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Stiffening of fluid membranes due to thermal undulations:
Density-matrix renormalization-group study
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It has been considered that the effective bending rigidity of fluid membranes should be reduced by thermal
undulations. However, recent thorough investigation by Pinnow and Helfrich revealed the significance of
measure factors for the partition sum. Accepting the local curvature as a statistical measure, they found that
fluid membranes are stiffened macroscopically. In order to examine this remarkable idea, we performed ex-
tensiveab initio simulations for a fluid membrane. We set up a transfer matrix that is diagonalized by means
of the density-matrix renormalization group. Our method has an advantage, in that it allows us to survey
various statistical measures. As a consequence, we found that the effective bending rigidity flows toward strong
coupling under the choice of local curvature as a statistical measure. On the contrary, for other measures such
as normal displacement and tilt angle, we found a clear tendency toward softening.
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[. INTRODUCTION with renormalized bending rigiditx’, temperaturel, and
the number of decimated molecules Literature agrees that
Amphiphilic molecules in water segregate spontaneouslyhe numerical prefactor in the above equatiorwis 3. (A
into flexible extended surfaces called fldlghid) membranes more detailed account of the historical overview would be
[1,2]. The fluid membranes are free from both surface tenfound in Ref.[8].) Because ofa>0, the effective bending
sion and shear modulus, and the elasticity is governed onlsigidity is reduced by thermally activated undulations. This
by bending rigidity[3,4]. The Hamiltonian is given by the conclusion might be convincing, because the membrane
following form: shape itself should be deformed by thermal undulations. As a
matter of fact, it has been known that the orientational cor-
relation is lost for long distancd®]. It is quite natural to
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The mean curvaturd is given by the summation of two e e
principal curvatureg=c, + c,, whereas the Gaussian curva- . i
tureK is given by their produck =c,c,. The corresponding L s3 s4
two moduli k and « are called the bending rigidity modulus Sij27Ni N =P(s1,52,53,54)
and Gaussian-curvature modulus, respectively. The integra- s1 s2
tion fdA extends over the whole membrane surface. Here-
after, we drop the Gaussian-modulus terr=0), because e’ < S
this term is topologically invariaritl,2], and we restrict our- a s3 s4
selves to a fixed topologgplanar surface (a) =A(81,52,53,54)

(b)

Contrary to its seemingly simple form, the Hamiltonian
(1) brings about perplexing problems: As a matter of fact,
under an actual representation with differential geomidoy
instance, see Eq3) explained afterwardsit turns out that
membrane’s undulations are subjected to complicated mutual
scatterings. Therefore, it is expected that the effective bend-
ing rigidity for macroscopic length scales differs from the
bare rigidity owing to the thermally activated undulations.
Aiming to clarify this issue, a number of renormalization- ) . :
group analyses have been reported sq%ar7]. The results denoting normal displacement of a membrane with respect to a

are summarized in the following renormalization-group "eéference plane. Step variatilgradient field s=ach is defined at
each link.(b) The local statistical weightp [Eq. (7)] and A [Eq.

FIG. 1. (@ On the square lattice, we consider scalar fiejd

equation, (8)] are represented by shaded and open squares, respectively. The
KaT statistical weightp has several variants so as to take account of
K'=K— a——InM , 2) other integration measures such as curvatitgand tilt angle(12).
8w (c) From these local statistical weights, we construct a strip whose

row-to-row statistical weight yields the transfer-matrix element.
This transfer matrix is subjected to the DMRG diagonalization, as is
*Electronic address: nisiyama@psun.phys.okayama-u.ac.jp shown in Fig. 2.
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anticipate that membranes become flexible for length scalesf junctions during simulation(dynamical triangulation
exceeding this correlation length. [22]. They succeeded in observing the variation of the topo-

Recently, however, Pinnow and co-work8r10] obtained logical index with respect to the change of membrane con-
a remarkable conclusion=—1(<0). The key ingredient centration and temperature. In fairness, it has to be men-
of their new argument is that they considered the role otioned that their Monte Carlo data indicate softening for lipid
measure factors for the partition sum. They insist that thevesicles.
local mean curvaturé should be the right statistical measure  The rest of this paper is organized as follows. In the fol-
rather than other measures such as normal displacemelatving section, we explain our transfer-matrix formalism for
h(x,y) and local tilt angled(x,y). [The variableh(x,y) de- a fluid membrane. We also explicate the density-matrix
notes the normal displacement of the membrane from a bagenormalization group with which we diagonalized the trans-
(reference plane. We will explain it in the following sec- fer matrix. In Sec. Ill, we calculate the effective bending
tion.] After an elaborated calculation of the variable replace-igidity. For that purpose, we introduce a scheme of coarse
menth(x,y)—J(x,y) and succeeding renormalization-group graining. Our data clearly support membrane stiffening under
analysis, the authors reach the conclusiorvef—1. the choice of mean curvatudkx,y) as a statistical measure.

In order to examine their remarkable scenario, we perfor other measures, on the contrary, we observed a tendency
formed first-principles simulation for a fluid membrane. Ourtoward softening. In Sec. IV, we present summary and dis-
simulation method has an advantage, in that we cover varieussions.
ous integration measures in a unified way. In addition, our

simulation does not rely on any perturbative treatments. [l. TRANSFER-MATRIX FORMALISM AND ITS
Hence, it would be meaningful to complement the analytical DIAGONALIZATION THROUGH THE DENSITY-MATRIX
perturbative treatment. We employed a transfer-matrix RENORMALIZATION GROUP

scheme, which is diagonalized by means of the density-
matrix renormalization groupll—14. It is to be noted that . : ) g .
recently, such elastihosonig systems came under thorough nique. F|rst, we explain our.transfe.r-matnx forr.'nalllsm. Sec-
investigation by means of diagonalization after the advent OPr.]d’ we mtrodupe the Qen5|ty-matr|x renormal|zat|0n group
the density-matrix renormalization gro{ip5—20. v_wth which we d!agor!allze the transfer matrix. A demonstra-
It has to be mentioned that the Monte Carlo method hal®" of the algorithm is also presented.
been utilized successfully in the studies of membranes and
vesicleg 1,2]. For the Monte Carlo method, however, a teth-
ered(polymerized membrane rather than a fluid membrane In order to describe the shape of membranes, it is conve-
is more suitabl¢21], because a membrane is implemented innient to use the Monge gau@23]. In this frame, membrane
a computer as an assembly of molecules and junctions beagleformation is described by a normal displacemilefor-
ing close resemblance to a tethered membrane. Howevemation h(x,y) from a base(reference plane parametrized
Gompper and Kroll succeeded in simulating fluid mem-by Cartesian coordinatex,fy). In terms of this representa-
branes by the Monte Carlo method, allowing reconstructiongion frame, the mean curvatugx,y) is given by

In this section, we present our numerical simulation tech-

A. Transfer-matrix formalism

_ (9zh+azh)[ 1+ (9¢h) 2+ (9yh)2] = 2d5h dyh d, dyh—dZh(dch)2— dzh(a,h)?

0ey) [1+ (o) 2+ (9,h)2]%2

()

explicitly. Similarly, the infinitesimal aredA is given by j. Throughout this paper, we set the lattice constant as the
unit of lengtha=1. In other words, we are considering a
square-netted membrane which was brought into thorough
dA=[1+(dsh)?+(3yh)?]*2dx dy. (49 discussion in Ref[10]. Readers may find convincing argu-
ments whyJ(x,y) is a physically sensible statistical mea-
Putting these together into the Hamiltonidn, we obtain an ~ sure. In particular, the authors think of a polymer chain,
explicit expression in terms of the displacement fie{d,y). whose natural statistical measure is the angles between adja-
Now, we are led to a two-dimensional scalar-field theorycent links. Likewise, for a fluid membrane, they found that
h(x,y). However, the theory is afflicted by very complicated the curvatures are the right statistical measure, continuing the
interactions. The aim of this paper is to investigate the theorypolymer into a new space dimension to build up a mem-
beyond the perturbative level by means of ab initio  brane.
method. For that purpose, we put the theory on a square Our theory has the translational invariance hgf— h;;
lattice with lattice constang; see Fig. 1. Accordingly, the +Ah, and thus, the absolute value lof should be mean-
field variablesth;;} are now indexed by integer indiceand  ingless. Therefore, we introduce the link variable
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3=adh (5) faces. No'ie that now we arrive at a dual model with step
variables{s;;}; see Fig. 1. For this dual model, the bending-
energy cost exists at each plaquette, because it was originally
denoting the “step” at each link; see Fig. 1. Obviously, we a vertex possessing a curvature spanned by adjacent links.
are just performing the well-known duality transformation Hence, the statistical weight is associated with each
[24], which is very successful in the study of random sur-plaquette,

B ) S1+54\2 [Sp+54\2 K 5
p(s1,52,53,84) =exp —a?\/ 1+| — 2a | 29(51:52,53,8)°, (6)
with
_ _ 2 2 2« 2«
Sy sl+sz S3 - S+, S,+S, S1+54\28,—S; [ Sp+5S4)%s,— S

a2 az 2a 2a 2a az 2a az

J(S1,5,,53,54) = — : (7)
1192193124 Sl+54 2 52+S4 27115
1+
2a 2a

See also Fig. 1 for the notation ¢§,}. We have sekgT  off from it. The renormalization-group flow is actually the
=1, becausdgT can be absorbed into the bending rigidity central concern of the present paper, and it is explored in the
k. Itis apparent from the construction of the dual theory thaffollowing section.

the step variables are not fully independent. In the notation In the above, we did not pay any attention to the measure
of Fig. 1, there exists a restriction ef+s,—s;—s,=0 for  factor for the partition sum. As is emphasized in the Intro-
each open plaquette. Therefore, we introduce the followingluction, the measure factor should alter the underlying phys-

statistical weight for each of them: ics even qualitatively. As is apparent from the above formal-
ism, particularly from Eq.(9), we accept uniform measure
A(S1,52,53,54) = G5, +5,~5,5,,0- (8)  for the step variable, namely, we are accepting the normal

displacement as the statistical measure. Following the idea

As a consequence, we reach the lattice field theory withhdyocated in Refs[8,10], we will also consider the local
the statistical weightp, Eq.(7), andA, Eg. (8), which are  mean curvature as for the statistical measure. The replace-
arranged in the checkerboard pattern. Likewise, the transfehent of the integration variables is absorbed into the redefi-

matrix is constructed as a striplike segment shown in Fig. Inition of the statistical weight. Namely, we made the replace-
The transfer matrix is diagonalized by the density-matrixment

renormalization group.
In order to implement the above theory in a computer

simulation, we must carry out yet another simplification. ‘ 3J(S1,55,53,54)
Namely, we discretize the link variable as follows: p(S1,S2,53,54)— p(S1,S2,53,54) }Z[l e re—
s=84(i—Ng2—0.5), (9) (11)
with i=1,... Ns. The unit of stepgs, is determined self-  The square root is intended to take the geometrical mean,
consistently through the simulation: because each step varialde is sheared by an adjacent
N vy plaquette as well.
9s=R(s0), (10 In addition, we consider the local tilt angle as for the

where(- - -) denotes the thermal average. We made severd'casU"® namely, we made the replacement

trials for the tuning parameters df; andR; this discretiza-

tion is the most influential factor concerning the reliability of 4 s,
our simulation. We will explore its reliability in the follow- p(S1,52,53,54) — p(S1,52,53,84) || |cog arctan="||.
ing section a=1 a

Our theory resembles the so-called solid-on-solid model, (12
which exhibits the Kosterlitz-Thouless critical phase. Note
that in our model, there is no surface-tension term, and therAs a consequence, we have prepared three types of statistical
exists the bending elasticity instead. Therefore, our theory weights,h [Eq. (7)], J[Eq.(11)], and 6 [Eq. (12)], which are
is not valid right at the critical phase, but it is rather driven examined in the following section.
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FIG. 3. Distribution of the eigenvalugsveights {w,} («, in-
teger index of the density matrix for bending rigidityc=0.5.
Simulation parameters are= 13, N;=9, andR=0.9; see Eq(9).
We see thawv, vanishes very rapidly for large. In the simulation,
we retained relevant states upro=13, and we achieved a preci-
sion of ~107°. In this manner, the number of states of the “block”
in Fig. 2 is truncatedrenormalizeg

v DMRG
- of the density-matrix renormalization group. The renormal-
ization procedures are presented in Fig. 2, where two sets of
. renormalizations are shown. Through each renormalization, a
block” — blode=sbioek “block” and the adjacent site are renormalized into a new
o “block’;” and similarly, block —blocK’. The crucial point

is that the number of states for a block is kept witmm

FIG. 2. Schematic drawing of the density-matrix normalization 1 erefore, we can iterate the procedure until the strip be-
group (DMRG) procedurd 11-14. From the drawing, we see that COMes s_uff|C|entIy Iopg. Such truncation of block states
through DMRG, a “block” and the adjacent site are renormalized Within m is managed in the following manngt1,12: One
into a new “blocK;” similarly, block’ —block’. At this time, the first constructs the density matrix; , ¢ [11-14 with respect
number of block states is retained within see text. In this manner, t0 the part of system composed of the block and the adjacent
we can diagonalize a large-scale transfer matrix through successivte. Then, “relevant states” are extracted from the eigen-
application of DMRG. A demonstration of the algorithm is pre- state{u,} of the density matrix with relatively larger eigen-

sented in Figs. 3 and 4. values{w,}; the density-matrix eigenvaludsv,} are called
“weights.” Because the weightv, becomes almost negli-
B. Diagonalization of the transfer matrix with density-matrix gible for largew, we just retain relevarm states with domi-
renormalization group nant weight, and discard the other remaining states. In this

In the preceding section, we have set up the transfer mananner, the block and the site are renormalized into a new
trix. In principle, one would extract various informations if block, whose states are represented by the truncated bases
one could diagonalize the transfer matrix. However, in prac{U.} with =1, ... m.
tice, the matrix size exceeds the limit of computer-memory Let us demonstrate the reliability. We will accept the local
size. Such difficulty arises in common with such systemscurvature as the statistical measure. In Fig. 3, we present the
called soft matters, which exhibit, by nature, vast numbers oflistribution of weight{w,} after 40 renormalizations for
vibration modes. Therefore, the Monte Carlo technique has

been employed in order to simulate soft matters. However, 0.4 — T T
after the advent of the density-matrix renormalization group 035 7
[11-13, the difficulty was removed, and now, soft matters 2 03I .
(elastic systemshave come under thorough investigation by 0.25 - -
means of the diagonalization method; examples are lattice 0.2 7
vibrations [15,16], collection of oscillators as a heat bath 015 | -
[17], string meandering motiond 8,19, and lattice scalar- 0.1 .
field theory[20]. In essence, the technique allows us to dis- 0.05 | -
card “irrelevant states,” and hence, the number of states are 0

truncated so as to save the computer-memory space.
Below, we will explain the density-matrix renormalization

group. Our algorithm is standard, and a pedagogical guide FiG. 4. Probability distribution of the step variabR(s;); see

can be found in Ref[13] as well. The transfer matrix is Eq. (9), where we had set the threshold for the range of step vari-

represented by a strip shown in Fig. 1. Our goal is to diagoables as{s;} (i=1,... Ng). The simulation parameters are the

nalize the transfer matrix with sufficient length. We will same as those of Fig. 3. The range of step variables seems to cover

show that this goal is achieved by the recursive applicationhe actual fluctuation deviation.

[ T T R
1 2 3 45 6 7 8 9
[
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bending rigidityx=0.5. Simulation parameters are set to be

m=13, N;=9, andR=0.9; see Eq(9) for details. We see S1 g2
that the weight vanishes very rapidly. In the simulation, we
retainm= 13 weighted states, and we attain the precision of
~10"°. In Fig. 4, we present the probability distribution of sS4

the step variable. Because we have bounded the range of step
variable as in Eq(9), we must check whether it covers the
actual thermal fluctuation deviation. The range of step vari- N N
ables seems to cover the actual fluctuation deviation. Hence, FIG. 5. Real-space demmgtlon proceFiure. From thNe .deC|mat|0n,
our treatment of Eq(9) turns out to be justified. In all simu- @ NeW coarse-grained curvatureEq. (14), is constructed] is used
lations presented hereafter, we had monitored such a perfoff (€ succeeding renormalization-group analysis; see Fig. 6.

mance check carefully.

was aimed to interpret the scaling hypothesis. Later on, the
idea was extended to meet more practical purposes such as
the quantitative estimation of critical exponents and flow
equationg 27]. We follow Swendsen’s version of real-space
decimation, which has been proven to be very successful
In this section, we study the effective bending rigidity of a[25].
fluid membrane. For that purpose, we introduce a scheme of In Fig. 5, we have presented the real-space-decimation
real-space decimatioh25]. Then, we apply the density- procedure. Note that two unit cells are renormalized into one
matrix renormalization group. All data are calculated after 40enlarged unit cell. In other words, two molecules are renor-
renormalizations; namely, the length of the transfer matrixmalized into a new molecule, and hence, the paraméter
extends toL =80. Eqg. (2) is M=2. Correspondingly, from microscopic step
To avoid confusion, note the following: In this paper, the variables{s,} and{t,}, we construct the coarse-grained step
word “renormalization” is used in two different contexts. variables
First, we employ the density-matrisenormalizationgroup

IIl. REAL-SPACE DECIMATION AND EFFECTIVE
BENDING RIGIDITY: APPLICATION OF THE
DENSITY-MATRIX RENORMALIZATION GROUP

as a simulation technique. Secondly, we manage the real- S;=(81+11)/2,
spacerenormalizationto get information on effective bend-
ing rigidity. The former terminology is named after the fact S,=55/2+s,,
that we renormalize irrelevant states in order to save
computer-memory size. The latter is aimed to gain the S;=55/2+t3,

renormalizationgroup flow with the length scale changed.

Sy=(Sat+1t4)/2. 13
A. Real-space decimation 4= (84t ta) 13

Real-space decimatioftoarse grainingwas first intro-  For this coarse-grained length scale, the curvature is given
duced in the study of critical phenomel#6]; in particular, it by

S$4i=S1 $—S3 Si+S4\% [S$+S,)? S1+$4)\%S4=S; [$+54)°S,-Ss
. ((1.5:;1)2Jr(l.s—ox)z){lJr 3a 3a }_ 3a | (1m)?2 | 3a | (1.5)?
J=- S,75,2 S+ 5, 7%5 : (14
3a 3a

After coarse graining, one must redefine the unit of lengthof x-«’ are drawn schematically in Fig. 6. From the figure,
accordingly; namely, we see that fovx'/dx>1, the membrane is stiffened in the
infrared limit, whereas fordk’/dx>1, the membrane is

a—al\2, softened. The transformation coefficient’/d« is given by
the chain relatiori25
hij—hi; 14/2. (15) 125]
The coarse-grained membrane may be described by the 5<j 2dA) :a_K’ 3@ 2dA) (16)
Hamiltonian H= [dAx’J ?/2 with a renormalized bending Ik Ik gk’

rigidity «’. As is well known, the transformation coefficient
dk'ldk contains much information on the infrared behaviorHere,dA denotes the area of the membrane segment shown
of the effective coupling constaf25]. Anticipated behaviors in Fig. 5. The remaining task is to perform the above numeri-
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/ softening 0.9 el e
. 0.1 1 10
> K K
FIG. 6. Schematic flow diagram of the effective bending rigidity =~ FIG. 7. Transformation coefficienix’/d« is plotted for bare
k—k'. Depending on the transformation coefficient'/dx>1 rigidity . We have accepted the local curvature as for the statistical
(<1), the membrane is stiffengdoftened in the infrared limit. measure. The simulation parameters for each symbol afer

=12, Ng=7, andR=0.9; (X) m=12, Nj=7, andR=1.1; (*)

cal derivatives. Numerical differentiations are possible, be™=11: Ns=8, andR=0.9; and (1) m=15, N,=6, andR
b =1.1; see Eq(9) for details. Referring to the anticipated behavior

cause our data are fre? from statistical errors. That is a gre%ﬁown in Fig. 6, we see that the membrane is stiffened effectively in

advantage of our algorithm over others such as Monte Carlcihe infrared limit

We adopted Richardson’s deferred approach to the limit al- '

gorithm in the text booK28]. In this algorithm, one makes

an extrapolation after calculating various finite-differencelations can be decomposed into individually propagating hat

differentiations. We monitored the relative error, and checkedxcitations.

that the error is kept within 1C. It is to be noted that such pronounced enhancement of

dk'ldk for small x is not captured by the analytical one-

loop renormalization-group treatmei(2), because it just

yieldsdx’/dx=1 for all k. (It might be convincing, because
Following the idea of Refs[8,10], we will accept the analytical perturbative treatment should be justified for suf-

local curvatureJ(x,y) as for the statistical measure. This is ficiently rigid membrane$.This is obviously the advantage

achieved by adopting the statistical weidfifl) in the con-  of our first-principles simulation. For exceedingly small ri-

struction of the transfer matrix. In Fig. 7, we plotted the gidity x<0.17, however, the membrane becomes too

transformation coefficientx'/dx, Eq. (16), for the bare  crmpled, and we cannot continue reliable simulatiginom

coupling 0'1_7<K<4' In qbtammg the data, we have made a, (goppjcql viewpoint, the density-matrix weight exhibits al-

number of trials for the simulation paramete_rsm)(number most uniform distribution, and we cannot set any reasonable

of block states N, andR (range of step variablgssee Eq. threshold for the truncation of states

(9) for details. Thereby, we confirm that good convergence is On the other hand, for the Iarge-rig.idity sige-1, we see

achieved with respect to the tuning parameters. that the transformation coefficient approaches the neutral
From Fig. 7, we see that the inequality’/d«>1 holds. , pproac
evalue drx'ldk~1. Note that the analytical one-loop

Referring to the anticipated behavior depicted in Fig. 6, w Y i ; ;

found that the membrane is stiffened effectively for macro-€normalization-group — analysis(2) yields dJx'/dx=1.
scopic length scales. As a matter of fact, for other integratiofii€nce, we see that for sufficiently large the analytical
measures, the inequalik’/dx>1 is not satisfied, as will result(2) is recovered asymptotically.

be shown in the following section. Our simulation result is

B. Membrane stiffening in the case of local-curvature measure

the firstab initio support of the analytical argument by Pin- C. Membrane softening under the statistical measures
now and co-workef8,10|. of h(x,y) and @(x,y)
In the figure, for small rigidityx<1, where thermal un- For other integration measures such as normal displace-

dulations should be enhanced, we observe a notable enhan(;ﬁ—ent h(x.y), Eq. (7), and tilt angled(x.y), Eq. (12), we

; s f N
ment of the transformation coefficienk’/d«x. Hence, it is found behaviors quite contrasting to that shown in the pre-

indicated that this stiffening is driven, quite contrary to ourCeding subsection. In Fig. 8, we plotted the transformation

naive expectation, by thermal undulations. This rather coun=""__~. f ) ) .
terintuitive result suggests that the “hat excitatiofg], coefficientdx’/dx for the normal-displacement integration

which is a sort of solitonic excitation, would be created overMeasure(7). (Note that this integration measure has been

the membrane surface: The hat excitation is a solitonic object/idely used so far in the analytical calculations except Refs.
accompanying localized dimplelike deformation. In R&j, ~ [8,101) From the figure, we see thatc’/dx<1 definitely

the author claimed that the hat excitations cause, unlike corfl0lds. Hence, in this case, the membrane is softened effec-
ventional sinusoidal undulations, membrane stiffening. Ittively for macroscopic length scales; see the schematic be-
would be astonishing that for such small rigidige<0.5,  havior shown in Fig. 6. In addition, it is to be noted that for
where the membrane should be crumpled considerably, themall rigidity x<1, the transformation coefficiedtc’/d« is
concept of hat excitation is still applicable. This fact may tell suppressed, and it approaches the neutral vakiéox=1

that the hat excitation is indeed solitonic in the sense that hats the membrane rigidity increases. This fact tells that the
excitations are stable under collisions, and the thermal undwsoftening is driven by the thermal undulations. Note that the
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16F ~ T variable is bounded. As the simulation parametersnaind
. 14 - N, are improved, these instabilities are avoided to some ex-
z 12 * 7 tent. In a sense, these instabilities reflect the fact that the
s 1r xx XX %%k membrane is softened indeed, and the shape fluctuations are
8'2 [ % x* T % i enhanced for long distances. From the above experience, we
0:4 | * i are led to the speculation that the Monge gauge would not be
02 | i very justified for the description of fluid membranes in the
0 e e e case of softening, at least, beyond perturbative level.
0.1 1 10

K

IV. SUMMARY AND DISCUSSIONS

FIG. 8. Transformation coefficienix’/d« is plotted for bare ) ) ) ) o
rigidity x. We have accepted the normal displacement as for the We have investigated the effective bending rigidiy of
statistical measure. The simulation parameters for each symbol af fluid membrané1) for macroscopic length scales. The ef-
(+) m=12, N;=7, and R=0.8; (x) m=10, N;=9, andR fective rigidity has been arousing renewed interest, since
=0.6; and ¢) m=11, N;=8, andR=0.7; see Eq(9) for details. ~ Pinnow and Helfrich pointed out that the membranes would
Referring to the anticipated behavior shown in Fig. 6, we see thabe stiffenedby thermal undulations. The key ingredient of
the membrane is softened effectively in the infrared limit. their argument is that the local curvature should be the right

statistical measure for the partition sum. Motivated by this

effect of thermal undulations appears in a way quite oppositéémarkable scenario, we had performed first-principles simu-
to the aforementioned(x,y) statistical measure. lation W|th th_e transfer-matrix method and the dens(ty-mat_nx

In the case of the tilt-angle statistical meas(t8), the renormalization group; see Figs. 1 an_d 2. Our S|mulat|on_
transformation coefficient exhibits similar behaviae'/gx ~ SCheme does not rely on any perturbative treatments, and it
<1: see Fig. 9. Howeverjx'/dx is much closer to the COVers various statistical measures such as local curvature

neutral valuedx'/dx~1, suggesting that the extent of soft- (11, normal displacemen(), and tilt angle(12). Because

ening is smaller than that of the normal-displacement inte@nalytical variable replacements among these variables re-

gration measure. In other words, the membrane shape woufiiré rather tedious task even on the perturbative level, it
stay almost scale invariant under the choice of tilt angle a¥VOU|d, be meamngflull to survey various measure factors sys-
for the statistical measure. tgmatlcglly byab initio simulation. Th.e p(_arformance of the

In the calculations presented in this sect[particularly, S|mulat.|on scheme is demonstrated in Figs. 3 apd 4 .
for theh(x,y) measurg the simulations suffered from insta- We ”_””Oquced a scheme of re_al-space dec_lmanon as Is
bilities coming from unbounded undulations due to mem-ShoWn in Fig. 5, and correspondingly, we defined coarse-
brane softening. More specifically, during the simulation, thegrained curvaturd, Eg. (14). These preparations enable us
membrane becomes crumpled spontaneously, and the mefig-calculate the transformation coefficient’/d«, Eq. (16),
brane shape is trapped in a certain metastable configuratioffom which we read off the direction of the renormalization-
Such pathology may arise because there are exceedingly ngroup flow; its anticipated behaviors are drawn schematically
merous thermally activated configurations of almost equaln Fig. 6. As a consequence, using the statistical measures,
statistical weight. Diagonalization of the transfer matrix thuswe observed clear distinction between the mean curvature
fails in searching for the true globally stable thermal equilib-d«'/dx>1 and the othergix'/dx<1. Namely, when we
rium. Moreover, the postulation of E¢Q) has not been fully ~accept mean curvature as a statistical measure, the effective
justified, where we had assumed that the range of the stejgidity is, in fact, renormalized toward strong coupling; see
Fig. 7. That is, membrane stiffening takes place. On the con-
trary, both normal displacement and tilt angle appear to lead
to membrane softening; see Figs. 8 and 9. Our simulation

2 1051 7 results are arab initio support of the aforementioned ana-
% 1F . lytical argumen{8].
° 095 " tx Apart from mere curiousity, the membrane stiffening is
SR L quite favorab!e for t_he c_onsiste_ncy of our numerical sir_nula—
09 - TRRT X 7 tion: In our simulation, in the first place, we had restricted
0.85 - - the range of step variables as in E@6). Apparently, this
08 i postulation is in favor of membrane stiffening. In addition,
0.1 1 10 we had discarded irrelevant states through the density-matrix
¥ renormalization group in order to keep the number of states

FIG. 9. Transformation coefficientx’/dx is plotted for bare tractable in computers. Again, this truncation of states is vali-

rigidity x. We have accepted the local tilt angle as for the statisticadated consequently after the onset of membrane stiffening.
measure. The simulation parameters for each symbol &lerg Furthermore, we believe that the very starting point of our
=10, N;=9, andR=0.7; (X) m=12, N;=7, andR=0.7; and  theory, namely, the Monge gauge, is in favor of membrane
(*) m=11, N=8, andR=0.7; see Eq(9) for details. Referring to  stiffening, because it is assumed that there exists a reference
the anticipated behavior shown in Fig. 6, we see that the membranglane from which all undulations are excited. Membrane
is softened effectively in the infrared limit. stiffening may serve solid grounds for the Monge gauge.
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For those reasons, we could perform well-controlledthat is in contrast to the naive sinusoidal undulation. With the
simulation in the case of membrane stiffening. On the conhat-excitation picture, the author provided valuable physical
trary, as for the case of membrane softening, our simulatiomsights. First-principles examination of the reality of this hat
faces a number of conflicts coming from unbounded undulaexcitation would be desirable. Second, irrespective of the
tions as the strip length of the transfer matrix is enlarged; semmembrane stiffening, the correlation length is known to be
Sec. Il C for details. Because such pronounced undulationfinite, and the orientational correlation is lost for long dis-
lack the grounds of the reference plane, it would be rathetances[9]. In Ref.[8], it is speculated that the two modes,
unwise to adopt the Monge gauge at least beyond perturbaamely, orientation and curvature, would be decoupled. A
tive level. By the way, we are fairly confident of the effi- deeper understanding of the above points would establish the
ciency of our simulation in the case of membrane stiffeningjustification that the local curvature is the right statistical
and we believe that membrane stiffening may serve as a nemeasure.
promising research field for the application of the density-
matrix renormalization group.

The following problems remain open: First, in RE8],
the author pointed out an intriguing picture of the deforma- This work was supported by a Grant-in-Aid for Young
tion mode called “hat excitation.” This is a sort of soliton Scientists(No. 13740240 from Monbusho, Japan.
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