to investigate the the
beyond the perturbative level by means of anab initio
method. For that purpose, we put the theory on a squ
lattice with lattice constanta; see Fig. 1. Accordingly, the
field variables$hi j % are now indexed by integer indicesi and
y

ry

re

j. Throughout this paper, we set the lattice constant as
unit of length a51. In other words, we are considering
square-netted membrane which was brought into thoro
discussion in Ref.@10#. Readers may find convincing argu
ments whyJ(x,y) is a physically sensible statistical me
sure. In particular, the authors think of a polymer cha
whose natural statistical measure is the angles between
cent links. Likewise, for a fluid membrane, they found th
the curvatures are the right statistical measure, continuing
polymer into a new space dimension to build up a me
brane.

Our theory has the translational invariance ofhi j →hi j
1Dh, and thus, the absolute value ofhi j should be mean-
ingless. Therefore, we introduce the link variable
7-2
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sW5a]Wh ~5!

denoting the ‘‘step’’ at each link; see Fig. 1. Obviously, w
are just performing the well-known duality transformatio
@24#, which is very successful in the study of random s
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faces. Note that now we arrive at a dual model with s
variables$sW i j %; see Fig. 1. For this dual model, the bendin
energy cost exists at each plaquette, because it was origin
a vertex possessing a curvature spanned by adjacent l
Hence, the statistical weight is associated with ea
plaquette,
r~s1 ,s2 ,s3 ,s4!5expF2a2A11S s11s4

2a D 2

1S s21s4

2a D 2 k

2
J~s1 ,s2 ,s3 ,s4!2G , ~6!

with

J~s1 ,s2 ,s3 ,s4!52

S s42s1

a2
1

s22s3

a2 D F11S s11s4

2a
D 2

1S s21s4

2a
D 2G2S s11s4

2a
D 2s42s1

a2
2S s21s4

2a
D 2s22s3

a2

F11S s11s4

2a
D 2

1S s21s4

2a
D 2G1.5 . ~7!
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See also Fig. 1 for the notation of$sa%. We have setkBT
51, becausekBT can be absorbed into the bending rigidi
k. It is apparent from the construction of the dual theory t
the step variables are not fully independent. In the nota
of Fig. 1, there exists a restriction ofs11s22s32s450 for
each open plaquette. Therefore, we introduce the follow
statistical weight for each of them:

D~s1 ,s2 ,s3 ,s4!5ds11s22s32s4,0 . ~8!

As a consequence, we reach the lattice field theory w
the statistical weightsr, Eq. ~7!, andD, Eq. ~8!, which are
arranged in the checkerboard pattern. Likewise, the tran
matrix is constructed as a striplike segment shown in Fig
The transfer matrix is diagonalized by the density-mat
renormalization group.

In order to implement the above theory in a compu
simulation, we must carry out yet another simplificatio
Namely, we discretize the link variable as follows:

si5ds~ i 2Ns/220.5!, ~9!

with i 51, . . . ,Ns . The unit of step,ds , is determined self-
consistently through the simulation:

ds5RA^si
2&, ~10!

where^•••& denotes the thermal average. We made sev
trials for the tuning parameters ofNs andR; this discretiza-
tion is the most influential factor concerning the reliability
our simulation. We will explore its reliability in the follow-
ing section.

Our theory resembles the so-called solid-on-solid mod
which exhibits the Kosterlitz-Thouless critical phase. No
that in our model, there is no surface-tension term, and th
exists the bending elasticityk instead. Therefore, our theor
is not valid right at the critical phase, but it is rather driv
t
n

g
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er
.

r
.
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off from it. The renormalization-group flow is actually th
central concern of the present paper, and it is explored in
following section.

In the above, we did not pay any attention to the meas
factor for the partition sum. As is emphasized in the Intr
duction, the measure factor should alter the underlying ph
ics even qualitatively. As is apparent from the above form
ism, particularly from Eq.~9!, we accept uniform measur
for the step variable, namely, we are accepting the nor
displacement as the statistical measure. Following the i
advocated in Refs.@8,10#, we will also consider the loca
mean curvature as for the statistical measure. The repl
ment of the integration variables is absorbed into the red
nition of the statistical weight. Namely, we made the repla
ment

r~s1 ,s2 ,s3 ,s4!→r~s1 ,s2 ,s3 ,s4!A)
a51

4 U]J~s1 ,s2 ,s3 ,s4!

]sa
U.

~11!

The square root is intended to take the geometrical me
because each step variablesa is sheared by an adjacen
plaquette as well.

In addition, we consider the local tilt angle as for th
measure; namely, we made the replacement

r~s1 ,s2 ,s3 ,s4!→r~s1 ,s2 ,s3 ,s4! )
a51

4 UcosS arctan
sa

a D U.
~12!

As a consequence, we have prepared three types of statis
weights,h @Eq. ~7!#, J @Eq. ~11!#, andu @Eq. ~12!#, which are
examined in the following section.
7-3
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B. Diagonalization of the transfer matrix with density-matrix
renormalization group

In the preceding section, we have set up the transfer
trix. In principle, one would extract various informations
one could diagonalize the transfer matrix. However, in pr
tice, the matrix size exceeds the limit of computer-mem
size. Such difficulty arises in common with such syste
called soft matters, which exhibit, by nature, vast numbers
vibration modes. Therefore, the Monte Carlo technique
been employed in order to simulate soft matters. Howe
after the advent of the density-matrix renormalization gro
@11–13#, the difficulty was removed, and now, soft matte
~elastic systems! have come under thorough investigation
means of the diagonalization method; examples are la
vibrations @15,16#, collection of oscillators as a heat ba
@17#, string meandering motions@18,19#, and lattice scalar-
field theory@20#. In essence, the technique allows us to d
card ‘‘irrelevant states,’’ and hence, the number of states
truncated so as to save the computer-memory space.

Below, we will explain the density-matrix renormalizatio
group. Our algorithm is standard, and a pedagogical gu
can be found in Ref.@13# as well. The transfer matrix is
represented by a strip shown in Fig. 1. Our goal is to dia
nalize the transfer matrix with sufficient length. We w
show that this goal is achieved by the recursive applica

FIG. 2. Schematic drawing of the density-matrix normalizati
group ~DMRG! procedure@11–14#. From the drawing, we see tha
through DMRG, a ‘‘block’’ and the adjacent site are renormaliz
into a new ‘‘block8; ’’ similarly, block8→block9. At this time, the
number of block states is retained withinm; see text. In this manner
we can diagonalize a large-scale transfer matrix through succe
application of DMRG. A demonstration of the algorithm is pr
sented in Figs. 3 and 4.
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of the density-matrix renormalization group. The renorm
ization procedures are presented in Fig. 2, where two set
renormalizations are shown. Through each renormalizatio
‘‘block’’ and the adjacent site are renormalized into a ne
‘‘block 8; ’’ and similarly, block8→block9. The crucial point
is that the number of states for a block is kept withinm.
Therefore, we can iterate the procedure until the strip
comes sufficiently long. Such truncation of block stat
within m is managed in the following manner@11,12#: One
first constructs the density matrixrB1d @11–14# with respect
to the part of system composed of the block and the adja
site. Then, ‘‘relevant states’’ are extracted from the eige
states$ua% of the density matrix with relatively larger eigen
values$wa%; the density-matrix eigenvalues$wa% are called
‘‘weights.’’ Because the weightwa becomes almost negli
gible for largea, we just retain relevantm states with domi-
nant weight, and discard the other remaining states. In
manner, the block and the site are renormalized into a n
block, whose states are represented by the truncated b
$ua% with a51, . . . ,m.

Let us demonstrate the reliability. We will accept the loc
curvature as the statistical measure. In Fig. 3, we presen
distribution of weight $wa% after 40 renormalizations fo

ive

FIG. 3. Distribution of the eigenvalues~weights! $wa% (a, in-
teger index! of the density matrix for bending rigidityk50.5.
Simulation parameters arem513, Ns59, andR50.9; see Eq.~9!.
We see thatwa vanishes very rapidly for largea. In the simulation,
we retained relevant states up tom513, and we achieved a prec
sion of;1025. In this manner, the number of states of the ‘‘block
in Fig. 2 is truncated~renormalized!.

FIG. 4. Probability distribution of the step variableP(si); see
Eq. ~9!, where we had set the threshold for the range of step v
ables as$si% ( i 51, . . . ,Ns). The simulation parameters are th
same as those of Fig. 3. The range of step variables seems to
the actual fluctuation deviation.
7-4



be

we
o
f

f s
e

ar
nc
-
rf

f a
e
-
4
tri

he
.

e
-
ct
e
th
.

the
h as
w
e
sful

tion
ne
or-

p
ep

ven

tion,
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bending rigidityk50.5. Simulation parameters are set to
m513, Ns59, andR50.9; see Eq.~9! for details. We see
that the weight vanishes very rapidly. In the simulation,
retainm513 weighted states, and we attain the precision
;1025. In Fig. 4, we present the probability distribution o
the step variable. Because we have bounded the range o
variable as in Eq.~9!, we must check whether it covers th
actual thermal fluctuation deviation. The range of step v
ables seems to cover the actual fluctuation deviation. He
our treatment of Eq.~9! turns out to be justified. In all simu
lations presented hereafter, we had monitored such a pe
mance check carefully.

III. REAL-SPACE DECIMATION AND EFFECTIVE
BENDING RIGIDITY: APPLICATION OF THE

DENSITY-MATRIX RENORMALIZATION GROUP

In this section, we study the effective bending rigidity o
fluid membrane. For that purpose, we introduce a schem
real-space decimation@25#. Then, we apply the density
matrix renormalization group. All data are calculated after
renormalizations; namely, the length of the transfer ma
extends toL580.

To avoid confusion, note the following: In this paper, t
word ‘‘renormalization’’ is used in two different contexts
First, we employ the density-matrixrenormalizationgroup
as a simulation technique. Secondly, we manage the r
spacerenormalizationto get information on effective bend
ing rigidity. The former terminology is named after the fa
that we renormalize irrelevant states in order to sav
computer-memory size. The latter is aimed to gain
renormalization-group flow with the length scale changed

A. Real-space decimation

Real-space decimation~coarse graining! was first intro-
duced in the study of critical phenomena@26#; in particular, it
gt

t

t
io
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was aimed to interpret the scaling hypothesis. Later on,
idea was extended to meet more practical purposes suc
the quantitative estimation of critical exponents and flo
equations@27#. We follow Swendsen’s version of real-spac
decimation, which has been proven to be very succes
@25#.

In Fig. 5, we have presented the real-space-decima
procedure. Note that two unit cells are renormalized into o
enlarged unit cell. In other words, two molecules are ren
malized into a new molecule, and hence, the parameterM in
Eq. ~2! is M52. Correspondingly, from microscopic ste
variables$sa% and$ta%, we construct the coarse-grained st
variables

S15~s11t1!/2,

S25s3/21s2 ,

S35s3/21t3 ,

S45~s41t4!/2. ~13!

For this coarse-grained length scale, the curvature is gi
by

FIG. 5. Real-space decimation procedure. From the decima

a new coarse-grained curvatureJ̃, Eq.~14!, is constructed.J̃ is used
in the succeeding renormalization-group analysis; see Fig. 6.
J̃52

S S42S1

~1.5a!2
1

S22S3

~1.5a!2D F11S S11S4

3a D 2

1S S21S4

3a D 2G2S S11S4

3a D 2S42S1

~1.5a!2
2S S21S4

3a D 2S22S3

~1.5a!2

F11S S11S4

3a D 2

1S S21S4

3a D 2G1.5 . ~14!
e,
e

own
ri-
After coarse graining, one must redefine the unit of len
accordingly; namely,

a→a/A2,

hi j →hi j /A2. ~15!

The coarse-grained membrane may be described by
Hamiltonian H5*dAk8J̃ 2/2 with a renormalized bending
rigidity k8. As is well known, the transformation coefficien
]k8/]k contains much information on the infrared behav
of the effective coupling constant@25#. Anticipated behaviors
h

he

r

of k-k8 are drawn schematically in Fig. 6. From the figur
we see that for]k8/]k.1, the membrane is stiffened in th
infrared limit, whereas for]k8/]k.1, the membrane is
softened. The transformation coefficient]k8/]k is given by
the chain relation@25#

]^ J̃ 2dA&
]k

5
]k8

]k

]^ J̃ 2dA&

]k8
. ~16!

Here,dA denotes the area of the membrane segment sh
in Fig. 5. The remaining task is to perform the above nume
7-5
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cal derivatives. Numerical differentiations are possible,
cause our data are free from statistical errors. That is a g
advantage of our algorithm over others such as Monte Ca
We adopted Richardson’s deferred approach to the limit
gorithm in the text book@28#. In this algorithm, one make
an extrapolation after calculating various finite-differen
differentiations. We monitored the relative error, and chec
that the error is kept within 1023.

B. Membrane stiffening in the case of local-curvature measure

Following the idea of Refs.@8,10#, we will accept the
local curvatureJ(x,y) as for the statistical measure. This
achieved by adopting the statistical weight~11! in the con-
struction of the transfer matrix. In Fig. 7, we plotted th
transformation coefficient]k8/]k, Eq. ~16!, for the bare
coupling 0.17,k,4. In obtaining the data, we have made
number of trials for the simulation parameters ofm ~number
of block states!, Ns , andR ~range of step variables!; see Eq.
~9! for details. Thereby, we confirm that good convergenc
achieved with respect to the tuning parameters.

From Fig. 7, we see that the inequality]k8/]k.1 holds.
Referring to the anticipated behavior depicted in Fig. 6,
found that the membrane is stiffened effectively for mac
scopic length scales. As a matter of fact, for other integra
measures, the inequality]k8/]k.1 is not satisfied, as will
be shown in the following section. Our simulation result
the firstab initio support of the analytical argument by Pi
now and co-worker@8,10#.

In the figure, for small rigidityk,1, where thermal un-
dulations should be enhanced, we observe a notable enha
ment of the transformation coefficient]k8/]k. Hence, it is
indicated that this stiffening is driven, quite contrary to o
naive expectation, by thermal undulations. This rather co
terintuitive result suggests that the ‘‘hat excitation’’@8#,
which is a sort of solitonic excitation, would be created ov
the membrane surface: The hat excitation is a solitonic ob
accompanying localized dimplelike deformation. In Ref.@8#,
the author claimed that the hat excitations cause, unlike c
ventional sinusoidal undulations, membrane stiffening.
would be astonishing that for such small rigidityk,0.5,
where the membrane should be crumpled considerably,
concept of hat excitation is still applicable. This fact may t
that the hat excitation is indeed solitonic in the sense that
excitations are stable under collisions, and the thermal un

FIG. 6. Schematic flow diagram of the effective bending rigid
k→k8. Depending on the transformation coefficient]k8/]k.1
(,1), the membrane is stiffened~softened! in the infrared limit.
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lations can be decomposed into individually propagating
excitations.

It is to be noted that such pronounced enhancemen
]k8/]k for small k is not captured by the analytical one
loop renormalization-group treatment~2!, because it just
yields]k8/]k51 for all k. ~It might be convincing, becaus
analytical perturbative treatment should be justified for s
ficiently rigid membranes.! This is obviously the advantag
of our first-principles simulation. For exceedingly small r
gidity k,0.17, however, the membrane becomes
crumpled, and we cannot continue reliable simulation.~From
a technical viewpoint, the density-matrix weight exhibits a
most uniform distribution, and we cannot set any reasona
threshold for the truncation of states.!

On the other hand, for the large-rigidity sidek.1, we see
that the transformation coefficient approaches the neu
value ]k8/]k'1. Note that the analytical one-loo
renormalization-group analysis~2! yields ]k8/]k51.
Hence, we see that for sufficiently largek, the analytical
result ~2! is recovered asymptotically.

C. Membrane softening under the statistical measures
of h„x,y… and u„x,y…

For other integration measures such as normal displa
ment h(x,y), Eq. ~7!, and tilt angleu(x,y), Eq. ~12!, we
found behaviors quite contrasting to that shown in the p
ceding subsection. In Fig. 8, we plotted the transformat
coefficient ]k8/]k for the normal-displacement integratio
measure~7!. ~Note that this integration measure has be
widely used so far in the analytical calculations except Re
@8,10#.! From the figure, we see that]k8/]k,1 definitely
holds. Hence, in this case, the membrane is softened e
tively for macroscopic length scales; see the schematic
havior shown in Fig. 6. In addition, it is to be noted that f
small rigidity k,1, the transformation coefficient]k8/]k is
suppressed, and it approaches the neutral value]k8/]k51
as the membrane rigidityk increases. This fact tells that th
softening is driven by the thermal undulations. Note that

FIG. 7. Transformation coefficient]k8/]k is plotted for bare
rigidity k. We have accepted the local curvature as for the statist
measure. The simulation parameters for each symbol are (1) m
512, Ns57, andR50.9; (3) m512, Ns57, andR51.1; (*)
m511, Ns58, and R50.9; and (h) m515, Ns56, and R
51.1; see Eq.~9! for details. Referring to the anticipated behavi
shown in Fig. 6, we see that the membrane is stiffened effectivel
the infrared limit.
7-6
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STIFFENING OF FLUID MEMBRANES DUE TO . . . PHYSICAL REVIEW E66, 061907 ~2002!
effect of thermal undulations appears in a way quite oppo
to the aforementionedJ(x,y) statistical measure.

In the case of the tilt-angle statistical measure~12!, the
transformation coefficient exhibits similar behavior]k8/]k
,1; see Fig. 9. However,]k8/]k is much closer to the
neutral value]k8/]k'1, suggesting that the extent of sof
ening is smaller than that of the normal-displacement in
gration measure. In other words, the membrane shape w
stay almost scale invariant under the choice of tilt angle
for the statistical measure.

In the calculations presented in this section@particularly,
for theh(x,y) measure#, the simulations suffered from insta
bilities coming from unbounded undulations due to me
brane softening. More specifically, during the simulation,
membrane becomes crumpled spontaneously, and the m
brane shape is trapped in a certain metastable configura
Such pathology may arise because there are exceedingly
merous thermally activated configurations of almost eq
statistical weight. Diagonalization of the transfer matrix th
fails in searching for the true globally stable thermal equil
rium. Moreover, the postulation of Eq.~9! has not been fully
justified, where we had assumed that the range of the

FIG. 8. Transformation coefficient]k8/]k is plotted for bare
rigidity k. We have accepted the normal displacement as for
statistical measure. The simulation parameters for each symbo
(1) m512, Ns57, and R50.8; (3) m510, Ns59, and R
50.6; and (* ) m511, Ns58, andR50.7; see Eq.~9! for details.
Referring to the anticipated behavior shown in Fig. 6, we see
the membrane is softened effectively in the infrared limit.

FIG. 9. Transformation coefficient]k8/]k is plotted for bare
rigidity k. We have accepted the local tilt angle as for the statist
measure. The simulation parameters for each symbol are (1) m
510, Ns59, andR50.7; (3) m512, Ns57, andR50.7; and
(* ) m511, Ns58, andR50.7; see Eq.~9! for details. Referring to
the anticipated behavior shown in Fig. 6, we see that the memb
is softened effectively in the infrared limit.
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variable is bounded. As the simulation parameters ofm and
Ns are improved, these instabilities are avoided to some
tent. In a sense, these instabilities reflect the fact that
membrane is softened indeed, and the shape fluctuation
enhanced for long distances. From the above experience
are led to the speculation that the Monge gauge would no
very justified for the description of fluid membranes in t
case of softening, at least, beyond perturbative level.

IV. SUMMARY AND DISCUSSIONS

We have investigated the effective bending rigidity~2! of
a fluid membrane~1! for macroscopic length scales. The e
fective rigidity has been arousing renewed interest, si
Pinnow and Helfrich pointed out that the membranes wo
be stiffenedby thermal undulations. The key ingredient
their argument is that the local curvature should be the ri
statistical measure for the partition sum. Motivated by t
remarkable scenario, we had performed first-principles sim
lation with the transfer-matrix method and the density-mat
renormalization group; see Figs. 1 and 2. Our simulat
scheme does not rely on any perturbative treatments, an
covers various statistical measures such as local curva
~11!, normal displacement~7!, and tilt angle~12!. Because
analytical variable replacements among these variables
quire rather tedious task even on the perturbative leve
would be meaningful to survey various measure factors s
tematically byab initio simulation. The performance of th
simulation scheme is demonstrated in Figs. 3 and 4.

We introduced a scheme of real-space decimation a
shown in Fig. 5, and correspondingly, we defined coar
grained curvatureJ̃, Eq. ~14!. These preparations enable u
to calculate the transformation coefficient]k8/]k, Eq. ~16!,
from which we read off the direction of the renormalizatio
group flow; its anticipated behaviors are drawn schematic
in Fig. 6. As a consequence, using the statistical measu
we observed clear distinction between the mean curva
]k8/]k.1 and the others]k8/]k,1. Namely, when we
accept mean curvature as a statistical measure, the effe
rigidity is, in fact, renormalized toward strong coupling; s
Fig. 7. That is, membrane stiffening takes place. On the c
trary, both normal displacement and tilt angle appear to l
to membrane softening; see Figs. 8 and 9. Our simula
results are anab initio support of the aforementioned an
lytical argument@8#.

Apart from mere curiousity, the membrane stiffening
quite favorable for the consistency of our numerical simu
tion: In our simulation, in the first place, we had restrict
the range of step variables as in Eq.~16!. Apparently, this
postulation is in favor of membrane stiffening. In additio
we had discarded irrelevant states through the density-ma
renormalization group in order to keep the number of sta
tractable in computers. Again, this truncation of states is v
dated consequently after the onset of membrane stiffen
Furthermore, we believe that the very starting point of o
theory, namely, the Monge gauge, is in favor of membra
stiffening, because it is assumed that there exists a refer
plane from which all undulations are excited. Membra
stiffening may serve solid grounds for the Monge gauge.

e
re

at

l

ne
7-7



ed
on
tio
la

se
ion
he
rb
-

ng
ne
ity

a
n

the
cal
at
the
be
s-
s,
. A
the

al

g

YOSHIHIRO NISHIYAMA PHYSICAL REVIEW E 66, 061907 ~2002!
For those reasons, we could perform well-controll
simulation in the case of membrane stiffening. On the c
trary, as for the case of membrane softening, our simula
faces a number of conflicts coming from unbounded undu
tions as the strip length of the transfer matrix is enlarged;
Sec. III C for details. Because such pronounced undulat
lack the grounds of the reference plane, it would be rat
unwise to adopt the Monge gauge at least beyond pertu
tive level. By the way, we are fairly confident of the effi
ciency of our simulation in the case of membrane stiffeni
and we believe that membrane stiffening may serve as a
promising research field for the application of the dens
matrix renormalization group.

The following problems remain open: First, in Ref.@8#,
the author pointed out an intriguing picture of the deform
tion mode called ‘‘hat excitation.’’ This is a sort of solito
s
n-

in
.
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that is in contrast to the naive sinusoidal undulation. With
hat-excitation picture, the author provided valuable physi
insights. First-principles examination of the reality of this h
excitation would be desirable. Second, irrespective of
membrane stiffening, the correlation length is known to
finite, and the orientational correlation is lost for long di
tances@9#. In Ref. @8#, it is speculated that the two mode
namely, orientation and curvature, would be decoupled
deeper understanding of the above points would establish
justification that the local curvature is the right statistic
measure.
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